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ABSTRACT
This paper addresses the long-term problem of defining a subjec-
tive interestingness measure for BI exploration. Such a measure
involves prior modeling of the belief of the user. The complexity
of this problem lies in the impossibility to ask the user about the
degree of belief in each element composing their knowledge prior
to the writing of a query. To this aim, we propose to automatically
infer this user belief based on the user’s past interactions over a
data cube, the cube schema and other users’ past activities. We
express the belief under the form of a probability distribution
over all the query parts potentially accessible to the user. This
distribution is learned using a random walk approach, and more
specifically an adapted topic-specific PageRank. The resulting
belief provides the foundations for the definition of subjective
interestingness measures that can be use to improve the user’s
experience in their explorations. In the absence of ground truth
for user belief, we simulate in our tests different users and their
belief distributions with artificial cube explorations and evaluate
our proposal based on qualitative evaluation. We finally propose
a preliminary usage of our belief estimation in the context of
query recommendation.

CCS CONCEPTS
• Information systems → Relevance assessment; Data ac-
cess methods; Environment-specific retrieval;

KEYWORDS
BI exploration, user belief, PageRank

1 INTRODUCTION
Business intelligence (BI) exploration can be seen as an iterative
process that involves expressing and executing queries over mul-
tidimensional data (or cubes) and analyzing their results, to ask
more focused queries to reach a state of knowledge that allows
to answer a business question at hand. This complex task can
become tedious, and for this reason, several approaches have
been proposed to facilitate the exploration by pre-fetching data
[23], detecting interesting navigation paths [25], recommending
appropriate queries based on past interactions [1] or by modeling
user intents [12].

Ideally, such systems should be able to measure to which ex-
tent a query would be interesting for a given user prior to any
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recommendation. Indeed, as illustrated in [6] and first elicited
in [26] in the context of Explorative Data Mining (EDM), the
interestingness of a pattern depends on the problem at hand, and,
most importantly, on the user that extracts the pattern. An inter-
estingness measure for such explorative tasks should therefore
be tailored for a specific user.

Following the idea of subjective interestingness measures ini-
tiated and developed by De Bie [4], our aim is to measure the
subjective interestingness of a set of queries, based on the prior
knowledge that the user has about the data and the cost for the
user to understand the query and its evaluation.

It is therefore crucial, before reaching the definition of such
an interestingness measure for BI, to be able to transcribe with
an appropriate information-theoretic formalism the prior user
knowledge, also called belief, on the data. De Bie proposes to
represent this belief as a probability distribution over the set
of data. However, it is clearly not possible to explicitly ask a
user about the degree of belief in each element composing her
knowledge prior to each query, let alone identifying on which
element of knowledge expressing this probability distribution.
This motivates the investigation of approaches for automatically
estimating the user’s belief based on their implicit feedback. Let
us now consider the following example to illustrate the difficulty
of estimating probabilities for the belief.

Figure 1: Toy SSB benchmark session

Example. Let us consider the explorative session over the Star
Schema Benchmark schema [20] consisting of 3 queries, as il-
lustrated in Figure 1, and loosely inspired by session 3 of the
SSB’s workload. For the sake of readability, only the relevant
query parts (grouping set, filters and measures) are shown. This
example showcases the short session initiated by a user that
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explores the cube looking for information on revenue some com-
pany makes in different locations. Assume we are interested in
recommending a query to the user for continuing their explo-
ration. This recommendation should be both connected to the
most used query parts, so as not to loose focus, but also should
bring new, unexpected information, so as not to feed the user
with already known or obvious information.

A naive solution would be to use the set of all possible query
parts as the set of data and to express the belief based on the
frequency of each query part in the past user history. From the
session in Figure 1 it is possible to compute the number of occur-
rences of each query part (for instance, SUM REVENUE appears 3
times, CUSTOMER.CITY 2 times, while SUPPLIER.REGION=AMERICA
appears only once, etc.).

However, this simple representation raises major problems:
first, the vector of user belief computed from the number of
occurrences will mostly contain zero values because the majority
of users will concentrate their exploration to a certain region of
the data cube. Second, this belief would not give any probability
to query parts such as CUSTOMER.NATION=CANADA, while
if user knows about AMERICA and USA, she is likely to have a
basic knowledge about sibling countries to USA in the dimension
CUSTOMER.NATION. Finally, it may also be taken advantage of
other users’ former explorations, as a proxy of what the current
user might find interesting.

