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ABSTRACT workloads (OLAP). In order to read only relevant data, column-

The enormous amounts of data being generated regularly means
that rapidly accessing relevant data from data stores is just as
important as its storage. This study focuses on the use of a dis-
tributed bitmap indexing framework to accelerate query execu-
tion times in distributed data warehouses. Previous solutions for
bitmap indexing at a distributed scale are rigid in their implemen-
tation, use a single compression algorithm, and provide their own
mechanisms to store, distribute and retrieve the indices. Users
are locked to their implementations even when other alterna-
tives for compression and index storage are available or desirable.
We provide an open source, lightweight, and flexible distributed
bitmap indexing framework, where the mechanisms to search for
keywords to index, the bitmap compression algorithm used, and
the key-value store used for the indices are easily interchange-
able. We demonstrate using Roaring bitmaps for compression,
HBase for storing key-values, and adding an updated version
of Apache Orc that uses bitmap indices to Apache Hive that al-
though there is some runtime overhead due to index creation,
the search of hashtags and their combinations in tweets can be
greatly accelerated.

1 INTRODUCTION

Social media platforms like Facebook, Instagram and Twitter
have millions of daily active users. On a daily basis, users upload
content onto the platforms on a petabyte scale. To keep its user
base engaged and active on their platforms, it is critical for such
platforms to ensure that users can find content that is relevant
to them quickly. Restrictions are not placed on how much infor-
mation users can upload due to ever decreasing storage costs.
Therefore, efficient retrieval from data warehouses becomes just
as important as storage. Most social media platforms support
hashtags, a keyword containing numbers and letters preceded
by a hash sign (#). They allow users to add specific targeted
keywords to contents they upload on social media platforms,
allowing other users in turn to find them. Its simplicity and lack
of formal syntax have allowed for its widespread adoption on
multiple platforms. Efficiently finding relevant hashtags and their
combinations at the Big data scale is a challenge.

The volume, velocity and variety of data arriving every sec-
ond means that distributed file systems like Hadoop Distributed
File System (HDFS) [19] are preferred for Big data. HDFS sup-
ports several file formats like text/comma separated values (CSV)
files, column-oriented storage formats like Orc [15], Parquet
[16] and row-oriented storage formats like Avro [1]. The differ-
ence between row-oriented and column-oriented storage formats
lies in how they store contiguous blocks of data. Row-oriented
storage formats store successive rows contiguously, whereas
column-oriented storage formats ensure that all values of a col-
umn are stored contiguously. The former is suitable for transac-
tional (OLTP) workloads, while the latter is suitable for analytical
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oriented storage formats like Orc and Parquet support predicate
pushdown, where the search predicates using =, <, >, <=, >=or |=
are pushed down to the storage level and are evaluated against its
aggregate based indices holding the minimum and maximum val-
ues for each column in each block. Such aggregate based indices
work fine when the data is ordered, but when the data appears
unordered or is skewed, they are prone to false positive results.
To alleviate this problem [20] proposed columnar imprints which
scans the entire column to create bit vectors for every cache line
of data. A bit is set within a bit vector if at least one value occurs
within the corresponding bin. As a result, a unique imprint of
the cache line is created providing a coarse-grained view for the
entire column. However, neither the default aggregate based in-
dices of Orc nor the column imprint index supports the indexing
of substrings like hashtags that can exist within non-numeric
columns. For queries like SELECT tweet FROM table WHERE
string LIKE "%#hashtag%" there is no alternative but to read every
single shard of the dataset, which is not a practical approach for
large datasets as it is incredibly time consuming.

The compressible nature of bitmap indices, the ability to per-
form hardware assisted logical operations (AND, OR, XOR) on
them and their lightweight nature when compared to tree-based
indices make them ideal for indexing hashtags under such con-
ditions. Distributed bitmap indexing frameworks are not a new
concept, and several have been developed [10, 13, 17]. However,
they are rigid in the use of a specific bitmap compression algo-
rithm and provide their own implementation to store, distribute
and retrieve the bitmap indices. A flexible system where the com-
pression algorithm to use and the mechanism to store, distribute
and retrieve bitmaps can be easily swapped to the state of the
art systems is desirable. Such a system allows for the reuse of
existing technologies, and better alternatives can be swapped
in when available. With this paper, we develop and evaluate a
lightweight and flexible bitmap indexing framework which can
be incorporated into existing big data technologies. In this paper,
our main contributions are

(1) Anopen source, lightweight and flexible distributed bitmap
indexing framework for big data which integrates with
commonly used tools incl. Apache Hive and Orc. Users
can easily plug-in their desired functions to find keys to
index, bitmap compression algorithm and key-value store.
Otherwise, they may use the default setup consisting of
Roaring bitmap index, HBase as the key-value store and
provide their specific method to find indexable keys.

(2) A demonstration of how the search for substrings like
hashtags in tweets can be greatly accelerated by using our
bitmap indexing framework. The storage costs for bitmap
indices are minimal, however there is runtime overhead
due to index creation.

The paper is structured as follows. Section 2 provides back-
ground information on the technologies used in our framework.
Section 3 presents the related work. Section 4 describes the imple-
mentation details for our indexing framework. Section 5 presents



the experiments conducted with our distributed indexing frame-
work. Finally, Section 6 concludes our work.

