
Data Pipeline Selection and Optimization
Alexandre Quemy
IBM, Cracow, Poland

Faculty of Computing, Poznan University of Technology, Poznan, Poland
aquemy@pl.ibm.com

ABSTRACT
Data pipelines are known to influence machine learning perfor-
mances. In this paper, we formulate the data pipeline hyperpa-
rameter optimization problem as a standard optimization prob-
lem that can be solved by (meta)optimizer. We apply Sequential
Model-Based Optimization techniques to demonstrate how it
can automatically select and tune preprocessing operators to
improve baseline score with a restricted budget. For NLP prepro-
cessing operators, we found that some optimal configurations
are optimal for several different algorithms. It suggests that there
exist algorithm-independent optimal parameter configurations
for some datasets.

1 INTRODUCTION
It is now well accepted that in machine learning, data are as
important as algorithms. Algorithms received a lot of interest
in hyperparameter tuning methods, that is to say, the art of ad-
justing parameters that are not dependent on the instance data.
Contrarily, dataset generation and preprocessing received little if
any interest in hyperparameter tuning. For instance, [6] notices
that algorithm hyperparameter tuning is performed in 16 out of
19 selected publications while only 2 publications study the im-
pact of data preprocessing. This can probably be explained by the
fact that the research community mainly uses ready-to-consume
datasets, hence occulting de facto this problematic. However, in
practice, raw data are rarely ready to be consumed and must be
transformed by a succession of operations usually referred as
data pipeline.

There are plenty of reasons for which a data source cannot
be used directly. For instance, if there are too many descriptive
variables, some feature selection or dimensionality reduction
algorithms must be applied. If data are too large, subsample
techniques can be used. For imbalanced datasets, oversampling
or undersampling may help. One of the most common reasons
to modify raw data is missing or incorrect values. The most
common approaches to cope with this problem is discarding
rows with missing or incorrect data, or imputation, i.e. replacing
missing values with estimated values based on the available data.
Curating datasets from outliers using statistical techniques s.a.
winsorization is very common. Finally, it is worth mentioning
that some learning models have intrinsic domain restrictions (e.g.
Random Forest cannot directly work on categorical variables).
This is handled by encoding variables into suitable variables (e.g.
numerical variables for Random Forest).

All those operations introduce bias and their presence or not
in a data pipeline may be subject to discussion. The data pipeline
depends both on the data source and the algorithm such that
there is no universal pipeline that can work for every data source
and every algorithm. The data pipeline is usually defined by trial

© 2019 Copyright held by the author(s). Published in the Workshop Proceedings
of the EDBT/ICDT 2019 Joint Conference (March 26, 2019, Lisbon, Portugal) on
CEUR-WS.org.

and error using the experience of data scientists and the expert
knowledge about the data.

In this paper, we propose to apply state-of-the-art hyperopti-
mization techniques to select and configure data pipelines. The
main contributions can be summarized as follows:

• Showing the impact of data pipeline configuration on the
classification accuracy1.

• Defining the Data Pipeline Selection and Optimization
(DPSO) problem.

• Showing that addressing theDPSOusing SequentialModel-
Based Optimization (SMBO) leads to a significant increase
of classification performances, even with a restricted CPU
or time budget.

• Defining a measure to quantify how an optimal configu-
ration is specific or independent from the algorithm and
showing it returns expected results.

In Section 2, we present the related work on data pipeline
optimization and hyperparameter tuning. After introducing the
problem in Section 3, we perform two set of experiments: Sec-
tion 4 demonstrates SMBO capacity to solve the problem while
Section 5 focuses on the link between optimal configurations and
algorithms.We conclude in Section 6 by discussing the limitations
of this preliminary work and outlining future work.

2 RELATEDWORK
2.1 Data processing impact
The data preprocessing impact has been evaluated for multiple
algorithms and operators. In [6], the authors showed that the
accuracy obtained by Neural Network, SVM and Decision Trees
are significantly impacted by data scaling, sampling and contin-
uous and categorical coding. A correlation link between under
and oversampling is also demonstrated.