This example stresses the need for an approach to define the
belief based on the users’ past activity, as well as an information
about how knowledge is structured, which, in the case of the
data cube, can be found in the cube schema. We note that while
previous works already investigated surprising data in cubes (see
e.g., [9, 25]), to the best of our knowledge none of them did so
by explicitly modeling a user’s belief.

As a first step in this direction, this paper proposes tracking
user belief in BI interactions for measuring subjective interest-
ingness of a set of queries executed on a data cube. We propose
to build a model of the user’s past explorations that will then be
used to infer the belief of the user about the query parts being
useful for the exploration. However, contrary to the context of
pattern mining [4] where in general no metadata information is
available, the query parts that we consider in our model cannot
be considered agnostically of the cube schema, that the user usu-
ally knows. In this context, we propose to take advantage of it
to infer what a user may or may not know based on what she
already visited and what is accessible from the previous queries.
We define the belief of a user as a probability distribution over the
set of query parts coming from the log of past activities and the
cube schema. We propose to learn this probability distribution
with a modified topic-specific PageRank algorithm, where the
topology matrix is based on previous usage and the schema of
the cube, and where the teleportation matrix corresponds to a
specific user model. Finally, in order to evaluate our approach,
we will take advantage of the artificial exploration generator
CubeLoad [22] that mimics several prototypical user behaviors
that should exhibit different types of belief probability distri-
butions. The difficulty of the evaluation in our case lies in the
absence of explicit belief ground truth. In this context, two main
experiments are reported in this paper: (1) an evaluation based
on comparisons of beliefs produced by different user profiles in
CubeLoad, and (2) a preliminary study that indicates to which
extent it is possible to characterize a recommendation as one of
the reference exploratory profile of CubeLoad only based on the

belief model of recommended queries. As a side result, this exper-
iment also shows how the belief model is impacted by the history
(the log files) on which the recommender system is trained and
how some exploration pattern may trap the user in a cognitive
bubble.

This paper is organized as follows. Section 2 motivates the
use of user belief and subjective interestingness measure in the
context of data exploration. Section 3 introduces the concepts
used in our approach: a simplified definition of a query part,
subjective interestingness and topic-specific PageRank. Section
4 presents our modeling of past usage and database schema as
topology and user profile for discovering user beliefs. Finally
Sections 5 and 6 present our experiments on CubeLoad generated
sessions while Section 7 discusses related work and Section 8
concludes and draws perspectives.

2 USER BELIEF IN DATA EXPLORATION
This section describes how the knowledge of a user belief, and
by extension a subjective interestingness measure, could be used
to improve the user’s experience in the context of interactive
data exploration. This example highlights the main scientific
challenges of such task, some of them being left as future work
as the present paper exclusively focuses on a first expression of
user belief in the context of data cube exploration.

In our vision, illustrated in Figure 2, human remain in the loop
of data exploration, i.e., the exploration is not done automati-
cally, but we aim at making it less tedious. All users, naive or
expert, willing to explore a dataset, express their information
need through an exploration assistant. This assistant is left with
the task of deriving from the user’s need the actual queries to
evaluate over the data source. This exploration assistant commu-
nicates with a belief processor that is responsible for the mainte-
nance of the user’s profile, i.e., a model of that user, in the sense
that it includes an estimation of the actual belief unexpressed by
the user. This belief is manifold and concerns e.g., hypotheses on
the value of the data, the filters to use, how the answer should be
presented, etc. The belief processor activates a series of subjec-
tive interestingness measures that drives the query generator for
deriving and recommending the most interesting queries for this
user, in the sense that they produce relevant, unexpected, diverse
answers, avoiding undesirable artifacts such as biased or false dis-
coveries, the so-called cognitive bubble trap, etc. These answers
and recommendations are packaged (e.g., re-ranked, graphically
represented) by the storytelling processor before being displayed
to the user and sent to the belief processor for profile updating.

Notably, thanks to the belief processor, once enough diverse
users are modeled, the storytelling processor may cope with the
cold start problem of generating recommendation for unknown
users (the future user of Figure 2).

The work presented in this paper is a preliminary step in
the implementation of this vision. We first concentrate on cube
exploration, and on expressing the belief in terms of a probability
distribution over the query parts the active user may use for the
next query of their exploration.

Several improvements, left as future work, are needed before
integrating our belief processor into a personal data exploration
assistant. A first step is to improve our belief model, either by
refining the computation by taking into account more informa-
tion from the schema and the usage, or to change the scale at
which the belief is expressed (for example at the cell’s level rather
than the query parts). Second, it is crucial to define an efficient
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Figure 2: Envisioned use of belief and subjective interestinness measures in data exploration

belief update routine that scales with the size of the distribution
probability that we use. Finally, we have to define a set of in-
terestingness measures based on the information content of a
sequence of queries and the complexity of these queries. Again,
these definitions should take advantage of the peculiarities of the
data cube exploration context to be on par with what a human
analyst would consider interesting.