2 BACKGROUND
2.1 Apache HBase

A key-value database stores data as a series of keys-values where
the key acts as a unique identifier and maps to a value in the
database. Both the key and value can be either simple types or
complex types as supported by the key-value database. The three
major operations that define a key-value database are put(key,
value), get(key), delete(key). Apache HBase [9] is an open-source
distributed wide column store providing key-value store opera-
tions on top of HDFS. HBase is used for low latency read/write
operations on large datasets. Logically, data in HBase is orga-
nized as labeled tables containing rows and columns, each row
is defined by a sorting key and an arbitrary number of columns.
Several other open source key-values databases are available
[5, 11, 14, 18].

2.2 Apache Orc

Apache Orc is a columnar-oriented file format for Hadoop that
is both type aware and self-describing [15]. It is optimized for
reading data and creates indices at multiple levels to find relevant
data efficiently. A low-level example of the Orc file format and the
three levels of its aggregate based indices are shown in Figure 1.
We use a small dataset in Figure 1a with 12 records (each has two
attributes num and string) to illustrate how a dataset is stored
as an Orec file, including its aggregate based indices. An Orc file
comprises of independent units called stripes, each having the
default size of 64MB. Each stripe is further composed of groups
of rows called rowgroups with the default size of 10,000 rows.
In our example, a rowgroup size of three is used resulting in an
Orc file containing two stripes and four rowgroups. For every
stripe, the index data streams denoted by green blocks store index
information about columns for every rowgroups within the stripe.
For both numeric and non-numeric attributes, the (min, max)
values within the rowgroup are used as indices. In case of non-
numeric attributes, the values are compared lexicographically to
determine the max and min value. The rowgroup data streams
denoted by the blue blocks contain the actual data stored in
rowgroups within stripes. Each stripe contains a stripe footer
with information on the index stream, data stream and encoding
information for each column in the stripe. The rowgroup indices
within a stripe are used to produce the indices at stripe level
denoted by the purple blocks, and the stripe level indices are
used to generate the file level index denoted by red blocks. The
file level and stripe level indices are stored in the file footer section
of the Orc file. Additionally, information about the datatype of
every column in the file, number of stripes and the number of
rowgroups in every stripe are stored in the file footer. Lastly, the
information regarding how to interpret an Orc file including the
version of the file, the length of the file footer and the compression
used is stored in the postscript section.

In our example, the file level index contains (min=1, max=50)
for the column num and (min="twt1", max="twt50") for the col-
umn string. Queries with filter predicates like SELECT * FROM
table WHERE num = 51 or string = "twt51" search for keys out-
side the min-max range and are stopped immediately. However,
in cases where data is unordered or skewed, aggregate based
indices are prone to false positives. For instance, in our example,

num| string
twit3 #tagl 4 twts 7 twit7 10 twtl0
2 twt2 5 twtd 8 | twt8 #tagl #tag2| | 50 twt50
3 twtl 6 twt6 9 twt9 11 twtll
(a) Sample Dataset
Index Data | | | col: num _rg-l Index min=1, max=3
3 col: string rg-2 Index min=4, max=6
'§| Row Data col: num rg-1 Index| min="twt1", max="twt3 #tagl"
“al_ col: string rg-2 Index min="twt4", max="twt6"
Stripe Footer re-1 Data 1,23
rg-2 Data 4,5,6
rg-1 Data|  "twt3 #tagl", "twt2", "twt1"
rg-2 Data "twt5", "twtd", "twt6"
Index Data f_ col: num —_rg-S Index min=7, max=9
~ col: strin; rg-4 Index min=10, max=50
2 Row Data col: num rg-3 Index|  min="twt7", max="twt9"
:‘E S 4 col: string rg-4 Index, min="twt10", max="twt50"
ripe Footer rg-3 Data 7,8,9
rg-4 Data 10, 50, 11

rg-3 Data |"twt7","twt8 #tagl #tag2", "twt9"
rg-4 Data "twt10", "twt50", "twtl1"

File Footer
PostScript

col: num min=1, max=6

col: string min="twtl", max="twt6"
col: num min=7, max=50

col: string]  min="twt7", max="twt50"
col: num min=1, max=50
col:string min="twtl", max="twt50"

Orc File Format Stripe-1 Index

Stripe-2 Index|

File Index

(b) Sample Dataset stored as Orc file

Figure 1: Orc File Structure

rowgroup-4 data contains skewed data, and its index informa-
tion is distorted for both columns. Queries searching for num
= 25 or string = "twt25" end up reading data streams from the
Orc file even though no stripes or rowgroups in the Orc file
hold those values. [20] proposed the columnar imprint index to
solve this problem for numeric columns. However, neither the
default aggregate based indices of Orc or the columnar imprint
index supports the indexing of substrings that can exist within
non-numeric columns. For example, our sample dataset contains
tweets and some rare hashtags. There is no way to accelerate
queries like SELECT * FROM table WHERE string LIKE "%#tag1%"
or (AND and OR) operations of hashtags.

In addition to aggregate based indices, Orc also supports Bloom
filters [2] on its columns. Bloom filters are highly space efficient
probabilistic data structure for determining set membership. Com-
pared to aggregate based indices and Columnar imprints, the
probabilistic nature of bloom filter means that false positives are
possible but false negatives are not. Although the false positive
probability is configurable on Orc, bitmap indices do not suffer
from this problem.