In [13], three specific data processing operators has been tested
for neural networks. Despite the authors do not provide the re-
sults without any data processing, the results show an important
accuracy variability between the alternatives, thus implying a
data processing impact.

For a more comprehensive view on data processing impact,
we refer the reader to [7].

2.2 Optimizing data pipeline
AmazonML uses a sort of collaborative filtering to recommend a
data pipeline based on data (meta)attributes and a meta-database
about efficient pipelines. eIDA [11] solves a planning problem
on top of an exhaustive grid which is unsuitable for practicable
problems with a large configuration domain.

In [14], guidelines are used to verify the quality of prepro-
cessed data in continuous machine learning, i.e. machine learning
models in production and receiving continuously new training
data. The control is usually semi-automatic and proposed by tools
s.a. SeeDB [16] to automatically generate useful visualization of
1The approach remains valid for any problem as long as it consists in maximizing a
score. In fact, it is enough to have a quality measure on the processed data.

data relations, or QUDE [18] to control false discoveries. The
drawback of those methods is the lack of automation.

Recently, a method using meta-features to estimate the impact
of preprocessing operators on model accuracy has been proposed
[3]. Meta-features can be general (e.g. number of classes or at-
tributes) or statistical (e.g. entropy, noise to signal ratio). This
approach constructs a latent space in which any dataset can
be represented. A meta-learner is trained over several different
datasets obtained from different raw data and data pipeline. The
meta-model is thus able to predict the influence of data pipeline
operators on new datasets without training the model and evalu-
ating it using e.g. cross-validation.

In [12], the authors use a genetic algorithm to select a repre-
sentative sample from the data. The objective is to find represen-
tative elements to decrease the learning time and increase the
model accuracy. The fitness function to evaluate a sample is the
model accuracy and thus, this approach is iterative. This work
can be seen as a special case of what is being done in this paper:
the sample selector operator being one particular operator to be
optimized in the data pipeline.

2.3 Hyperparameter tuning and AutoML
The most basic technique for hyperparameter tuning is a grid
search or factorial design which consists in exhaustively testing
parameter configuration on a grid. Randomized searchmight help
in increasing the probability of finding a good configuration but
in most cases the grid approach is computationally intractable.

Modern parameter tuning techniques are divided into two
categories. The first one is model-free techniques such as rac-
ing algorithm s.a. F-RACE [5] or iterated local search algorithm
s.a. ParamILS [10]. The second one can be grouped under a
general framework called Sequential Model-Based Optimization
(SMBO) that iterates over fitting models to determine promising
but unseen regions of the configuration space [2, 9]. Given a
new configuration pn+1, the model aims at predicting the per-
formances of the target algorithm on+1 knowing the history
{(p1,o1), ..., (pn,on)}. Among this group of techniques, bayesian
techniques s.a. gaussian process models and estimates P(o |p). An-
other popular approach is the Tree-structured Parzen Estimator
(TPE) that models not only P(o |p) but also P(p) to provide better
recommendations.

AutoML aims at automating the whole design of machine
learning experiment. Current AutoML approaches focus on solv-
ing the combined algorithm selection and hyperparameter opti-
mization (CASH) problem introduced by Auto-WEKA [15]. This
problem is rather high-level as it considers the data pipeline
selection and its configuration as part of the algorithm selec-
tion phase and the general hyperparameter configuration. For
instance, Auto-Sklearn defines pipelines as one feature prepro-
cessing operator and up to three data preprocessing methods
[8].

The most popular AutoML frameworks such as Auto-WEKA
[15], Auto-sklearn [8] or H2O 2 uses Bayesian optimization to
solve CASH. They usually add additional components that we
do not consider in this study. For instance, Auto-Sklearn reuses
the predictions made at every generation in an ensemble way to
improve results and prevent overfitting. It also usesmeta-learning
[1, 17] to solve coldstart problem: a model has been pre-trained
offline over 140 datasets to be able to recommend good initial
solutions to CASH on new datasets.