3 PRELIMINARIES
3.1 Query parts
Our user belief model relies on query parts. The term query parts
can undergo different meanings. Coherent with our objective of
taking into account both usage (i.e., previous explorations) and
cube schema, our query part definitions encompasses both.

First, concerning the usage, we use the definition of query part
provided by [22], where the authors consider it is one constituent
of a

multidimensional query consisting of (i) a group-by
(i.e., a set of hierarchy levels on which measure val-
ues are grouped); (ii) one or more measures whose
values are returned (the aggregation operator used
for eachmeasure is defined by themultidimensional
schema); and (iii) zero or more selection predicates,
each operating on a hierarchy level.

Second, regarding the schema, we consider as query parts all
dimensional attributes and possible selection predicates, leaving
measures for futurework. Indeed, our approach relies on relations
between query parts. While it is easy to infer relations based on
the schema for dimensional attributes (based on the hierarchy) or
selection conditions (based on the value selected), it is not trivial
to find a relation based on the measures.

3.2 Interestingness for exploratory data
mining

The framework proposed by De Bie [4], in the context of ex-
ploratory data mining, is based on the idea that the goal of any
exploratory data mining task is to pick patterns that will result
in the best updates of the user’s knowledge or belief state, while
presenting a minimal strain on the user’s resources. In De Bie’s
proposal, the belief is defined for each possible value for the data
from the data space and can be approximated by a background
distribution.

As a consequence, a general definition for this interestingness
measure (IM) is a real-valued function of a background distribu-
tion, that represents the belief of a user, and a pattern, that is to
say the artifact to be presented to the explorer. Given a set Ω,
the data space, and a pattern Ω′ a subset of Ω, the belief is the
probability P(Ω′) of the event x ∈ Ω′, i.e., the degree of belief
the user attaches to a pattern characterized by Ω′ being present
in the data x . In other words, if this probability is small, then
the pattern is subjectively surprising for the explorer and thus
interesting. In this sense, the IM is subjective in that it depends
on the belief of the explorer. De Bie also proposes to weight this
surprise by the complexity of the pattern Ω′ as follows:

IMDeBie (P ,Ω
′) =

−loд(P(Ω′))

descComp(Ω′)
(1)

where P represents the user belief, i.e. the background distribu-
tion of the pattern Ω′ over the set of data x and descComp(Ω′)

denotes the descriptional complexity of a pattern Ω′.
The data mining process consists in extracting patterns and

presenting first those that are subjectively interesting, and then
refining the belief background distribution based the newly ob-
served pattern Ω′.
The key to such modeling as proposed by De Bie lies in the defi-
nition of the belief of each user for all possible patterns and how
it should evolve based on new patterns explored during time.
Section 4 details how we represent the user belief and how we
learn it in our context. The update of such belief based on new
discovered patterns is left for future work.

3.3 Topic-specific PageRank
Initially, the PageRank algorithm is designed to estimate the
relative importance of web pages as a probability to end up on
this web page after an infinite surf on the web [8]. A graph whose
topology represents the co-occurrence of web pages is defined.
The PR PageRank vector is the solution to:

PR = ((1 − α)M + αT ) × PR (2)

whereM is the stochastic transition matrix of the graph of web
pages co-occurrences and T represents, in the traditional PR
algorithm, a stochastic uniform distribution matrix that ensures
the convergence to stable probabilities, and can conceptually be
understood as the possibility for the surfer to teleport anywhere
on the web graph.

The topic-specific PR [15] proposes to bias the traditional PR
algorithm with a stochastic teleportation matrix that restrains
the possible teleportations to the vertices assigned to a particular



EDBT/ICDT 2019 Workshops, March 26, 2019, Lisboa, Portugal A. Chanson et al.

topic. As shown in Equation 2 the parameter α allows to give
more or less importance to teleportation. The matrix T can be
any stochastic matrix representing a specific topic that will bias
the probability distribution. Section 4.2 show how to use this
topic-specific PR algorithm to estimate the probabilities of query
parts.

4 INFERRING USER BELIEF FROM SCHEMA
AND LOG USAGE

This section addresses the following questions: (1) what is user
belief in BI exploration? (2) How to estimate it?