3 RELATED WORK

A bitmap index is a special kind of index where if a dataset con-
tains N records and an attribute A has D distinct values, the
bitmap index generates D bitmaps having N bits each. Each bit
in the bitmaps is set to "1" if the record contains that value other-
wise, the bit is set to "0" [21]. Bitmap indices can be compressed
significantly and require less space than other conventional tree-
based indices. In addition, hardware supported bitwise operations
(AND, OR, NOT and XOR) can be utilized on bitmap indices in
order to speed up queries. Based on run-length encoding (RLE)
bitmap compression schemes WAH [22] and PLWAH [6] have
been proposed to reduce the space occupied by bitmap indices.
[22] proposed the Word-Aligned Hybrid (WAH) bitmap compres-
sion, where a sequence of consecutive bits of ones or zeros can be



represented with their bit value and a count indicating the length
of the sequence. WAH runs are comprised of a fills and tails. A
fill is a set of similar bits that is represented as a count plus a bit
value indicating whether it is a zero fill or a one fill. Next, the tail
is a mixture of zeros and ones, which are represented without
compression. [6] observed that WAH compression runs were
never long enough to use all the bits allocated for the run-length
counter. Hence, they proposed the Position List Word Aligned
Hybrid (PLWAH) compression, which uses those unused bits to
hold the position list of set/unset bits that follow a zero or one
run. Thus, if a tail following a fill differs only by a few bits, the
fill word can encode the difference between the tail and fill. The
size of PLWAH bitmaps are often half that required for WAH
bitmaps, and PLWAH was found to be faster than WAH. While
compression algorithms based on run-length encoded compres-
sion perform better on sparse bitmaps, where most of the bits are
0's, they are not so effective on dense bitmaps where most of the
bits are a combination of 0's and 1's. In addition, they have slow
random access and cannot skip sections of the bitmap. Therefore,
[3] developed a hybrid compression technique called Roaring
bitmaps that uses packed arrays and uncompressed bitmaps in a
two-level index. It separates the data and divides it into sparse
and dense chunks. The dense chunks are stored using bitmaps
while the sparse chunks are stored using a packed array of 16 -
bit integers. It supports fast random access, and in experiments
where it was compared to WAH, compresses several times better
and was found to be faster. However, compared to RLE compres-
sion algorithms, Roaring bitmap had limitations regarding the
compression of long compressible runs. Therefore, a third type of
container was added to support such runs of consecutive values
[12] making Roaring several times faster than the RLE based
(WAH) while also compressing better.

While bitmap indices were introduced to expedite queries in
traditional centralized systems, there are challenges when apply-
ing them to Big data platforms utilizing distributed file systems
(DFS). In such situations, local indices will be created on every
computing node, and a mechanism is required to create and main-
tain a global index for expediting queries. [10, 13, 17] have pro-
posed scalable distributed bitmap indexing frameworks. [13] pro-
poses the Bitmap Index for Database Service (BIDS) framework
for large-scale data stores. The framework utilizes an adaptive
indexing technique, which uses either WAH, bit-sliced encoding
or partial indexing depending on the data characteristics to re-
duce index size. Their indexing scheme favors the creation of the
maximum number of indexed attributes so that a wide variety
of queries can be supported. The compute nodes are organized
according to the Chord protocol, and the indexes are distributed
across the nodes using a load balancing mechanism. In Apache
Hive [10], data is stored as logical tables, the tables themselves are
stored as files distributed in HDFS and the metadata is stored in
the Hive metastore. The bitmap indices for Hive tables are stored
in index tables with columns containing the indexed column,
the name of the block storing the data, offset within the block
and bitmap index for the column values. Hive uses its metastore
and both tables to process queries on its bitmap indexed tables.
It uses an enhanced version of WAH to compress bitmaps and
does not support the indexing of substrings from string columns.
The work that closely resembles ours is the distributed bitmap
indexing framework Pilosa [17]. Pilosa uses a modified version of
Roaring bitmap based on 64-bit integers and divides each bitmap
index into frames, views and fragments. Pilosa runs as a cluster
of one or more nodes, and there is no designated master node.

The executor processes the call for all relevant slices on the lo-
cal node and concurrently issues requests to process the call for
slices which reside on remote nodes in the cluster. Once local
and remote processing has ended, it performs any aggregation
or reduction work and returns the results.

All the previous indexing frameworks use a fixed compres-
sion algorithm, but a flexible framework where the compression
algorithm can be substituted is desirable as better compression
algorithms are developed and released. Also, all of them lock
users to their specific implementation to store, distribute and
retrieve bitmap indices in a distributed setting. However, a frame-
work where users can use any key-value store allows greater
flexibility as state of the art key-value stores can be utilized. For
example, HBase and Hive are regularly used together on the same
Hadoop cluster and Hive provides storage handlers that allow
Hive statements to access HBase tables.

4 SYSTEM

In this section, we present our bitmap indexing framework. We
will look at how the index creation process takes place for datasets
in Hive, and how the bitmap indices are used during query pro-
cessing. Finally, how the indexing framework can be used on
Hive is discussed.