2https://www.h2o.ai/

In this paper, we propose to deal specifically with selecting and
optimizing the data pipeline to demonstrate the influence of data
pipeline on the final results, without configuring the algorithm.
We hope this to open the road to more efficient techniques to
solve CASH, notably by allowing transfer learning at the pipeline
configuration step, in addition to meta-learning across datasets.

3 DPSO PROBLEM
We formulate theData Pipeline Selection andOptimization (DPSO)
problem. Let D be a dataset split into Dtrain and Dtest. A data
pipeline is a sequence of operators with their own configuration,
transforming a data source into consumable data for a given
algorithm A. Let assume a data pipeline configuration space P.
Denote by L(P,A,Dtest) the loss algorithmA achieved by a cross-
validation on Dtest transformed by P . The DPSO can be formally
written:

Definition 3.1 (Data Pipeline Selection and Optimization (DPSO)).

P∗ ∈ argmin
P ∈P

L(P,A,Dtest) (DPSO)

In practice, the training set Dtrain is used to find P , and the test
set Dtest to evaluate the overall performances. DPSO can be seen
as a subpart of CASH. CASH agglomerates the pipeline and its
configuration into the algorithm selection and hyperparameter
optimization. To obtain a solution to CASH, a second optimiza-
tion step can be performed to find the best hyperparameters to
the algorithm A.

4 EXPERIMENTS WITH SMBO
In this section, we apply SMBO to solve the Data Pipeline Selec-
tion and Optimization problem.

4.1 Protocol
We created a pipeline prototypemade of 3 steps: “rebalance” (han-
dling imbalanced dataset), “normalizer” (scaling features), “fea-
tures” (feature selection or dimension reduction). For each step,
we selected few possible concrete operators with a specific config-
uration space. For instance, for “features”, there is the choice be-
tween a PCA with keeping 1 to 4 axes, selecting the k ∈ {1, ..., 4}
best features according to an ANOVA, or a combination of both.
Rebalance step consists in downsampling with Near Miss or Con-
densed Nearest Neighbour method or oversampling with SMOTE.
The normalization gives the choice between a standard scaler,
a scaler excluding some points based on a quantile interval, a
min-max scaler and a power transformation. Each step can also
be skipped, and we call baseline pipeline, the pipeline skipping
all operations. There is a total of 4750 possible pipeline configu-
rations. For an exhaustive description of the configuration space,
we refer the reader to the Supplementary Material3.

We performed the experiment on 3 datasets: Wine, Iris and
Breast4.We used 4 classification algorithms: SVM, Random Forest,
Neural Network and Decision Tree. A 10-fold cross-validation is
used to assess the pipeline performances.

We want to quantify the achievable improvement compared
to the baseline, measure how likely it is to improve the baseline
w.r.t. the configuration space, determine if SMBO is capable to

3https://aquemy.github.io/DOLAP_2019_supplementary_material/
4The choice of small datasets is justified by the need to know the optimal score
in the search space to effectively evaluate SMBO results. Those results justify the
SMBO approach as in practice only a fraction of the search space needs to be
explored to drastically improve the score.

https://www.h2o.ai/
https://aquemy.github.io/DOLAP_2019_supplementary_material/

improve the baseline score, measure how much and fast SMBO
is likely to improve the baseline score with a restricted budget.

We performed an exhaustive search and a search using SMBO
with a budget of 100 configurations to explore (about 2% of the
configuration space).

4.2 Results
Figure 1 provides the result obtained with Random Forest on
Breast. A summary of the results is provided by Table 1. All re-
sults being qualitatively similar, the plots are provided in the
Supplementary Material. Figure 1, top part, shows that the base-

Figure 1: Density of configurations. The vertical line is the
baseline score (top). Accuracy with SMBO for 100 configu-
rations explored (bottom).

line score is 0.9384 and the best score 0.9619 i.e. an error reduction
of 38% is achievable in the search space. Most configurations de-
teriorate the baseline score. However, SMBO is skewed towards
better configuration compared to the exhaustive search. It indi-
cates SMBO has a better probability to find a good configuration
than random search. The bottom part shows that SMBO starts to
improve the baseline score after only 4 iterations and reached its
best configuration after 19 iterations. There is only one optimal
configuration in the search space which is not found. If we nor-
malize the accuracy using the min. and max. on the configuration
space, SMBO found a configuration that represents a score of
97.80% with exploring only 0.4% of the configuration space.

