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ABSTRACT
Knowledge graph is a popular format for representing knowledge,
with many applications to semantic search engines, question-
answering systems, and recommender systems. Real-world knowl-
edge graphs are usually incomplete, so knowledge graph embed-
ding methods, such as Canonical decomposition/Parallel factor-
ization (CP), DistMult, and ComplEx, have been proposed to
address this issue. These methods represent entities and relations
as embedding vectors in semantic space and predict the links
between them. The embedding vectors themselves contain rich
semantic information and can be used in other applications such
as data analysis. However, mechanisms in these models and the
embedding vectors themselves vary greatly, making it difficult
to understand and compare them. Given this lack of understand-
ing, we risk using them ineffectively or incorrectly, particularly
for complicated models, such as CP, with two role-based em-
bedding vectors, or the state-of-the-art ComplEx model, with
complex-valued embedding vectors. In this paper, we propose
a multi-embedding interaction mechanism as a new approach
to uniting and generalizing these models. We derive them the-
oretically via this mechanism and provide empirical analyses
and comparisons between them. We also propose a new multi-
embedding model based on quaternion algebra and show that it
achieves promising results using popular benchmarks.

KEYWORDS
Knowledge Graph, Knowledge Graph Completion, Knowledge
Graph Embedding, Multi-Embedding, Representation Learning.

1 INTRODUCTION
Knowledge graphs provide a unified format for representing
knowledge about relationships between entities. A knowledge
graph is a collection of triples, with each triple (h, t, r ) denoting
the fact that relation r exists between head entity h and tail en-
tity t . Many large real-world knowledge graphs have been built,
including WordNet [22] representing English lexical knowledge,
and Freebase [3] and Wikidata [29] representing general knowl-
edge. Moreover, knowledge graph can be used as a universal
format for data from applied domains. For example, a knowl-
edge graph for recommender systems would have triples such as
(UserA, Item1, review) and (UserB, Item2, like).

Knowledge graphs are the cornerstones of modern semantic
web technology. They have been used by large companies such as
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Google to provide semantic meanings into many traditional appli-
cations, such as semantic search engines, semantic browsing, and
question answering [2]. One important application of knowledge
graphs is recommender systems, where they are used to unite
multiple sources of data and incorporate external knowledge [5]
[36]. Recently, specific methods such as knowledge graph em-
bedding have been used to predict user interactions and provide
recommendations directly [10].

Real-world knowledge graphs are usually incomplete. For ex-
ample, Freebase and Wikidata are very large but they do not
contain all knowledge. This is especially true for the knowledge
graphs used in recommender systems. During system operation,
users review new items or like new items, generating new triples
for the knowledge graph, which is therefore inherently incom-
plete. Knowledge graph completion, or link prediction, is the task
that aims to predict new triples.

This task can be undertaken by using knowledge graph em-
bedding methods, which represent entities and relations as em-
bedding vectors in semantic space, then model the interactions
between these embedding vectors to compute matching scores
that predict the validity of each triple. Knowledge graph embed-
ding methods are not only used for knowledge graph completion,
but the learned embedding vectors of entities and relations are
also very useful. They contain rich semantic information similar
to word embeddings [21] [20] [14], enabling them to be used
in visualization or browsing for data analysis. They can also be
used as extracted or pretrained feature vectors in other learning
models for tasks such as classification, clustering, and ranking.

Among themany proposed knowledge graph embeddingmeth-
ods, the most efficient and effective involve trilinear-product-
based models, such as Canonical decomposition/Parallel factor-
ization (CP) [13] [17], DistMult [35], or the state-of-the-art Com-
plEx model [28]. These models solve a tensor decomposition
problem with the matching score of each triple modeled as the
result of a trilinear product, i.e., a multilinear map with three
variables corresponding to the embedding vectors h, t , and r
of head entity h, tail entity t , and relation r , respectively. The
trilinear-product-based score function for the three embedding
vectors is denoted as ⟨h, t, r ⟩ and will be defined mathematically
in Section 2.