4.1 System Architecture

Hive [10] is a data warehouse solution running on Hadoop [8]
that allows users to use the query language HiveQL to write, read
and manage datasets in distributed storage structures. It supports
the Orc file format as one of its underlying storage formats. The
system architecture for Hive and our indexing framework is
shown in Figure 2. HiveQL queries are submitted to Hive through
the Hive clients. The queries are received by the driver, then the
compiler is used to parse, type check and semantically analyze the
queries with schema information in the metastore. An execution
plan is created for the query and an optimizer optimizes the
execution plan using solutions like column pruning, predicate
pushdown (PPD) and pipelining. Finally, the executor executes
the optimized execution plan as jobs on Hadoop. Hive supports
query execution via three execution engines (MapReduce, Tez
and Spark). The job scheduling and resource management tasks
are handled by YARN [23]. If Orc use is enabled, all the engines
create jobs that use the Orc reader/writer to read and write files in
HDFS. As aggregate based indices are prone to false positives, we
added the bitmap indexing framework to the Orc reader/writer
to support more accurate indices. The framework is agnostic to
the execution engine. Users can use our implementation that
searches for hashtags to generate <key, bitmap> values, uses the
state of the art Roaring bitmap for compression and HBase as its
key-value store. Alternatively, users can easily replace the default
implementation of the indexing framework with their desired
bitmap compression algorithm, key-value store and functions
to search for keys to index by uploading a custom Jar file to the
working list of Hive’s Jar file.

As bitmap indices are key-value pairs where the key is the
search key to be indexed and the value is its bitmap representa-
tion, the indexing framework uses a key-value store for persistent
storage of the indices for Orc files. For our implementation, HBase
[9] was chosen as the key-value store due to its low input/output
latency and interoperability with Hadoop, but other key-value
stores can be easily swapped in. When Hive stores datasets as
Orc files, the indexing framework uses functions defined by the
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Figure 2: Orc Bitmap Indexing Framework

user to find keys, generates state of the art Roaring bitmap in-
dices and stores them in HBase. For Hive queries that read from
tables stored as Orec files, the indexing framework uses the search
predicate passed during predicate pushdown to retrieve and pro-
cess relevant bitmap indices from HBase. After processing the
bitmaps, the indexing framework allows Hive to skip irrelevant
stripes and rowgroups. Note that our indexing framework only
controls which stripes and rowgroups are accessed, the query
processing itself is done entirely by Hive's own execution engine.

4.2 Bitmap index Creation

As Orec files are composed of stripes and each stripe is composed
of rowgroups, a bit in a bitmap represents the presence or ab-
sence of a key in a tuple at a certain row number in a rowgroup
within a stripe. The stripe number and rowgroup number can be
determined from a tuple’s row number provided that the max-
imum number of rows that can fit into a rowgroup is known
[default for Orc: 10,000] and the maximum number of rowgroups
per stripe (mrgps) is consistent across the Orc file. However, by
default Orc uses a stripe size of 64MB and depending on the
nature of the dataset, the number of rowgroups across stripes is
unlikely to be consistent. In order to ensure consistency across
all stripes, ghost rowgroups can be added to stripes that contain
a smaller number of rowgroups than the maximum number of
rowgroup per stripe. Ghost rowgroups do not exist in the Orc
files but are added only during the bitmap index creation process.
Once the number of rowgroups across the stripes has been made
consistent, the maximum rowgroups per stripe (mrgps), rows per
rowgroup (rprg) and row number for a particular tuple (rn) can
be used in the integer divisions in equation (1) to determine the
containing stripe number (str) and rowgroup number (rg).

str = rn/(mrgps  rprg)
rg = (rn mod (mrgps * rprqg))/rprg @

The approach is similar to the Hakan factor [7] for bitmap
indices used by the Oracle DBMS, where the Hakan factor refers
to the maximal number of rows a data block can store and is used
to determine the data block which contains a row.

The bitmap index creation process documented in Algorithm 1
takes place concurrently with the process of writing datasets
into a Hive table as Orc files. When the dataset is being written
into a Hive table, several mappers are run and each mapper
processes a shard of the dataset, the shard size ranges between
50 and 1000 MB under default MapReduce and Hive settings.
Our algorithm takes as input a shard being processed by the

Algorithm 1: Bitmap Index Creation

input :shard shard for mapper, col column to be indexed,
udf user defined function to find keys
output: kBms list of all keys their bitmaps
Algorithm createIndex(shard, col, udf’)
1 uKeys=List<String>
2 rnR=bitmap()
3 prnR=bitmap()
4 IstR=List<bitmap>
5 kBms=List<String,bitmap>

/*unique keys*/

/*rownumbers in bitmap*/
/*padded rownumbers in bitmap*/
/*list of bitmapsx/

/*list of keys and bitmaps*/

6 for i « 1to shard.size do
L /*Default writing process of Orcx/

createRowNrBitmap (i, shard.get(col, i))

8 addGhostRowgroups ()
9 createBitmapIndex()
11 return kBms

Procedure createRowNrBitmap (rowNr, col)
1 nr=0

2 bm = new bitmap()

3 keys = udf{col)

4 if keys!=null then

5 foreach key in keys do
6 if uKeys.exists(key) then nr = uKeys.get(key)
7 else nr=uKeys.add(key).getSize()
8 bm.add(nr)
9 IstR.add(bm)
10 rnR.add(rowNr)
Procedure addGhostRowgroups ()
1 rownr=0
2 for j < 1to shard.size do
3 if rnR.contains(j) then prnR.add(rownr++)
4 if isStpBnd(j) then rownr += addPadding (j, mrgps,
rprg)
Procedure createBitmapIndex()
1 for k « 1to prnR.size do
2 setBits = IstR.getAt(k).toArray()
3 foreach setbit in setBits do
4 key = uKeys.get(setbit);
5 if kBms.exists(key) then
6 ‘ kBms.add(key, kBms.get(key).add(k))
7 else kBms.add(key, new bitmap(k))

mapper, the column name to be indexed and the user-defined
function (UDF) set by the user to find keys within the column.
In lines 6-7, as the columns of the dataset are being written to
an Orc file, createRowNrBitmap is executed on the column to
be indexed. In line 3 of createRowNrBitmap, the UDF set by the
user is used to find keys in the column. Then in lines 5-8, each
unique key is stored in a list and a roaring bitmap is created to
identify the position of the keys in the unique list. Finally, the
roaring bitmap identifier of keys is added to the list IstR and the
row number of the column containing the keys is added to the
roaring bitmap rnR. The default value of 10,000 is used for rows
per rowgroups (rprg) and the maximum rowgroups per stripe
(mrgps) is determined at the end of the default writing process
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Figure 3: Orc Index creation process.

