
Towards an Explainable Threat Detection Tool 
Alison Smith-Renner 

 Decisive Analytics Corporation 
 Arlington, VA, USA 
alison.smith@dac.us 

Rob Rua 
Decisive Analytics Corporation 

 Arlington, VA, USA 
rob.rua@dac.us 

Mike Colony 
Decisive Analytics Corporation 

 Arlington, VA, USA 
mike.colony@dac.us

ABSTRACT 
In general, threats can be loosely divided into two categories – 
known threats and unknown threats. Traditional threat detection 
systems are limited to the identification of known threats that have 
been previously encountered and labeled by a security expert. These 
supervised learning systems are able to learn to detect and identify 
known threats but are unable to react to unknown threats. To this 
end, we have developed an unsupervised learning anomaly 
detection system to identify anomalous behavior without training 
data. Our system’s interactive interface supports human-machine 
teaming to classify these identified anomalies as threats or benign 
events; however, system transparency is required to enhance 
operator trust and improve their feedback into the system. 
Transparency in this case is particularly challenging as our anomaly 
detection framework is based on algorithms which are inherently 
hard to explain (neural networks). In this paper, we introduce a real-
world task and system that requires transparency, and we propose 
explanation methods for increasing the transparency of our threat 
detection tool alongside a user study for evaluating these 
explanations. 
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1 Introduction 

Forward deployed military installations face unique challenges 
when automating threat detection in security monitoring systems. 
In particular, development of a general framework for identifying 
emerging security threats poses two technical obstacles: (1) the 
security framework must be robust to an environment where 
“normal” activities are initially unknown and (2) the framework 
must support collaboration with operators to determine what types 
of anomalous behavior constitute an actual threat. To this end, we 
have developed an unsupervised anomaly detection system, 
DAART, (for Detection of Anomalous Activity in Real Time), to 
identify anomalous behavior without training data. DAART’s 
interactive interface supports human-machine teaming to classify 
these identified anomalies as threats or benign events. 

Traditional threat detection systems are limited to the 
identification of known threats that have been previously 
encountered and labeled by a security expert, such as a man 
wielding a gun or an intruder in a restricted location. The 
unsupervised nature of the DAART system additionally supports 
identification and action on unknown threats, which is necessary to 
adapt to ever changing environments. A by-product of this, 
however, is an initial trend towards recall over precision, meaning 
many benign activities may be alerted to the user. DAART’s Active 
Learning component learns from operator feedback in the form of 
accepting or rejecting alerts (alert-level feedback) to better 
distinguish benign anomalous behavior from threats. A human-in-
the-loop system, such as this, requires system transparency to 
improve operator trust, accelerate operator workflow, and better 
enable operators to provide the valuable feedback required to 
improve the system’s threat classifications.  

A threat detection system may err in two distinct ways: (1) false 
positives in which benign behavior is predicted to be a threat and 
(2) false negatives in which a threat is considered benign (and 
therefore not alerted to the user). Operator trust is negatively 
affected if a system produces many false positives without 
explanation or if the operator cannot confirm whether the system 
produces false negatives. System transparency in the form of alert-
level and system-level explanations therefore enhances trust, 
because users can better understand when and why a system makes 
mistakes as well as to ensure the system doesn’t miss any potential 
threat behavior, respectively [16].  

Not all anomalies are threats and not all threats are equally 
important. System transparency accelerates operator workflow by 
providing the evidence needed to quickly and accurately prioritize 
and determine the validity of threats. Finally, the DAART system 
improves with user feedback, so the goal is to get the best feedback 
as possible from users while minimizing the time and effort to 
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provide it. System transparency enhances the feedback process 
because users’ feedback is improved when they have an 
understanding of how the system works and why an alert is 
considered anomalous. Furthermore, users’ time and effort are 
minimized when providing feedback through the same 
visualizations presented to them for explanation purposes, as these 
are already familiar [13].  