However, the implementations of embedding vectors for the
various models are very diverse. DistMult [35] uses one real-
valued embedding vector for each entity or relation. The original
CP [13] uses one real-valued embedding vector for each relation,
but two real-valued embedding vectors for each entity when it is
as head and as tail, respectively. ComplEx [28] uses one complex-
valued embedding vector for each entity or relation. Moreover, a
recent heuristic for CP [17], here denoted as CPh , was proposed
to augment the training data, helping CP achieve results com-
petitive with the state-of-the-art model ComplEx. This heuristic
introduces an additional embedding vector for each relation, but
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the underlying mechanism is different from that in ComplEx. All
of these complications make it difficult to understand and com-
pare the various models, to know how to use them and extend
them. If we were to use the embedding vectors for data analysis
or as pretrained feature vectors, a good understanding would
affect the way we would use the complex-valued embedding vec-
tors from ComplEx or the different embedding vectors for head
and tail roles from CP.

In this paper, we propose a multi-embedding interaction mech-
anism as a new approach to uniting and generalizing the above
models. In the proposed mechanism, each entity e is represented
by multiple embedding vectors {e(1),e(2), . . . } and each relation
r is represented by multiple embedding vectors {r (1), r (2), . . . }.
In a triple (h, t, r ), all embedding vectors of h, t , and r interact
with each other by trilinear products to produce multiple interac-
tion scores. These scores are then weighted summed by a weight
vectorω to produce the final matching score for the triple. We
show that the above models are special cases of this mechanism.
Therefore, it unifies those models and lets us compare them di-
rectly. The mechanism also enables us to develop new models by
extending to additional embedding vectors.

In this paper, our contributions include the following.

• We introduce a multi-embedding interaction mechanism
as a new approach to unifying and generalizing a class of
state-of-the-art knowledge graph embedding models.

• We derive each of the above models theoretically via this
mechanism. We then empirically analyze and compare
these models with each other and with variants.

• We propose a new multi-embedding model by an exten-
sion to four-embedding vectors based on quaternion alge-
bra, which is an extension of complex algebra. We show
that this model achieves promising results.

2 RELATEDWORK
Knowledge graph embedding methods for link prediction are
actively being researched [30]. Here, we only review the works
that are directly related to this paper, namelymodels that use only
triples, not external data such as text [32] or graph structure such
as relation paths [18]. Models using only triples are relatively
simple and they are also the current state of the art.

2.1 General architecture
Knowledge graph embedding models take a triple of the form
(h, t, r ) as input and output the validity of that triple. A general
model can be viewed as a three-component architecture:

(1) Embedding lookup: linear mapping from one-hot vectors
to embedding vectors. A one-hot vector is a sparse dis-
crete vector representing a discrete input, e.g., the first
entity could be represented as [1, 0, . . . , 0]⊤. A triple could
be represented as a tuple of three one-hot vectors repre-
senting h, t , and r , respectively. An embedding vector is
a dense continuous vector of much lower dimensionality
than a one-hot vector thus lead to efficient distributed
representations [11] [12].

(2) Interaction mechanism: modeling the interaction between
embedding vectors to compute the matching score of a
triple. This is the main component of a model.

(3) Prediction: using the matching score to predict the validity
of each triple. A higher score means that the triple is more
likely to be valid.

2.2 Categorization
Based on the modeling of the second component, a knowledge
graph embedding model falls into one of three categories, namely
translation-based, neural-network-based, or trilinear-product-based,
as described below.

2.2.1 Translation-based: These models translate the head en-
tity embedding by summing with the relation embedding vector,
then measuring the distance between the translated images of
head entity and the tail entity embedding, usually by L1 or L2
distance:

S(h, t, r ) = − ||h + r − t | |p

= −

( D∑
d

|hd + rd − td |
p

)1/p
,

(1)

where
• h, t, r are embedding vectors of h, t , and r , respectively,
• p is 1 or 2 for L1 or L2 distance, respectively,
• D is the embedding size and d is each dimension.

TransE [4] was the first model of this type, with score function
basically the same as the above equation. There have been many
extensions such as TransR [19], TransH [33], and TransA [34].
Most extensions are done by linear transformation of the entities
into a relation-specific space before translation [19].

These models are simple and efficient. However, their model-
ing capacity is generally weak because of over-strong assump-
tions about translation using relation embedding. Therefore, they
are unable to model some forms of data [31].