Table 1 shows that similar results are obtained for all methods
on all datasets. SMBO always found a better configuration than
the baseline, in at most 17 iterations. In average, the best score is
achieved around 20 iterations (excludingDecision Tree on Iris and
Breast). Decision Tree was able to reach the optimal configuration
on Iris (resp. Wine) after 1 (resp. 5) iterations. In general, the
score in the normalized score space belongs to [0.9780, 1.000]. To
summarize, in average, with 20 iterations (0.42% of the search
space) SMBO is able to decrease the error by 58.16% compared to
the baseline score and found configurations that score 98.92% in
the normalized score space.

Figure 2 shows the optimal pipeline in the search space and the
four pipelines giving the best score for SMBO. All four pipelines
have the correct operator for rebalance and features steps. One

Table 1: Pipeline optimization results.

Baseline Exhaustive SMBO SMBO (norm.) Imp. Inter.

Iris

SVM 0.9667 0.9889 0.9778 0.9831 [11, 11]
Random Forest 0.9222 0.9778 0.9667 0.9828 [8, 27]
Neural Net 0.9667 0.9889 0.9778 0.9831 [17, 17]
Decision Tree 0.9222 0.9889 0.9889 1.0000 [1, 83]

Breast

SVM 0.9501 0.9765 0.9765 1.0000 [12, 20]
Random Forest 0.9384 0.9619 0.9560 0.9780 [4, 19]
Neural Net 0.9326 0.9765 0.9707 0.9903 [1, 7]
Decision Tree 0.9296 0.9619 0.9589 0.9900 [0, 67]

Wine

SVM 0.9151 1.0000 0.9906 0.9811 [3, 13]
Random Forest 0.9623 0.9906 0.9811 0.9818 [5, 20]
Neural Net 0.9057 0.9906 0.9906 1.0000 [1, 25]
Decision Tree 0.9057 0.9811 0.9811 1.0000 [5, 35]

The column SMBO (norm.) is the SMBO score normalized within the
search space. The last column is the interval where the left bound is the
number of configurations required for SMBO to improve the baseline
score, and the right, the number of configurations before reaching the
best score.

uses the RobustScaler but with an incorrect interval and without
centering the data. It is hard to tell which configuration is the
closest to the optimal one because there is no obvious metric
on the configuration space. However, qualitatively, it seems that
the best configurations are relatively similar to the optimal one.
As similar results are observed for all methods and datasets, we
provided them in the Supplementary Material.

SMOTE, k=5 RobustScaler
[5, 95], centering, scaling

None

SMOTE, k=7 RobustScaler
[10, 90], scaling

None

SMOTE, k=7 StandardScaler
centering, scaling

None

SMOTE, k=7 StandardScaler None

SMOTE, k=7 None None

Figure 2: Optimal pipeline (top) and the best pipelines
found by SBMO, using Random Forest on Breast.

5 ALGORITHM-SPECIFIC CONFIGURATION
We would like to quantify how much an optimal configuration is
specific to an algorithm or is universal, i.e. works well regardless
of the algorithm. For this, the optimization process might be
performed on a collection of methodsA = {Ai }

N
i=1. The result is

a sample of optimal configurations p∗ = {p∗i }
M
i=1 whereM ≥ N

since an algorithm might have several distinct optimal configu-
rations. After normalizing the configuration space to bring each
axis to [0, 1], the link between the processed data and themethods
can be studied through the Normalized Mean Absolute Deviation
(NMAD). The idea behind this metric is to measure how much
the optimal points are distant from a reference optimal point.
If the optimal configuration does not depend on the algorithm,
the expected distance between the optimal configurations is 0.

Conversely, if a point is specific to an algorithm, the other points
will be in average far from it.

Working in the normalized configuration space has two ad-
vantages. First, it forces all parameters to have the same impact.
Secondly, it allows the comparison from one dataset to another
since the NMAD belongs to [0, 1] for any number of algorithms
or dimensions of the configuration space.