of Orc. After all the columns of the shard have been written,
ghost rowgroups are added in addGhostRowgroups to ensure that
the number of rowgroups per stripe is consistent. In lines 2-4,
the row numbers from the roaring bitmap rnR are moved to the
padded roaring bitmap prnR. addPadding is used to calculate the
padding at the stripe boundaries for stripes that contain fewer
rowgroups than mrgps. Next, in createBitmaplndex, all the keys
and the row numbers found are converted to key-bitmap pairs
and stored in the list kBms, and finally returned by createlndex.

Filling a Hive table with data ends with Orc files being created
for the shards processed by each mapper. Next, the keys identified
by the user-defined function and the bitmaps associated with
each key are stored in a HBase table. The index keys are used as
HBase keys and the bitmap for the keys are stored as values using
column identifiers. Using a column identifier helps identify which
worker node the Orc file resides and what Orc file the bitmap is
associated with. Its use allows bitmaps for keys from other Orc
files to be stored in the same HBase table. The maximum number
of rowgroups per stripe (mrgps) for an Orc file is also stored in
HBase using column identifiers.

Figure 3 shows an example of the bitmap index creation pro-
cess. In Figure 3a, the sample input dataset consists of two columns
(rownr, tweet) and 18 tuples. Figure 3b, shows the dataset stored
as an Orc file in HDFS as two HDFS blocks {blk0, blk1}, contain-
ing four stripes {str0, str1, str2, str3} and a total of 9 rowgroups.
In order to create a file level bitmap index, the maximum num-
ber of rowgroups per stripe across the Orc file is determined
by reading the Orc file footer. For the sample dataset there are
4 stripes and stripe str2 with its 3 rowgroups has the maximum
number of rowgroups. Therefore, ghost rowgroups are added to
stripes str0, strl and str3 to make them consistent with stripe str2.
In Figure 3c, we see the bitmap representation for the hashtags
#tagl and #tag2 where the shaded portions represent the ghost
rowgroups. Finally, the keys, their bitmaps , the column identifier,
and the maximum rowgroups per stripe is stored in an HBase
table as shown in Figure 3d.

4.3 Bitmap Index Processing

Based on the queries submitted to Hive, it can use our indexing
framework to retrieve and process bitmap indices stored in a key-
value store to prevent access of irrelevant stripes and rowgroups

Algorithm 2: Bitmap Index Processing

input :ast search predicates in abstract syntax tree, mrgps
maximum rowgroups per stripe, rprg rows per
rowgroup, stripes list of stripes being processed,;
output: strrg stripes and rowgroups to read;
Algorithm useIndex(ast, mrgps, rprg, stripes)
rbm = ProcessPredAST (ast, stripes.start, stripes.end);
foreach setBit in resultBM do
L rownr = getRowNr(setBit);

strrg.add(getStripe (rownr), getRg (rownr));
return strrg;
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from the underlying Orc files. HiveQL queries run by users on
Hive are translated to MapReduce jobs [4] and each mapper will
process a split of the Orc files. To improve performance, Hive
employs a hybrid splitting strategy to process Orc files. If the
number of Orc files are less than the expected number of mappers,
to improve parallelism, Orc file footers are read to provide each
mapper a split of the stripes to process. However, if the average
file size is less than the default HDFS block size, each Orc file
will be treated as a split and a mapper will receive all its stripes.
Hive calls the former strategy ETL, while the latter is called BIL.
As our indexing framework creates bitmaps at the file level, for
the BI strategy, each mapper is processing the entire Orc file
and bitmaps also cover the entire Orc file. However, for the ETL
strategy mappers are processing only a portion of the stripe from
Orc files. Therefore, parts of the bitmap covering non-relevant
stripes need to be removed.

The bitmap index usage is described in Algorithm 2. As in-
put the algorithm takes the predicates to search for in the form
of an abstract syntax tree (AST), the maximum rowgroups per
stripe, rows per rowgroup and information about the stripes
being processed by the mapper. In line 1, the search predicate
AST is traversed using ProcessPredAST, the procedure executes
recursively pulling bitmaps for each predicate using the column
identifier from HBase. Next, the bitmaps are sliced using the
stripe start/end information if Hive is processing the query under
ETL mode, under BI mode no slicing occurs as the mapper is
processing all stripes of an Orc file. Then, logical operators (LIKE,