4.1 What is user belief in BI?
Ideally, the user belief would be a probability the user attaches to
the statement "I believe the value of this cell is exactly this one".
Modeling such a belief is one of our long term perspectives. In a
first methodological step towards this direction, we consider in
this work that the user belief is the importance the user attaches
to the statement "I believe this query part is relevant for my
exploration". In some sense, we consider query parts as pieces of
knowledge about the data that reduce the set of possible values
it may take from the original data space, inspired by the De Bie’s
view of explorative pattern mining [3, 18].

We propose to define the user belief over the set of query parts
for two main reasons. First, the set of query parts is measurable
and thus respects the formal constraints in the model of De Bie
[4] in case we want to extend the belief to an interestingness
measure. Second, working at the query level would end-up with
a very sparse representation of the data space, as the probability
that two queries occur in the same exploration is much lower than
the probability that two query parts appear in the same query or
exploration. Moreover, when considering query parts, the most
interesting ones for the user may appear in several consecutive
queries and thus might have more prominent probability values.

As we cannot "brain-dump" the user, the belief is approximated
by the importance of the available query parts. The challenge
lies in a way to find this probability distribution over a possibly
infinite or too large set of query parts even if we restrict to the
attributes in a given schema.

Practically, in order to avoid to deal with all these query parts,
we restrict to those appearing in a query log and in the schema,
where only the active domain of the attributes is considered.
This importance attached to query parts appearing in actual
users’ explorations is consistent with our objective of defining a
subjective measure.

4.2 Using PageRank as a belief function
Once restricted the set of query parts that will be considered,
we still need to compute their relative importance expressed as
a probability distribution for a specific user. This is done by a
topic-specific PageRank (PR) that computes the probability for a
user u to end up on a query part q when using the cube schema
during the exploration, knowing past explorations by other users
and knowing the profile of u.

LetM be the topology transition matrix as defined in the topic
specific PageRank (TSPR). It is computed from the directed graph
of query parts G = ⟨V ,A⟩ defined over the set V of all query
parts found in a log of queries L, and a schema S that represents
the topology of the multidimensional space. This schema can be
reduced either as a set of sequence of attributes or as a set of
hierarchies of attribute values. As motivated in Section 3.1, we

ignore the measures in this definition. The graphG is constructed
as follows: first we apply schema based construction rules and
then log usage construction rules.

Schema based construction rules. (i) for each pair of attributes,
there is an arc a ∈ A if one is the immediate roll-up predecessor
or successor of the other in the dimension where they appear
and (ii) for each pair of selected values, there is an arc if they
are cousins in a dimensional hierarchy (i.e., values taken from
the domain of the same attribute). These two rules are repeated
when dimensions are combined. Note that, again, more complex
relations could be captured in the future in our graph, like sibling
relations for selected values in a dimensional hierarchy.

Log usage construction rules. there is an arc a from vertex q1
to vertex q2 and an arc a′ from q2 to q1 if q1 and q2 appear
together in the same query. There is also an arc a from vertex q1
to vertex q2 if q1 is in a query that precedes another query where
q2 appears.

While the graph G is a general topology of the query space, it
is not however subjective in any way. It has to be biased toward
a specific user, represented by the subset U of the query parts
occurring in their sessions. LetGu = ⟨V ,Eu ⟩ be the user specific
weighted directed graph, defined over the same set V of vertices
as G, but only constructed following the specific log usage rules:
there is an arc e from vertex q1 to vertex q2 (resp. from q2 to q1)
with weight n if q1 and q2 are co-occurring n times in the query
log of the user. Similarly, if a query part q1 is in a query that
precedes another query where part q2 appears, then an arc (q1,
q2) with a weight 1 is added to the graph or the weight of the
existing arc is incremented.

Let P be the transition matrix of G, M be the normalized sto-
chastic version of P, it can be interpreted as a Markov chain.

Let B be the transition matrix ofGu , T is the normalized ver-
sion of this matrix, also referred to as the teleportation matrix.
We can now construct a transition matrix for the underlying
Markov model used by the TSPR as follows:

TSPR = αT + (1 − α)M (3)

The user specific PageRank vector can now be obtained by
solving PRu = PRu ×TSPR. The PRu vector represents our user
belief, as a probability distribution over the set of query parts
V , with parameter α ruling the importance attached to the user
profile.

5 COHERENCE OF BELIEF WITH
REALISTIC PROFILES

Our approach is implemented in Java using jaxen to read cube
schemas and Nd4j1 for simple and efficient matrix computation.
The code is open source and available in a GitHub public reposi-
tory2.