2.2.2 Neural-network-based: These models use a nonlinear
neural network to compute the matching score for a triple:

S(h, t, r ) =NN (h, t, r ), (2)

where
• h, t, r are the embedding vectors ofh, t , and r , respectively,
• NN is the neural network used to compute the score.

One of the simplest neural-network-based model is ER-MLP
[7], which concatenates the input embedding vectors and uses a
multi-layer perceptron neural network to compute the matching
score. NTN [26] is an earlier model that employs nonlinear ac-
tivation functions to generalize the linear model RESCAL [24].
Recent models such as ConvE [6] use convolution networks in-
stead of fully-connected networks.

These models are complicated because of their use of neural
networks as a black-box universal approximator, which usually
make them difficult to understand and expensive to use.

2.2.3 Trilinear-product-based: These models compute their
scores by using trilinear product between head, tail, and relation
embeddings, with relation embedding playing the role of match-
ing weights on the dimensions of head and tail embeddings:

S(h, t, r ) =⟨h, t, r ⟩

=h⊤diaд(r )t

=

D∑
d=1

(h ⊙ t ⊙ r )d

=

D∑
d=1

(hdtdrd ) ,

(3)

where



• h, t, r are embedding vectors of h, t , and r , respectively,
• diaд(r ) is the diagonal matrix of r ,
• ⊙ denotes the element-wise Hadamard product,
• D is the embedding size and d is the dimension for which
hd , td , and rd are the entries.

In this paper, we focus on this category, particularly on Dist-
Mult, ComplEx, CP, and CPh with augmented data. These models
are simple, efficient, and can scale linearly with respect to em-
bedding size in both time and space. They are also very effective,
as has been shown by the state-of-the-art results for ComplEx
and CPh using popular benchmarks [28] [17].

DistMult [35] embeds each entity and relation as a single real-
valued vector. DistMult is the simplest model in this category.
Its score function is symmetric, with the same scores for triples
(h, t, r ) and (t,h, r ). Therefore, it cannot model asymmetric data
for which only one direction is valid, e.g., asymmetric triples
such as (Paper1, Paper2, cite). Its score function is:

S(h, t, r ) =⟨h, t, r ⟩, (4)

where h, t, r ∈ Rk .
ComplEx [28] is an extension of DistMult that uses complex-

valued embedding vectors that contain complex numbers. Each
complex number c with two components, real a and imaginary
b, can be denoted as c = a + bi . The complex conjugate c of c is
c = a − bi . The complex conjugate vector t of t is form from the
complex conjugate of the individual entries. Complex algebra
requires using the complex conjugate vector of tail embedding
in the inner product and trilinear product [1]. Thus, these prod-
ucts can be antisymmetric, which enables ComplEx to model
asymmetric data [28] [27]. Its score function is:

S(h, t, r ) =Re(⟨h, t, r ⟩), (5)

where h, t, r ∈ Ck and Re(c) means taking the real component
of the complex number c .

CP [13] is similar to DistMult but embeds entities as head
and as tail differently. Each entity e has two embedding vectors
e and e(2) depending on its role in a triple as head or as tail,
respectively. Using different role-based embedding vectors leads
to an asymmetric score function, enabling CP to also model
asymmetric data. However, experiments have shown that CP’s
performance is very poor on unseen test data [17]. Its score
function is:

S(h, t, r ) =⟨h, t (2), r ⟩, (6)

where h, t (2), r ∈ Rk .
CPh [17] is a direct extension of CP. Its heuristic augments

the training data by making an inverse triple (t,h, r (a)) for each
existing triple (h, t, r ), where r (a) is the augmented relation corre-
sponding to r . With this heuristic, CPh significantly improves CP,
achieving results competitive with ComplEx. Its score function
is:

S(h, t, r ) =⟨h, t (2), r ⟩ and ⟨t,h(2), r (a)⟩, (7)

where h,h(2), t, t (2), r , r (a) ∈ Rk .
In the next section, we present a new approach to analyzing

these trilinear-product-based models.