The Normalized Mean Absolute Deviation is the norm 1 of the
Mean Absolute Deviation5, divided by the number of dimensions
K of the configuration space.

Definition 5.1 (Normalized Mean Absolute Deviation (NMAD)).

NMAD(p∗, r) =
1
K

1
N
| |
(N∑
i=1

|p∗i − r |
)
| |1

To measure how much each optimal point p∗i is specific to
an algorithm Aj , we use it as a reference point and calculate
the NMAD using a sample composed of all the optimal points.
However, an algorithm might have several optimal points and to
be fair, we use as a representant of each algorithm, the closest
point to the reference point.

5.1 Protocol
As the configuration space described in Section 4.1 is not a metric
space, we cannot directly use the NMAD. To avoid introducing
bias with an ad-hoc distance, we perform another experiment
with a configuration space that is embedded in N.

We collected 1000 judgements documents provided by the
European Court of Human Rights (ECHR) about the Article 6.
The database HUDOC6 provides the ground truth corresponding
to a violation or no violation. The cases have been collected such
that the dataset is balanced. The conclusion part is removed. To
confirm the results, we used a second dataset composed of 855
documents from the categories atheism and religion of 20news-
groups.

Each document is preprocessed using a data pipeline consist-
ing in tokenization, stopwords removal, followed by a n-gram
generation. The processed documents are combined and the k
top tokens across the corpus are kept, forming the dictionary.
Each case is turned into a Bag-of-Words using the dictionary.

There are two hyperparameters in the preprocessing phase:
n the size of the n-grams, and k the number of tokens in the
dictionary. We defined the parameter configuration domain as
follow:

• n ∈ {1, 2, 3, 4, 5},
• k ∈ {10, 100, 1000, 5000, 10000, 50000, 100000}.

We used the same four algorithms as in Section 4. As we are inter-
ested in the optimal configurations, we performed an exhaustive
search.

5.2 Results
For both datasets, Figure 3 shows that the classifier returns poor
results for a configuration with a dictionary of only 10 or 100
tokens. Both parameters influence the results, and too high values
deteriorate the results.

Table 2 summarizes the best configurations per method. For
the first dataset, there are 3 points that gives the optimal value
for Random Forest and Linear SVM, however, in practice lowest
5As we work on a discrete space, we used the norm 1, but the euclidean norm is
probably a better choice in continuous space.
6https://hudoc.echr.coe.int/

Figure 3: Heatmap depicting the accuracy depending on
the pipeline parameter configuration. Top for ECHR, bot-
tom for Newsgroup.

Table 2: Best configurations depending on the method

Method (n,k) accuracy

ECHR

Decision Tree (5, 50000) 0.900
Neural Network (5, 50000) 0.960
Random Forest (3, 10000), (4, 10000), (5, 50000) 0.910

Linear SVM (3, 50000), (4, 50000), (5, 50000) 0.921

Newsgroup

Decision Tree (4, 5000), (4, 100000) 0.889
Neural Network (5, 50000) 0.953
Random Forest (3, 10000) 0.931

Linear SVM (2, 100000) 0.946

parameters values are better because they imply a lower prepro-
cessing and training time. It is interesting to notice that (5, 50000)
returns the best accuracy for every model, as this point would be
a sort of universal configuration for the dataset, taking the best
out of the data source, rather than being well suited for a specific
algorithm. On the contrary, on Newsgroup, all optimal points are
different. Our hypothesis is that the more structured a corpus
is, the less algorithm-specific are the optimal configurations, be-
cause the preprocessing steps become more important to extract
markers used by the algorithms to reach good performances. As
ECHR dataset describes standardized justice documents, it is far
more structured than Newsgroup. This would also explain why
generating n-grams for n = 5 still improves the results on ECHR
while degrading them on Newsgroup.