Our first experiments aim at showing that the belief probability
distribution that we learn from our model is coherent with what
could be expected in realistic exploration situations. To settle such
experiments, we need to have a well formalized environment
where possible explorations are already categorized into several
prototypical user profiles that could be used to bias our model. To
this aim, we use the CubeLoad generator [22] that exhibits 4 main
exploratory templates illustrated in Figure 3. Several simulations
are conducted to assess that our learned probability distributions

1https://deeplearning4j.org/docs/latest/nd4j-overview
2https://github.com/AlexChanson/IntrestingnessForOLAP

https://deeplearning4j.org/docs/latest/nd4j-overview
https://github.com/AlexChanson/IntrestingnessForOLAP
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Figure 3: Session templates in CubeLoad (from [22]): , “seed
queries in green, surprising queries in red”.

behave differently and accordingly to what was expected from
the CubeLoad templates.

5.1 Experimental protocol
We generated a series of 50 sessions using the Cubeload generator
over the schema of a cube constructed using the SSB benchmark
[20], that we split in 2 groups: the first 43 sessions are used to
construct the topology graph, and the next 7 are taken from a
single CubeLoad template, and are used to define the user profile
for the teleportation matrix. We run 50 randomized samples to
achieve a traditional cross-validation protocol.

We will establish our results around two distinct measures:
• first, we use a distance between two probability distribu-
tions to estimate to which extent they are close and be-
have similarly. A classical choice could have been to use a
Kullback-Leibler divergence, but here we prefer to use the
discrete Hellinger distance that has the advantage of being
symmetric and bounded in the interval [0, 1]. The discrete
Hellinger distance H (P ,Q) compares two discrete proba-
bility distributions P = (p1, . . . ,pk ) and Q = (q1, . . . ,qk )
as follows:

H (P ,Q) =
1
√
2

√√√ k∑
i=1

(
√
pi −

√
qi )2 (4)

• second, we will plot the average probability distributions
for each user model and their standard deviation to appre-
ciate how the distribution evolves and how it is shaped,
for a qualitative evaluation.

5.2 Hypothesis
We expect the 4 templates included in CubeLoad to behave dif-
ferently. The slice all template is a local user model that only
explores a small fraction of the data space in terms of coverage
of different concepts embedded in this space. It is thus expected
that when comparing to a distribution probability of the whole
topology, it will maximize this distance. In this case, there should
also be only a few query parts that concentrate most of the inter-
actions with a higher probability, as the user matrix is very local
and is unlikely to teleport to most portions of the data space,
which in turns become improbable. Similarly, the probability of
knowing something from the data should be very low, which

could be traduced by a fast and strong drop in the probability
distribution.

On the contrary, the explorative template should allow for a
broader exploration of the data space. This template should lead
to minimizing its distance with a topology based distribution.
In this case, it is expected that there are fewer very improbable
query parts but that there are more higher probabilities on most
query parts, because of the coverage of the data space by the
template.

The goal-oriented and slice-and-drill templates are expected
to be intermediate states between the two previous templates.
Indeed, both models explore the data space more than slice-all,
but are a bit more constrained than explorative.

5.3 Results
Table 1 represents the distance between:

• the distribution of probabilities computed only from the
topology denoted PR, that is to say the distribution proba-
bility that a traditional PageRank would have produced in
our context,

• and the distribution produced when the PageRank is bi-
ased toward a specific user profile, denoted TSPR here,
corresponding to a specific template in CubeLoad.

We can first observe in Table 1 that the distance between the
resulting distributions is proportional to α as expected. Indeed,
if α is very low, the biased distribution is very close to the PR
topology distribution. The higher α , the more characteristics
from the user profile are introduced in the transition matrix.
Second and as expected, we notice that the slice-all profile bears
the larger distance with the topology as it only explores a small
portion of the possible space, while the other profiles seem to
have a comparable behavior in terms of distance.

Figures 4 and 5 plot, for two distinct values of parameter α , the
average distribution of probabilities for the 4 user profiles and the
PR distribution corresponding to the topology. As expected, when
α = 0.2 all distributions heavily tend to mimic the PR distribution.
On the contrary, when α = 0.8 the difference brought by the
user profile become clearly visible. The slice-all profile tends
to have a higher number of small probabilities as expected and
then decreases very strongly as there is only a few query parts
which are likely to be known by the user. Explorative user profile
favors exploration and thus it is less likely that the probability
of knowing already a query part is low, and consequently the
distribution of value tends to decrease more smoothly in this
case. Finally, and as for our Hellinger distance test, goal-oriented
and slice-and-drill profiles exhibit intermediate behavior for low-
probability query parts and then tends to evolve as smoothly as
the explorative profile.