3 MULTI-EMBEDDING INTERACTION
In this section, we first formally present the multi-embedding in-
teraction mechanism. We then derive each of the above trilinear-
product-based models using this mechanism, by changing the

embedding vectors and setting appropriate weight vectors. Next,
we specify our attempt at learning weight vectors automatically.
We also propose a four-embedding interaction model based on
quaternion algebra.

3.1 Multi-embedding interaction mechanism
We globally model each entity e as the multiple embedding vec-
tors {e(1),e(2), . . . ,e(n)} and each relation r as the multiple em-
bedding vectors {r (1), r (2), . . . , r (n)}. The triple (h, t, r ) is there-
fore modeled by multiple embeddings as h(i), t (j), r (k ), i, j,k ∈

{1, ...,n}.
In each triple, the embedding vectors for head, tail, and re-

lation interact with each and every other embedding vector to
produce multiple interaction scores. Each interaction is modeled
by the trilinear product of corresponding embedding vectors. The
interaction scores are then weighted summed by a weight vector:

S(h, t, r ;Θ,ω) =
∑

i , j ,k ∈{1, ...,n }
ω(i , j ,k )⟨h(i), t (j), r (k)⟩, (8)

where
• Θ is the parameter denoting embedding vectorsh(i), t (j), r (k ),
• ω is the parameter denoting the weight vector used to
combine the interaction scores, with ω(i , j ,k ) being an ele-
ment ofω.

3.2 Deriving trilinear-product-based models
The existing trilinear-product-based models can be derived from
the proposed general multi-embedding interaction score function
in Eq. (8) by setting the weight vectorω as shown in Table 1.

For DistMult, we can see the equivalence directly. For Com-
plEx, we need to expand its score function following complex
algebra [1]:

S(h, t, r ) =Re(⟨h, t, r ⟩)
=⟨Re(h), Re(t), Re(r )⟩ + ⟨Re(h), Im(t), Im(r )⟩

− ⟨Im(h), Re(t), Im(r )⟩ + ⟨Im(h), Im(t), Re(r )⟩,
(9)

where
• h, t, r ∈ Ck ,
• Re(c) and Im(c) mean taking the real and imaginary com-
ponents of the complex vector c , respectively.

Changing Re(h) to h(1), Im(h) to h(2), Re(t) to t (1), Im(t) to
t (2), Re(r ) to r (1), and Im(r ) to r (2), we can rewrite the score
function of ComplEx as:

S(h, t, r ) =Re(⟨h, t, r ⟩)

=⟨h(1), t (1), r (1)⟩ + ⟨h(1), t (2), r (2)⟩

− ⟨h(2), t (1), r (2)⟩ + ⟨h(2), t (2), r (1)⟩,

(10)

which is equivalent to the weighted sum using the weight vectors
in Table 1. Note that by the symmetry between h and t , we can
also obtain the equivalent weight vector ComplEx equiv. 1.
By symmetry between embedding vectors of the same entity
or relation, we can also obtain the equivalent weight vectors
ComplEx equiv. 2 and ComplEx equiv. 3.

For CP, note that the two role-based embedding vectors for
each entity can be mapped to two-embedding vectors in our
model and the relation embedding vector can be mapped to r (1).
For CPh , further note that its data augmentation is equivalent
to adding the score of the original triple and the inverse triple



Table 1: Weight vectors for special cases.

Weighted terms DistMult ComplEx ComplEx
equiv. 1

ComplEx
equiv. 2

ComplEx
equiv. 3 CP CPh

CPh
equiv.

⟨h(1), t (1), r (1)⟩ 1 1 1 0 0 0 0 0
⟨h(1), t (1), r (2)⟩ 0 0 0 1 1 0 0 0
⟨h(1), t (2), r (1)⟩ 0 0 0 -1 1 1 1 0
⟨h(1), t (2), r (2)⟩ 0 1 -1 0 0 0 0 1
⟨h(2), t (1), r (1)⟩ 0 0 0 1 -1 0 0 1
⟨h(2), t (1), r (2)⟩ 0 -1 1 0 0 0 1 0
⟨h(2), t (2), r (1)⟩ 0 1 1 0 0 0 0 0
⟨h(2), t (2), r (2)⟩ 0 0 0 1 1 0 0 0

when training using stochastic gradient descent (SGD):

S(h, t, r ) =⟨h, t (2), r ⟩ + ⟨t,h(2), r (a)⟩. (11)

We can then map r (a) to r (2) to obtain the equivalence given in
Table 1. By symmetry between h and t , we can also obtain the
equivalent weight vector CPh equiv. 1.