This hypothesis is partially confirmed by Table 3, where it
is clear that the n-gram operator has a strong impact on the
accuracy variation on ECHR dataset (up to 9.8% accuracy im-
provement) while almost none on Newsgroup dataset (at the
exception of Random Forest).
Table 4 contains the NMAD value for each distinct optimal con-
figuration reported in Table 2. The Supplementary Material pro-
vides the calculation step by step. As it can be expected, the

https://hudoc.echr.coe.int/

Table 3: Impact of parameter n on the accuracy, measured
as the relative difference between the best results obtained
only using (1,k) and the best results obtained for any con-
figuration (n,k).

Method p = (1,k) p = (n,k) ∆ acc

ECHR

Decision Tree 0.850 0.900 5.9%
Neural Network 0.874 0.960 9.8%
Random Forest 0.863 0.910 5.4%

Linear SVM 0.892 0.921 6.6%

Newsgroup

Decision Tree 0.885 0.889 0.5%
Neural Network 0.949 0.953 0.4%
Random Forest 0.883 0.931 5.4%

Linear SVM 0.945 0.946 0.1%

Table 4: Normalized Mean Average Deviation for each op-
timal configuration found.

ECHR

Point NMAD

(5, 50000) 0
(3, 10000) 0.275
(4, 10000) 0.213
(3, 50000) 0.175
(4, 50000) 0.094

Newsgroup

Point NMAD

(4, 5000) 0.306
(4, 100000) 0.300
(5, 50000) 0.356
(3, 10000) 0.294
(2, 100000) 0.362

point (5, 50000) has a NMAD of 0 since the point is present for
every algorithm: (5, 50000) is a universal pipeline configuration
for this data pipeline and dataset. The point (4, 50000) appears
only once but it is really close to (5, 50000) (itself in the 3 other
algorithms results) s.t. its NMAD is low. It can be interpreted as
belonging to the same area of optimal values. On the opposite,
(3, 10000) and (4, 10000) have high NMAD w.r.t. the other points,
indicating they are isolated points and may be algorithm specific.
Their NMAD values are rather low because despite the points
are isolated, they differ significantly from the others points only
on the second component. In comparison, if (1, 10) would be an
optimal point for Random Forest, its NMAD would be 0.5. On
the contrary, for Newsgroup, the NMAD value is rather high and
similar for all points, indicating that they are at a similar distance
from each other and really algorithm specific.

To summarize, the NMAD metric is coherent with the conclu-
sion drawn from the heatmaps and Table 2, and suggests that
there exist two types of optimal configurations: universal pipeline
configurations that work well on a large range of algorithms for
a given dataset, and algorithm-specific configurations. Thus, we
are confident the NMAD can be used in larger configuration
spaces where heatmaps and exhaustive results are not available
for graphical interpretation, and help to reuse configurations.

6 CONCLUSION
In this paper, we successfully applied Sequential Model-Based
Optimization techniques to data pipeline selection and configu-
ration. In addition, we provided a metric to study if an optimal
configuration is algorithm specific or rather universal.

The main practical drawback of the iterative approach pre-
sented in this paper is the cost involved in processing the data and

training the model for each selected configuration. To mitigate
this problem, we see few possibilities to explore:

• decreasing the amount of data to preprocess using a sam-
ple technique as described in [12],

• using in priority data pipelines suggested by ameta-learning
algorithm s.a. the one described in [3, 4],

• caching the intermediate results of the data pipeline to
reuse, when possible, the outcome of some transforma-
tions (e.g. there is no need to regenerate the 2-grams for
n ≥ 3 if a previous configuration with n = 2 has been
explored.).

Another aspect to be addressed is the compromise between time
and performances. Indeed, some parameters increases the pro-
cessing time but not the model training (e.g. n-grams computa-
tion) while others may not affect the processing time but signifi-
cantly increase the model training (e.g. number of tokens k). A
fine grain time analysis would be required, and an intelligent
pruning system could be a solution to avoid costly iterations.

Future work should focus on an online version s.t. the pipeline
is tuned in a streamingway. Also, the NMAP indicator works only
in euclidian spaces which is not the case for the first experiment.
Therefore, further work should focus on extending the NMAP to
non-vector space.