6 HOW USAGE AND RECOMMENDATION
IMPACT BELIEF

The first experiments reported in Section 5 show that our model
of belief is able to transcribe different exploration templates based
on the shape of their probability distribution functions, although
3 templates, namely Explorative, Goal Oriented and Slice And Drill,
remain very close in this respect.

However, if our belief model is to be faithful to the user in-
tent, as it is expressed at the query part level, any change in the
accessed area of a cube should be traduced by a change in the
assigned probability weights in our belief model. We propose to
first simulate this diversity in the cube exploration by learning
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User/α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Explorative 0,021 0,042 0,063 0,084 0,106 0,130 0,155 0,183 0,215
Goal Oriented 0,015 0,031 0,047 0,063 0,081 0,101 0,123 0,150 0,182
Slice All 0,073 0,127 0,170 0,209 0,244 0,279 0,315 0,350 0,392
Slice and Drill 0,022 0,044 0,066 0,089 0,114 0,139 0,167 0,200 0,236

Table 1: Hellinger distance between PR and our biased PRwith several user profiles following user templates in CubeLoad
generator.

Figure 4: Distribution of probabilities computed by our model for all 4 user profiles when α = 0.2 (log scale).

Figure 5: Distribution of probabilities computed by our model for all 4 user profiles when α = 0.8 (log scale).

the belief model on different and independent log files generated
by CubeLoad.

Second, as the long-term objective is to use belief-based in-
terestingness measure as an input for tailoring personalized rec-
ommendations, we want to evaluate to which extent the output
of a recommender system could impact the belief of a specific
user. To this aim, we use a state-of-the-art OLAP recommender
system [1] that is trained on a log file representative of a specific
CubeLoad template and whose output recommendation is used to
define a new belief distribution. It is important to notice that, at
this step, we consider that all recommended queries are executed
at the same time and that the belief can be computed based on
the same prior knowledge from the user for all recommended

queries at once. As explained earlier, dealing with the evolution
of the user belief after each query is out of the scope of this paper.

In both cases, we need to define beforehand a reference belief
for each of the 4 CubeLoad templates in our simulations. Then
a divergence measure can traditionally be used to evaluate to
which extent changing the template or changing the log file on
which we learn the models impacts the belief distribution.

6.1 Experimental protocol
Evaluation scenarios. Figure 6 presents the main evaluation

protocol for the impact of usage and recommender system on
the belief measure. The left-side of Figure 6 illustrates how to
generate the reference belief. Similarly to Section 5.1, we use 50
CubeLoad sessions among which 43 are used to compute the



EDBT/ICDT 2019 Workshops, March 26, 2019, Lisboa, Portugal

topology graph of our PageRank (see “Log usage construction
rules” in Section 4.2) and 7 sessions issued from a single CubeLoad
template are used to simulate a user and bias the topic-specific
PageRank.

The right-side of Figure 6 describes how we generate the test
belief based on the recommender system [1] and a simulated
user of the recommender system. To do so, we generate a new
independent log file from which 10 random sessions from a single
CubeLoad template are drawn. They are used to train the rec-
ommender system. In addition a separate session is drawn and
truncated to be used as a seed for the recommender. In order to
evaluate to which extent the diversity of queries affects our belief
model, we also consider the case where the recommender system
as well as the seed session for the recommender are drawn at
random from the same log file as the one used for the reference
belief. We call this scenario identical while the first one with
distinct session files is named independent hereafter.

Evaluation of results. We use the Hellinger distance as de-
scribed in Section 5.1 to compare the reference and test belief
distributions. We generate 40 random logs (10 per profile) and
we run them against randomly chosen seeds from the 4 profiles
and against the 4 possible reference belief models. Results are
averaged and reported in Table 2 and 3.

6.2 Hypothesis
We expect several observable results from these experiments.
First, it is expected that the belief divergence between the recom-
mended queries from the test and the queries used as a reference
is much larger in case of independent log files than in case of
identical log files. As in both cases the recommender system is
involved, this would mean that any observed difference would
be due to the difference in log files and that our belief model
while preserving the distribution probabilities of each CubeLoad
template is able to reflect the differences in usage on query parts.