From this perspective, all four models DistMult, ComplEx,
CP, and CPh can be seen as special cases of the general multi-
embedding interaction mechanism. This provides an intuitive
perspective on using the embedding vectors in complicated mod-
els. For the ComplEx model, instead of using a complex-valued
embedding vector, we can treat it as two real-valued embed-
ding vectors. These vectors can then be used directly in common
learning algorithms that take as input real-valued vectors rather
than complex-valued vectors. We also see that multiple embed-
ding vectors are a natural extension of single embedding vectors.
Given this insight, multiple embedding vectors can be concate-
nated to form a longer vector for use in visualization and data
analysis, for example.

3.3 Automatically learning weight vectors
As we have noted, the weight vectorω plays an important role
in the model, because it determines how the interaction mecha-
nism is implemented and therefore how the specific model can
be derived. An interesting question is how to learnω automat-
ically. One approach is to let the model learn ω together with
the embeddings in an end-to-end fashion. For a more detailed
examination of this idea, we will test different restrictions on the
range ofω by applying tanh(ω), sigmoid(ω), and softmax(ω).

Note also that the weight vectors for related models are usually
sparse. We therefore enforce a sparsity constraint on ω by an
additional Dirichlet negative log-likelihood regularization loss:

Ldir = −λdir
∑

i , j ,k ∈{1, ...,n }
(α − 1) log

|ω(i , j ,k ) |

| |ω | |1
, (12)

where α is a hyperparameter controlling sparseness (a small α
will make theweight vector sparser) and λdir is the regularization
strength.

3.4 Quaternion-based four-embedding
interaction model

Another question is whether using more embedding vectors in
the multi-embedding interaction mechanism is helpful. Moti-
vated by the derivation of ComplEx from a two-embedding inter-
action model, we develop a four-embedding interaction model
by using quaternion algebra to determine the weight vector and
the interaction mechanism.

Quaternion numbers are extension of complex numbers to
four components [15] [8]. Each quaternion number q, with one
real component a and three imaginary components b, c,d , could
be written as q = a + bi + cj + dk where i, j,k are fundamental
quaternion units, similar to the imaginary number i in complex
algebra. As for complex conjugates, we also have a quaternion
conjugate q = a − bi − cj − dk .

An intuitive view of quaternion algebra is that each quater-
nion number represents a 4-dimensional vector (or 3-dimensional
vector when the real component a = 0) and quaternion multi-
plication is rotation of this vector in 4- (or 3-)dimensional space.
Compared to complex algebra, each complex number represents
a 2-dimensional vector and complex multiplication is rotation of
this vector in 2-dimensional plane [1].

Several works have shown the benefit of using complex, quater-
nion, or other hyper-complex numbers in the hidden layers of
deep neural networks [9] [23] [25]. To the best of our knowledge,
this paper is the first to motivate and use quaternion numbers
for the embedding vectors of knowledge graph embedding.

Quaternion multiplication is noncommutative, thus there are
multiple ways to multiply three quaternion numbers in the tri-
linear product. Here, we choose to write the score function of
the quaternion-based four-embedding interaction model as:

S(h, t, r ) =Re(⟨h, t, r ⟩), (13)

where h, t, r ∈ Hk .
By expanding this formula using quaternion algebra [15] and

mapping the four components of a quaternion number to four
embeddings in the multi-embedding interaction model, respec-
tively, we can write the score function in the notation of the
multi-embedding interaction model as:

S(h, t, r ) =Re(⟨h, t, r ⟩)

=⟨h(1), t (1), r (1)⟩ + ⟨h(2), t (2), r (1)⟩

+ ⟨h(3), t (3), r (1)⟩ + ⟨h(4), t (4), r (1)⟩

+ ⟨h(1), t (2), r (2)⟩ − ⟨h(2), t (1), r (2)⟩

+ ⟨h(3), t (4), r (2)⟩ − ⟨h(4), t (3), r (2)⟩

+ ⟨h(1), t (3), r (3)⟩ − ⟨h(2), t (4), r (3)⟩

− ⟨h(3), t (1), r (3)⟩ + ⟨h(4), t (2), r (3)⟩

+ ⟨h(1), t (4), r (4)⟩ + ⟨h(2), t (3), r (4)⟩

− ⟨h(3), t (2), r (4)⟩ − ⟨h(4), t (1), r (4)⟩,

(14)

where h, t, r ∈ Hk .