REFERENCES
[1] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michele Sebag. 2013. Col-

laborative hyperparameter tuning. In Int. Conf. Mach. Learn. 199–207.
[2] J Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. 2011. Algorithms for Hyper-

parameter Optimization. In Proc. Int. Conf. Neural Inf. Process. Syst. 2546–2554.
[3] B. Bilalli, A. Abelló, and T. Aluja-Banet. 2017. On the Predictive Power of

Meta-features in OpenML. Int. J. Appl. Math. Comput. Sci. 27, 4 (2017), 697–712.
[4] B. Bilalli, A. Abelló, T. Aluja-Banet, and R.Wrembel. 2018. Intelligent assistance

for data pre-processing. Computer Standards & Interfaces 57 (2018), 101 – 109.
[5] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. 2010. F-Race and Iterated

F-Race: An Overview. Springer Berlin Heidelberg, Berlin, Heidelberg, 311–336.
[6] S. F. Crone, S. Lessmann, and R. Stahlbock. 2006. The impact of preprocessing

on data mining: An evaluation of classifier sensitivity in direct marketing. Eur.
J. Oper. Res. 173, 3 (2006), 781 – 800.

[7] T. Dasu and T. Johnson. 2003. Exploratory data mining and data cleaning.
Vol. 479. John Wiley & Sons.

[8] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Ma-
chine Learning. In Adv. Neural Inf. Process. Syst., C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). 2962–2970.

[9] F. Hutter, H. H. Hoos, and K. Leyton-Brown. 2011. Sequential Model-based
Optimization for General Algorithm Configuration. In Proc. Int. Conf. Learn.
Intel. Optim. Springer-Verlag, Berlin, Heidelberg, 507–523.

[10] T. Hutter, F. and Hoos, H. H. and Leyton-Brown, K. and Stützle. 2009. ParamILS:
An Automatic Algorithm Configuration Framework. J. Artif. Intel. Res. 36
(2009), 267–306.

[11] J. Kietz, F. Serban, S. Fischer, and A. Bernstein. 2014. “Semantics Inside!”
But Let’s Not Tell the Data Miners: Intelligent Support for Data Mining. In
The Semantic Web: Trends and Challenges. Springer International Publishing,
706–720.

[12] J. Nalepa, M. Myller, S. Piechaczek, K. Hrynczenko, and M. Kawulok. 2018.
Genetic Selection of Training Sets for (Not Only) Artificial Neural Networks.
In Proc. Int. Conf. Beyond Databases, Architectures Struct. 194–206.

[13] N. M. Nawi, W. H. Atomi, and M. Z. Rehman. 2013. The Effect of Data Pre-
processing on Optimized Training of Artificial Neural Networks. Procedia
Technology 11 (2013), 32 – 39. Int. Conf. Elect. Eng. Info.

[14] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich. 2017. Data Management
Challenges in Production Machine Learning. In Proc. ACM Int. Conf. Manage.
Data. ACM, 1723–1726.

[15] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
2013. Auto-WEKA: Combined selection and hyperparameter optimization of
classification algorithms. In Int. Conf. Knowl. Disc. Data Min. ACM, 847–855.

[16] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis. 2015. S
ee DB: efficient data-driven visualization recommendations to support visual
analytics. Proc. VLDB Endowment 8, 13 (2015), 2182–2193.

[17] Dani Yogatama and Gideon Mann. 2014. Efficient transfer learning method for
automatic hyperparameter tuning. In Int. Conf. Artif. Intel. Stat. 1077–1085.

[18] Z. Zhao, L. De Stefani, E. Zgraggen, C. Binnig, E. Upfal, and T. Kraska. 2017.
Controlling False Discoveries During Interactive Data Exploration. In Proc.
ACM Int. Conf. Manag. Data. ACM, 527–540.

	Abstract
	1 Introduction
	2 Related work
	2.1 Data processing impact
	2.2 Optimizing data pipeline
	2.3 Hyperparameter tuning and AutoML

	3 DPSO problem
	4 Experiments with SMBO
	4.1 Protocol
	4.2 Results

	5 Algorithm-specific configuration
	5.1 Protocol
	5.2 Results

	6 Conclusion
	References