Second, we expect to observe differences between the 4 Cube-
Load templates that could refine the observations of Section 5.3.
Indeed, only based on the distribution it was not possible in our
setting to distinguish clearly among the Explorative, Goal Ori-
ented and Slice and Drill templates. We expect them to remain
close but with slight divergence that would reflect the different
abilities of each template to dig into new parts of the data cube.
However, similarly to experiments in Section 5.3 we expect Slice
All to be significantly divergent from the other profiles. Indeed,
it is known that this template exhibits tendencies to explore lo-
cally the cube by only navigating a dimension following siblings
relations.

Finally, if we consider our belief model as representative of
the usage, we may be able to draw conclusions about the use of
recommender systems with CubeLoad templates and to which ex-
tent the latter propose really distinguishable exploration patterns.
To this aim, a comparison of divergence values when comparing,
for each CubeLoad template, its reference to its recommended test
on the same log file would indicate to which extent the template
explores various portion of the cube. In other words, the more
explorative a template is, the larger the divergence between a
recommendation based on this template and its reference should
be.

6.3 Results
Tables 2 and 3 present experimental values of Hellinger distance
for the identical and the independent scenarios and each type of

recommendation based on the 4 CubeLoad templates (lines) for
each reference belief model (columns).

It can be seen that, as expected, the divergence is significantly
lower when considering recommendations based on the same
log file that was used for the reference belief computation. This
shows that our belief method is sensitive to the actual queries
that are involved in the building of the model despite the general
trends observed for the probability distribution in Section 5.3.

Tests\References Explorative Goal Oriented Slice All Slice and Drill
Explorative 0.64 0.60 0.47 0.60
Goal Oriented 0.64 0.61 0.46 0.60
Slice All 0.67 0.63 0.47 0.62
Slice and Drill 0.63 0.60 0.43 0.58

Table 2: Average Hellinger distance values on 10 runs
when log files are identical. Lines represent test and
columns represents reference belief.

Tests\References Explorative Goal Oriented Slice All Slice and Drill
Explorative 0.85 0.86 0.81 0.86
Goal Oriented 0.85 0.85 0.81 0.86
Slice All 0.83 0.84 0.79 0.84
Slice and Drill 0.86 0.86 0.82 0.87

Table 3: Average Hellinger distance values on 10 runs
when log files are independent. Lines represent test and
columns represents reference belief.

Then, results from Tables 2 and 3 corroborates that there exists
differences between the CubeLoad templates but that are more
or less difficult to observe depending on the CubeLoad template,
as shown by the distribution of Section 5.3.

In the identical scenario, Explorative recommendation is the
most distant to its corresponding Explorative reference (distance
= 0.64) and the most distant to all other recommendations as
shown in column Explorative from Table 2. This can be under-
stood by the nature of the CubeLoad template which makes it
difficult to model for a recommender system, which in turns im-
plies a higher probability to access new portions of the cube and
thus new query parts.

Goal oriented column of Tables 2 and 3 presents not signifi-
cantly different distance values whatever the recommendation
profile is. This is expected as this template can generate several
different paths in the cube to access the same region in the end.
As a consequence, there is a variety in the accessed query parts
which in turns tends to smooth the distance values.

Slice and Drill exhibits significant differences and with a small
distance to itself of 0.58, which means that the recommendation
that is produced reflects the CubeLoad template and stays in a
localized region of the data cube with more common query parts
between recommendations and the reference template.

Finally, an interesting observation is that Slice All has a very
low inner distance of 0.47 in Table 2 which means that the explo-
ration is very focused and that even a recommender system based
on this template will reproduce this local exploration behaviour
with no surprising query parts. This reflects a sort of cognitive
bubble associated to this template, which can be detected with
our approach of user belief estimation.

The latter is confirmed by the analysis of the line Slice All in
Table 2 where the distance between the recommended Slice All
and the other CubeLoad reference templates that are higher than
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Figure 6: Evaluation protocol for the impact of usage and recommender system on the belief measure.

the other distances for each of these templates. For example, in
Table 2, the distance of Slice All to Explorative is 0.67 which is
the largest distance for the column Explorative.

These first results bring new insights on our belief model, and
to which extent it is coherent with the CubeLoad profiles. A more
thoroughful analysis of these results is needed to conclude about
differences on CubeLoad templates and is left as future work.

7 RELATEDWORK
Our work deals with subjective interestingness and how to de-
fine such a measure by learning a belief distribution from users’
past activities in the context of BI. This section presents some
interestingness measures, and how they have been used in the
context of recommendation.

Interestingness has attracted researchers since a long time in
the context of data mining. Indeed, there exists numerous tasks,
for example in pattern mining, for which it is critical to be able
to filter out uninteresting patterns such as item sets or redundant
rules, to control the complexity of the mining approaches and
increase their usability.