4 LOSS FUNCTION AND OPTIMIZATION
The learning problem in knowledge graph embedding methods
can be modeled as the binary classification of valid and invalid
triples. Because knowledge graphs do not contain invalid triples,
we generate them by negative sampling [20]. For each valid triple
(h, t, r ), we replace the h or t entities in each training triple with
other random entities to obtain the invalid triples (h′, t, r ) and
(h, t ′, r ) [4].

We can then learn the model parameters by minimizing the
negative log-likelihood loss for the training data with the pre-
dicted probability modeled by the logistic sigmoid function σ (·)
on the matching score. This loss is the cross-entropy:

L(D,D ′;Θ,ω) = −
∑

(h,t ,r )∈D

logσ (S(h, t, r ;Θ,ω))

−
∑

(h′,t ′,r )∈D′

logσ
(
1 − S(h′, t ′, r ;Θ,ω)

)
,

(15)

whereD is true data (p̂ = 1),D ′ is negative sampled data (p̂ = 0),
and p̂ is the empirical probability.

Defining the class label Y(h,t ,r ) = 2p̂(h,t ,r ) − 1, i.e., the labels
of positive triples are 1 and negative triples are −1, the above loss
can be written more concisely. In cluding the L2 regularization
of embedding vectors, this loss can be written as:

L(D,D ′;Θ,ω) =
∑

(h,t ,r )∈D∪D′

(
log(1 + e−Y(h,t ,r )S(h,t ,r ;Θ,ω))

+
λ

nD
| |Θ| |22

)
,

(16)

where D is true data, D ′ is negative sampled data, Θ are the
embedding vectors corresponding to specific current triples, n is
the number of multi-embedding, D is the embedding size, and λ
is the regularization strength.

5 EXPERIMENTAL SETTINGS
5.1 Datasets
For our empirical analysis, we used the WN18 dataset, the most
popular of the benchmark datasets built on WordNet [22] by
Bordes et al. [4]. This dataset has 40,943 entities, 18 relations,
141,442 training triples, 5,000 validation triples, 5,000 test triples.
In our preliminary experiments, the relative performance on
all datasets was quite consistent, therefore choosing the WN18
dataset is appropriate for our analysis. We will consider the use
of other datasets in in future work.

5.2 Evaluation protocols
Knowledge graph embedding methods are usually evaluated on
link prediction task [4]. In this task, for each true triple (h, t, r ) in
the test set, we replace h and t by every other entity to generate
corrupted triples (h′, t, r ) and (h, t ′, r ), respectively [4]. The goal
of the model now is to rank the true triple (h, t, r ) before the
corrupted triples based on the predicted score S.

For each true triple in the test set, we compute its rank, thenwe
can compute popular evaluation metrics includingMRR (mean
reciprocal rank) and Hit@k for k ∈ {1, 3, 10} (how many true
triples are correctly ranked in the top k) [28].

To avoid false negative error, i.e., corrupted triples are acciden-
tally valid triples, we follow the protocols used in other works
for filtered metrics [4]. In this protocol, all valid triples in the

training, validation, and test sets are removed from the corrupted
triples set before computing the rank of the true triple.

5.3 Training
We trained the models using SGD with learning rates auto-tuned
by Adam [16], that makes the choice of initial learning rate more
robust. For all models, we found good hyperparameters with
grid search on learning rates ∈ {10−3, 10−4}, embedding regu-
larization strengths ∈ {10−2, 3 × 10−3, 10−3, 3 × 10−4, 10−4, 0.0},
and batch sizes ∈ {212, 214}. For a fair comparison, we fixed
the embedding sizes so that numbers of parameters for all mod-
els are comparable. In particular, we use embedding sizes of
400 for one-embedding models such as DistMult, 200 for two-
embedding models such as ComplEx, CP, and CPh , and 100 for
four-embedding models. We also fixed the number of negative
samples at 1 because, although using more negative samples
is beneficial for all models, it is also more expensive and not
necessary for this comparative analysis.