Query

DataNodel

Task

SELECT tweet FROM Tweets

WHERE tweet LIKE "%#tagl%"| | VorkerNodel Executor

0001.orc

IPredicate:
@ tweet LIKE "%ftag] %" OR

o o i " "
OR tweet LIKE "%#tag2% E‘ . ITpeO"Tpel[ tweet LIKE "%#tag2%
J Node | B by [
Client Manager Tk |1 (@) |1 = RoaringBitmap(Stripe0 StripeL...StripeN))
i StripeN |§ = g 2
¥ i Bifded i rb2 = RoaringBitmap(Stripe0,Stripel,..,StripeN))
Resource DataNodeN {
Manager WorkerNodeN Executor .
i = . bl = RoaringBitmap(Stripe0,Stripe1 )€ - .
Task  [<---'[ StripeQ Stripel @ b2 = RoaringBitmap(Stripe0,Stripe 1 )| Slice(Stripe0, Stripel)
Node resultRb = rb1 OR rb2
Manager
Task |
HBase | i ines z ’
table- Tweets-tweet @ Determine stripes and rowgroups to read
Key Value
WorkerNodel 0001 .. | WorkerNodeN_000N
mrgps | val ..|val read(stripes, rowgroups)

#tagl | RoaringBitmap(Stripe0,Stripel,...StripeN) | .. | RoaringBitmap(Stripe0,Stripel,..,StripeN)

#tag2 | RoaringBitmap(Stripe0,Stripel,..,StripeN) | .. | RoaringBitmap(Stripe0,Stripel,..,StripeN)

Figure 4: Orc Index Processing.

OR, AND or XOR) between predicates are applied to the bitmaps
to retrieve the result bitmap rbm. Finally, in lines 2-4, for all set
bits in the result bitmap, the row numbers representing the set
bits are used in getStripe and getRg to determine the stripes and
rowgroups to read and stored in the list strrg and returned in
line 5.

Figure 4 provides an example of how the indexing processing
framework enables Hive to skip irrelevant blocks during query
execution if bitmap indexing is enabled. The example shows
a cluster containing Hadoop, Hive and HBase with N worker
nodes. Tasks are executed by the worker nodes in the cluster to
answer queries. Hive contains a table Tweet stored into N Orc
files and the HBase table (Tweets-tweet) contains the indexed
keys, their bitmaps and the maximum stripes per rowgroups for
each Orc file in the worker nodes. A select query is executed on
the tweet table in Hive with two predicates. Each task processing
the query will receive and pass the predicates to the underlying
storage structure. Hive is running using its ETL strategy and each
task will process only a portion of the stripes. One of the tasks is
running in the executor of WorkerNode1 and is processing stripe0
and stripe1 of the Orc file 0001.orc from DataNode1l. The task uses
the keys (#tagl and #tag2) from the predicates and the column
identifier WorkerNode1_0001 to retrieve the bitmap values for
the keys from HBase. As the task is not processing all the stripes
within an Orc file, the bitmaps retrieved from the key-value store
are sliced to cover only the stripes being processed. Next, any
logical operation between the keys are applied to their bitmaps
to retrieve the result bitmap. Finally, the stripes and rowgroups
to read are determined by applying equation (1) to the set bits of
the result bitmap, allowing the skipping of irrelevant stripes and
rowgroups.

4.4 Hive Integration

The indexing framework is made publicly! available for use
under the Apache License 2.0%. The index creation and pro-
cessing functionality are integrated into the WriterImpl and
RecordReaderImpl classes of Hive's Orc writer and reader com-
ponents. During data insertion to a Hive table that uses Orc file
format for storage, Orc files are created across the cluster storing
table data. If bitmap indexing has been enabled, the bitmap index
creation process of our framework discussed in 4.2 hooks into the

!https://github.com/lawansubba/lbif
Zhttps://www.apache.org/licenses/LICENSE-2.0

Orc file writing process to create and store indices for predefined
fields of the table. Similarly, during query execution, if bitmap in-
dexing has been enabled, the bitmap index processing component
of our framework discussed in 4.3 runs for the pushed predicates
on the Hive table and the stripes and rowgroups to read from
each Orc file is determined. To use the indexing functionality in
a new Hive installation, the default Orc reader and writer pack-
ages in Hive will have to be replaced with ones containing our
indexing functionality. As Hive allows users to write and upload
their custom built Jar files, the bitmap indexing framework can
be uploaded alongside the Hive Jar to its list of working Jar files,
and the Orc reader and writer can reference it.

The interface of our bitmap indexing framework is provided in
Listing 1. Users can use our implementation or plugin their spe-
cific implementation. In line 3, the function findKeys is used by the
framework to find indexable keys in non-numeric columns. Our
implementation returns hashtags as keys. In line 5, the boolean
function isProcessable is used to determine if a predicate is pro-
cessable by the framework or not. In case the predicate cannot be
processed, Hive's default query processing is run. In line 7, the
function createBitmap is used by users to decide which bitmap
compression algorithm to use to index their data and also imple-
ments Algorithm 1. Our implementation uses Roaring bitmaps
for compression. Finally, in lines 9 and 11, functions storeKey-
Bitmap and getKeyBitmap are used to store the key-bitmap pairs
into a key-value store and to return a byte value of a bitmap for a
particular key. Our implementation uses Roaring for compression
and HBase as the key-value store. To replace the default imple-
mentation, users need to override our implementation, rebuild
the indexing framework and deploy the Jar file to Hive's working
list of Jar files.