In [7, 14], the authors identify two main types of interest-
ingness measures. Objective measures are based only on data
and corresponds to quality metrics such as generality, reliabil-
ity, peculiarity, diversity and conciseness, or directly measurable
evaluation metrics such as support confidence, lift or chi-squared
measures in the case of association rules [2].

On the contrary, subjective measures consider both the data
and the user and characterize the patterns’ surprise and novelty
when compared to previous user knowledge or expected data
distribution. The first work on the topic of subjective interest-
ingness is certainly [26] that is restricted to the pattern mining
domain. In [4, 6], the author extends this notion to any explo-
rative data mining task and represents interestingness as a ratio
between information content and complexity of a discovered
pattern being it an itemset, a cluster or a query evaluation result
(see Section3.2 for more formal details). In [6], De Bie defines the
subjective interestingness as a situation where a

“user states expectations or beliefs formalized as a
‘background distribution’. Any ‘pattern’ that con-
trasts with this and is easy to describe is subjectively
interesting”.

The authors in [14] consider also semantic measures of in-
terestingness, based on the semantics and explanations of the
patterns like utility and actionability. This latter property of ac-
tionability is not meaningful in our case where, as stated by De
Bie [6], we consider situations

“where the user is interested in exploring without
a clear anticipation of what to expect or what to do
with the patterns found”.

Recently, in [21] the authors propose a data exploration study
based on De Bie’s FORSIED framework [5, 6] that pairs a high
level conjunctive query language to identify groups of data in-
stances and expresses belief on some real-valued target attributes,
based on location and spread patterns. This work is close to our
proposal but expresses belief on a summary of the data.

In the context of data cube exploration, to the best of our
knowledge there is no final and consensual interestingness mea-
sure or belief distribution elicitation method, while there exists
measures that are closely related. Measures have been defined as
unexpectedness of skewness in navigation rules and navigation
paths [19] and computed as a peculiarity measure of asymmetry
in data distribution [17]. In [13], the authors define interesting-
ness measures in a data cube as a difference between expected
and observed probability for each attribute-value pair and the
the degree of correlation among two attributes. In [24], Sarawagi
describes a method that profiles the exploration of a user, uses
the Maximum Entropy principle and the Kullback-Leibler diver-
gence as a subjective interestingness measure to recommend
which unvisited parts of the cube can be the most surprising in a
subsequent query.

In [10, 11] the authors use supervised classification techniques
to learn two interestingeness measures for OLAP queries: (1)
focus, that indicates to what extent a query is well detailed and
connected to other queries in the current exploration and (2)
contribution that indicates to what extent a query contributes to
the interest and quality of the exploration.

Finally, interestingness and related principles have been stud-
ied in the context of recommendation but more widely used for
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evaluation rather than the recommendation itself [16]. Interest-
ingness is reflected based on 4 main criteria such as diversity,
serendipity, novelty, and coverage, in addition to traditional ac-
curacy measures.

In the context of OLAP query recommendation, several recom-
mendation algorithms have been proposed that take into account
the past history of queries of a user either based on a Markov
model [23] or on extracted patterns [1]. Noticeably, [1] quanti-
fies how distant is the recommendation from the current point
of exploration to evaluate the interestingness of each candidate
query recommendation.

8 CONCLUSION
This paper describes a first attempt to model user belief as a prob-
ability distribution over query parts in the context of data cube
exploration. The experiments conducted on several prototypical
user templates generated with CubeLoad illustrate how a topic-
specific PageRank can be used to approximate such probability
distribution. Preliminary experiments show that it is already
possible to use our belief model as an indicator for the type of
exploration that a user favors (more global or more local ex-
ploration) or for the portion of the data cube that will be most
certainly explored. Finally our belief model can be used to iden-
tify recommendations that are likely to trap user in a cognitive
bubble and thus may help leveraging diversity in exploration.

This work opens up for further research avenues. Our long-
term goal is the implementation and validation through user
studies of the vision illustrated by Figure 2. Shorter-term research
questions include: (1) how to refine our model of query parts, for
example to better take into account measures in the schema? (2)
How to express the user’s belief beyond query parts, for instance
over the cube’s cells? (3) How to improve our model to better dis-
tinguish between less marked exploration patterns, for instance
between the goal-oriented and slice-and-drill patterns, in terms of
distribution? (4) How to deal with real noisy log usage? (5) How
can we update the probability distribution when a new query
is executed? (6) Finally, what interestingness measures can be
devised from on our proposal?
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