We constrained entity embedding vectors to have unit L2-norm
after each training iteration. All training runs were stopped early
by checking the filtered MRR on the validation set after every 50
epochs, with 100 epochs patient.

6 RESULTS AND DISCUSSION
In this section, we present experimental results and analyses for
the models described in Section 3. We report results for derived
weight vectors and their variants, auto-learned weight vectors,
and the quaternion-based four-embedding interaction model.

6.1 Derived weight vectors and variants
6.1.1 Comparison of derived weight vectors . We evaluated the

multi-embedding interaction model with the score function in Eq.
(8), using the derived weight vectors in Table 1. The results are
shown in Table 2. They are consistent with the results reported
in other works [28]. Note that ComplEx and CPh achieved good
results, whereas DistMult performed less well. CP performed
very poorly in comparison to the other models, even though it is
a classical model for the tensor decomposition task [13].

For a more detailed comparison, we report the performance on
training data. Note that ComplEx and CPh can accurately predict
the training data, whereas DistMult did not. This is evidence that
ComplEx and CPh are fully expressive while DistMult cannot
model asymmetric data effectively.

The most surprising result was that CP can also accurately
predict the training data at a comparable level to ComplEx and
CPh , despite its very poor result on the test data. This suggests
that the problem with CP is not its modeling capacity, but in its
generalization performance to new test data. In other words, CP
is severely overfitting to the training data. However, standard
regularization techniques such as L2 regularization did not appear
to help. CPh can be seen as a regularization technique that does
help CP generalize well to unseen data.

6.1.2 Comparison with other variants of weight vectors. In
Table 2, we show the results for two bad examples and two good
examples of weight vector variants. Note that bad example 1
performed similarly to CP and bad example 2 performed similarly
to DistMult. Good example 1was similar to CPh and good example
2 was similar to ComplEx.

This shows that the problem of bad weight vectors is not
unique to some specific models. Moreover, it shows that there



Table 2: Results for the derived weight vectors on WN18.

Weight setting MRR Hit@1 Hit@3 Hit@10
DistMult (1, 0, 0, 0, 0, 0, 0, 0) 0.796 0.674 0.915 0.945
ComplEx (1, 0, 0, 1, 0,−1, 1, 0) 0.937 0.928 0.946 0.951
CP (0, 0, 1, 0, 0, 0, 0, 0) 0.086 0.059 0.093 0.139
CPh (0, 0, 1, 0, 0, 1, 0, 0) 0.937 0.929 0.944 0.949
DistMult on train 0.917 0.848 0.985 0.997
ComplEx on train 0.996 0.994 0.998 0.999
CP on train 0.994 0.994 0.996 0.999
CPh on train 0.995 0.994 0.998 0.999
Bad example 1 (0, 0, 20, 0, 0, 1, 0, 0) 0.107 0.079 0.116 0.159
Bad example 2 (0, 0, 1, 1, 1, 1, 0, 0) 0.794 0.666 0.917 0.947
Good example 1 (0, 0, 20, 1, 1, 20, 0, 0) 0.938 0.934 0.942 0.946
Good example 2 (1, 1,−1, 1, 1,−1, 1, 1) 0.938 0.930 0.944 0.950

Table 3: Results for the auto-learned weight vectors on WN18.

Weight setting MRR Hit@1 Hit@3 Hit@10
Uniform weight (1, 1, 1, 1, 1, 1, 1, 1) 0.787 0.658 0.915 0.944
Auto weight no restriction 0.774 0.636 0.911 0.944
Auto weight ∈ (−1, 1) by tanh 0.765 0.625 0.908 0.943
Auto weight ∈ (0, 1) by sigmoid 0.789 0.661 0.915 0.946
Auto weight ∈ (0, 1) by softmax 0.802 0.685 0.915 0.944
Auto weight no restriction, sparse 0.792 0.685 0.892 0.935
Auto weight ∈ (−1, 1) by tanh, sparse 0.763 0.613 0.910 0.943
Auto weight ∈ (0, 1) by sigmoid, sparse 0.793 0.667 0.915 0.945
Auto weight ∈ (0, 1) by softmax, sparse 0.803 0.688 0.915 0.944

Table 4: Results for the quaternion-based four-embedding interaction model on WN18.