Listing 1: Interface for Indexing framework

1 public interface IBitmapIndexingFramework {

2 /* find indexable keys in column fields =x/

3 String[] findKeys(String column);

4 /* determine if search predicate is usable by framework =*/
5 boolean isProcessable (String ast);

6 /* create bitmap index from rownumber and column */

7 boolean createBitmap(int rowNr, String column);

8 /* store all key-bitmap pairs in key-value store */

9 boolean storeKeyBitmap(String[] args);
10 /* get bitmap index for a single key */
11 byte[] getKeyBitmap(String[] args);

12 3}

Listing 2 shows how users can use the Hive console to use
our indexing framework. The first statement in line 2 creates a



Hive table with two columns with Orc as the underlying storage
structure. In lines 3-6, a flag is set enabling bitmap indexing, the
Hive table with the column to index is declared, and what bitmap
indexing implementation of Listing 1 to use is declared. Finally, an
insert statement like line 6 will fill the Orc based table, while our
indexing framework uses the set bitmap indexing implementation
to find keys and creates <key, bitmap> pairs, which are stored
in the predetermined key-value store. How the bitmap indices
can be used is shown in lines 8-11. Lines 8-10 enable predicate
push down, the use of indices based filtering and bitmap indexing
functionality. Lastly, a select query like in line 11 will use the
search key #tagl in Algorithm 2 to return only relevant results.
These settings can also be defined in the configuration file of
Hive so that users don’t have to specify them every time.

Listing 2: HiveQL for Bitmap Index creation/use

1 /% bitmap index creation =*/

2 CREATE TABLE tblOrc(id INT, tweet VARCHAR) STORED AS ORC;
3 SET hive.optimize.bitmapindex=true;

4 SET hive.optimize.bitmapindex.format=tblOrc/tweet/;

5 SET hive.optimize.bitmapindex.framework="'com.BIFramework';
6 INSERT INTO tblOrc SELECT id, tweet FROM tblCSV;

7 /* bitmap index usage */

8 SET hive.optimize.ppd=true;

9 SET hive.optimize.index.filter=true;

0 SET hive.optimize.bitmapindex=true;

1 SELECT % FROM tblOrc WHERE tweet LIKE '%#tag%';

5 EVALUATION

The indexing framework is integrated into the Orc reader and
writer components of Hive 2.2.0 and then installed in a fully
distributed cluster on Microsoft Azure with one node acting as
master and seven nodes as slaves. All nodes are in the East US
region and use Ubuntu OS with 4 VCPUS, 8 GB memory, 192 GB
SSD. HDFS 2.7.4 is used for distributed file system and HBase
1.3.1 for persistent storage of key-value stores. Details about the
datasets used for our experiments are provided in Table 1. All
three datasets contain tweets collected from the Twitter API for
different months in 2013. The schema for the dataset contains 13
attributes [tweetYear, tweetNr, userldNr, username, userld, lati-
tude, longitude, tweetSource, reTweetUserIdNr, reTweetUserld,
reTweetNr, tweetTimeStamp, tweet]. The sizes of datasets are
55, 110 and 220 GB respectively and the size of the datasets de-
termine the number of tuples, the total number of hashtags and
the total number of unique hashtags found in each dataset. The
number of Orc files the dataset is stored into is determined by the
MapReduce configurations like number or mappers, the number
of cores available for processing and amount of RAM available
for each mapper. The three datasets are stored as 66, 128 and
224 separate Orc files respectively across the cluster, each file
containing a different number of stripes and rowgroups.

If a query returns a significant portion of the dataset, at a
certain threshold, the indexed scan will be just as or more time
consuming than a full scan of the dataset. Therefore, for any in-
dexing system, it is important to investigate when this threshold
is reached. The three datasets are stored in Hive as Orc based
tables, and their indices are stored in HBase. In order to investi-
gate the threshold, indices for each dataset are analyzed to find
hashtags for queries that access tuples in a geometric sequence
(1,2,4,8,..) until the maximum sequence number is found. If a
hashtag does not exist that accesses tuples for a sequence num-
ber, the hashtag accessing the closest higher sequence number
is used. The discovered hashtags are used in LIKE queries to
record execution times from Hive tables under the default mode
and using bitmap indices. Next, the very same hashtags are OR'd

together successively in queries to determine execution times
for OR-LIKE queries. Lastly, hashtags are discovered and used
in self JOIN queries. There are not enough common hashtags
between tweets to perform AND operations and test for the
threshold. Therefore, AND operations have been excluded from
the experiments. Each query was run a total of five times, and the
median value was taken as the execution time. Hive runs queries
on all datasets using ETL strategy. Note that the experiments
show execution times/stripes and rowgroups accessed by the
(LIKE, OR-LIKE and JOIN queries) and the number of matching
tuples accessed before a group by operation is performed. The
three types of queries used in our experiments are shown below.

LIKE: SELECT tweetSource, COUNT(*) as Cnt
FROM TableName

WHERE tweet LIKE '%hashtag1%'

GROUP BY tweetSource;

OR-LIKE: SELECT tweetSource, COUNT(*) as Cnt
FROM TableName

WHERE (tweet LIKE '%hashtag1%'

OR tweet LIKE '%hashtag2%',...)