Weight setting MRR Hit@1 Hit@3 Hit@10
Quaternion-based four-embedding 0.941 0.931 0.950 0.956
Quaternion-based four-embedding on train 0.997 0.995 0.999 1.000

are other good weight vectors, besides those for ComplEx and
CPh , that can achieve very good results.

We note that the good weight vectors exhibit the following
properties.

• Completeness: all embedding vectors in a triple should be
involved in the weighted-sum matching score.

• Stability: all embedding vectors for the same entity or
relation should contribute equally to the weighted-sum
matching score.

• Distinguishability: the weighted-sum matching scores for
different triples should be distinguishable. For example, the
score ⟨h(1), t (2), r (1)⟩ + ⟨h(2), t (1), r (2)⟩ is indistinguishable
because switching h and t forms a symmetric group.

As an example, consider the ComplEx model, where the mul-
tiplication of two complex numbers written in polar coordinate
format, c1 = |c1 |e−iθ1 and c2 = |c2 |e−iθ2 , can be written as
c1c2 = |c1 | |c2 |e−i(θ1+θ2) [1]. This is a rotation in the complex
plane, which intuitively satisfies the above properties.

6.2 Automatically learned weight vectors
We let the models learnω together with the embeddings in an
end-to-end fashion, aiming to learn good weight vectors auto-
matically. The results are shown in Table 3.

We first set uniform weight vector as a baseline. The results
were similar to those for DistMult because the weighted-sum

matching score is also symmetric. However, other automati-
cally learned weight vectors also performed similarly to Dist-
Mult. Different restrictions by applying tanh(ω), sigmoid(ω),
and softmax(ω) did not help. We noticed that the learned weight
vectors were almost uniform, making them indistinguishable,
suggesting that the use of sparse weight vectors might help.

We enforced a sparsity constraint by an additional Dirichlet
negative log-likelihood regularization loss on ω, with α tuned
to 1

16 and λdir tuned to 10−2. However, the results did not im-
prove. Tracking of weight vectors value showed that the sparsity
constraint seemed to amplify the initial differences between the
weight values instead of learning useful sparseness. This suggests
that the gradient information is too symmetric that the model
cannot break the symmetry ofω and escape the local optima.

In general, these experiments show that learning good weight
vectors automatically is a particularly difficult task.

6.3 Quaternion-based four-embedding
interaction model

In Table 4, we present the evaluation results for the proposed
quaternion-based four-embedding interaction model. The results
were generally positive, with most metrics higher than those in
Table 2 for state-of-the-art models such as ComplEx and CPh . Es-
pecially, H@10 performance was much better than other models.



Note that this model needs more extensive evaluation. One
potential problem is its being prone to overfitting, as seen in the
on train results, with H@10 at absolute 1.000. This might mean
that better regularization methods may be needed. However, the
general results suggest that extending to more embedding vectors
for multi-embedding interaction models is a promising approach.

7 CONCLUSION
This paper proposes a multi-embedding interaction mechanism
as a new approach to analyzing state-of-the-art knowledge graph
embedding models such as DistMult, ComplEx, CP, and CPh . We
show that these models can be unified and generalized under
the new approach to provide an intuitive perspective on using
the models and their embedding vectors effectively. We analyzed
and compared the models and their variants empirically to better
understand their properties, such as the severe overfitting prob-
lem of the CP model. In addition, we propose and have evaluated
a new multi-embedding interaction model based on quaternion
algebra, which showed some promising results.

There are several promising future directions. One direction
is to find new methods of modeling the interaction mechanism
between multi-embedding vectors and the effective extension to
additional embedding vectors. Another direction is to evaluate
multi-embedding models such as the proposed quaternion-based
four-embedding interaction model more extensively.
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