GROUP BY tweetSource;

JOIN: SELECT t1.tweetSource, COUNT(*) as Cnt
FROM TableName AS t1 JOIN TableName AS t2
ON (t1.tweetNr = t2.reTweetNr)

WHERE t1.tweetNr != -1

AND (t1.tweet LIKE '%hashtag1%')

AND (t2.tweet LIKE '%hashtag1%')

GROUP BY tl.tweetSource;

Figure 5a shows the execution times for the LIKE and OR-LIKE
queries for the largest dataset Tweets220 using both the default
mode and bitmap indices. The results for the other two datasets
(Tweets55 and Tweets110) show similar results and do not add
new information and are not included here. Under default mode,
all stripes and rowgroups of the dataset are read and processed.
In case of LIKE queries, a single like comparison is done on the
tweet column and the tweetSource is used in the group by only
if the tweet contains the hashtag. Therefore, the execution times
remains nearly constant for LIKE queries accessing between 1
and 572,725 tuples. In contrast, for OR-LIKE queries an increasing
amount of LIKE operations are performed on the tweet, and then
an OR operation is performed between the results. Therefore,
as more LIKE conditions are added in the OR-LIKE query, the
execution time for OR-LIKE queries increases. Compared to the
default mode, we observe that if the queries are highly selective,
our indexing framework can accelerate execution times for both
LIKE and OR-LIKE queries. However, as more tuples are accessed,
more stripes and rowgroups are accessed from the Orc files, and
as a result there is an increase in execution time.

Figure 5b and Figure 5c show the percentage of stripes and
rowgroups accessed by the LIKE and OR-LIKE queries when
bitmap indices are used. We can summarize that response times
when bitmap indices are used are influenced more by the number
of rowgroups accessed than the number of stripes accessed. A
significant portion of the queries read nearly all the stripes, but
only a few queries read almost all the rowgroups and the execu-
tion time for those queries are nearly equal to the execution time
in default mode. A similar pattern is observed in Figure 5c for
OR-LIKE queries when bitmap indices are used. The last three



Table 1: Dataset details

Dataset Tuples Total HashTags Unique Hastags Orc Files Stripes Rowgroups
Tweets55 192,665,259 32,534,370 5,363,727 66 285 19,360
Tweets110 381,478,160 62,281,496 9,063,962 128 624 38,351
Tweets220 765,196,395 126,603,736 16,149,621 224 1342 76,918
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Figure 5: Query execution times and stripes/rowgroups accessed by LIKE and OR-LIKE queries on Tweets220.

queries access almost all the stripes and rowgroups of the dataset,
and the execution time exceeds the default implementation. In
such cases, a full scan is preferable to an indexed scan.

The results of the last experiment involving self JOIN queries
using both the default mode and bitmap indices are shown in
Figure 6a. Similar to our previous findings, we find that query
execution times can be greatly reduced for highly selective JOIN
queries by using bitmap indices. The amounts of data involved in
the JOIN operation from the left table and right table is greatly
reduced and thus the improvement in execution times. As the
queries involve self JOINs, Figure 6b shows the percentage of
stripes and rowgroups accessed in either side of the left and right
table of the join. An interesting observation is that the query
accessing 132 tuples is accessing significantly more stripes and
rowgroups than the query accessing 322 tuples. The reason is that

the hashtag used in the former query is much more common than
the latter one and exists throughout the Tweets220 dataset, but
only 132 tuples exist that satisfy the join condition (t1.tweetNr =
t2.reTweetNr). This explains the sudden spike in execution time
in Figure 6a for the query that accesses 132 tuples. However, even
in this case the execution time using bitmap indices is better than
the default mode as the indexed solution is able to skip some
irrelevant rowgroups.

The size of the three datasets in CSV format, their sizes when
stored as Orc based tables, the size of their indices when stored
in HBase and the size of Roaring bitmap indices are shown in
Figure 7a. Compared to the CSV format, the Orc formats using
their encoders for the different column types can significantly
reduce the storage footprint of each dataset by more than half.
The sizes of the Roaring bitmap indices and the HBase tables



175 l —a— JOIN.Default JOIN.Bitmap

150 4 '\.__._./”.__/\'/.

Execution Time (Seconds)
-
[=3
(=]

NI S S SRS
R RCEEVER
Tuples Accessed

(a) Execution times for JOIN queries

Data access (%)

NYX 0 ) ) A D
© e P S

Tuples Accessed

(b) Stripes/Rowgroups accessed by JOIN queries

Figure 6: Query execution times and stripes/rowgroups accessed by JOIN queries on Tweets220.

250
51—
225 [WDataset in CSV =
200 |—{[HDataset in Orc
— 175 [JHbase Index
P [Roaring Bitmap Index
=
@ 150
% 125
2
= 100
]
» 75
50
25
0
Tweets55 Tweets110 Tweets220
Datasets

(a) Tweets datasets and their Index sizes

40

lOrc Default
HOrc + Bitmap Index

30

20

10

Execution Time (Minutes)

Tweets55

Tweets110
Datasets
(b) Index creation time for Tweets datasets

Tweets220

Figure 7: Tweets datasets their index sizes and index creation times.

where they are stored are a fraction of size of the datasets in the
CSV format and Orc format. However, the index creation process
comes with an initial index building cost as shown in Figure 7b.
Compared to the default table creation process which stores the
datasets as Orc files, our indexing framework scans the datasets
for hashtags, creates bitmap indices for each Orc file and stores
them in HBase resulting in a 4 to 6 times more expensive table
creation process.

6 CONCLUSION

In this paper, a lightweight, flexible and open source bitmap
indexing framework is proposed to efficiently index and search
for keys in big data. The framework provides a function to search
for hashtags, uses Roaring bitmap for bitmap compression and
HBase for storing key-values. However, all three components
can be easily swapped with other alternatives. The indexing
framework was integrated into Hive and tested on a Hadoop,
Hive and HBase cluster. Experiments on the cluster using three
datasets of different sizes containing tweets demonstrates that
the execution times can be significantly accelerated for queries
of high selectivity.
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