In this paper we present the DAART system for identifying 
anomalous behavior without training data, and we propose 
interactive explanation methods for improved operator trust, 
accelerated workflow, and enhanced operator feedback through 
system transparency. In particular, we propose methods for 
determining and displaying explanation information, such as multi-
modal localization (or attention) and normalcy exemplar, and an 
interactive explanation interface to present these and other simple 
explanation types (system confidence, alternate classifications, 
features) to users for promoting transparency and providing a 
means for user feedback. We additionally propose a user study to 
evaluate these various interactive explanation methods for the 
DAART system. 

2 Background 

2.1 Anomaly Detection 
Detecting anomalies in sensor data requires a standardized feature 
representation of the incoming data.  Traditionally, these features 
are defined by expert scientists who specialize in particular sensor 
modalities. More recently, supervised machine learning models 
have been able to outperform expert-defined features in their 
descriptiveness about the original sensor data [12]. DAART 
improves on this, leveraging state-of-the-art research in 
unsupervised convolutional feature learning [1,6] to generate 
comparably discriminative features without the need for human-
labeled training data.  While these extracted features are not as 
easily understood by a human as expert-specified features, they 
have more expressive power when used for tasks such as anomaly 
detection.  Importantly, this approach is sensor agnostic, meaning it 
can be applied to any sensor data, including but not limited to, EO 
and IR video, audio, and acoustic sensors.  

2.2 User Feedback 
Interactive machine learning systems incorporate end-user 
feedback to re-train underlying algorithms and improve their 
output. Users may provide this feedback in the form of interactively 
labeling data [21], as part of an interactive training phase [7,8], to 
fix specific system mistakes [22], or to inject their domain expertise 
into the system [11].  

The system we present here builds on interactive machine 
learning techniques, such as accepting and rejecting system’s output 
[25] and interactive clustering [15] for improved threat 
classification. We additionally propose to enhance the system with 
support for richer user feedback, such as modifying feature weights 
[18]. 

2.3 System Transparency 

There is growing interest in system transparency, or explainable 
artificial intelligence (XAI), driven in part by both DARPA’s XAI 
initiative [10] and the European Union’s data protection law for 
“right to explanation” [24]. We aim for transparency in our 
anomaly detection system as it supports operator decision making 
[23], improves trust [14,16], and aids users in better providing 
feedback to the system [13,20] as well as motivating them to do so 
[19]. 

System transparency can be provided through explanations or 
visualizations that provide insight into what the system is doing and 
why it is doing it (see [3] for a survey). In particular, prior work has 
identified explanation types [13,17] to improve end user 
understanding of complex systems. We propose to implement and 
evaluate these explanation types in the DAART system.  

3 DAART 
Figure 1 shows the DAART system overview. The DAART system 
ingests multi-modal sensor data (audio, video, radar, etc.), which is 
converted to discriminative features for use in anomaly detection. 
The anomaly detection component utilizes the feature data to 
continually learn normalcy baselines against which it performs 
anomaly detection in real time. The user governs the anomaly 
detection process through the creation of Scopes, which define 
specific parameterizations (or filters) on the data. Detected 
anomalies are provided to the user via an interactive threat 
classification component which leverages user feedback to learn to 
classify anomalies as threats. We describe these components in 
more detail in the following sections. 
 

 

Figure 1: DAART system overview. Data enters the system 
from various sensor feeds, and sensor features are 
extracted. These features feed the multi-modal anomaly 
detection component along with user-defined scopes. A 
normalcy model is trained to represent normal behavior to 
which new, possibly anomalous behavior is compared. 
Identified anomalies are alerted to the user through the 
active learning threat classification component, which 
supports users in vetting or rejecting anomalous alerts as 
threats as well as specifying the threat’s class. 

3.1 Discriminative Features and Anomaly 
Detection 

We generate discriminative features and perform anomaly 
detection using an approach based on Generative Adversarial 
Networks (GANs) [9].  
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Generative Adversarial Networks (GANs) have demonstrated 
the ability to generate images from a random noise vector that are 
able to fool another model attempting to determine if the image is 
real or fake. A GAN consists of two competing models. A Generator 
(G) model learns how to transform random noise into a fake image. 
A Discriminator (D) model then tries to determine if the fake image 
is real or fake. Over time both models are trained until the fake 
images are indistinguishable from the real images. An Adversarial 
Learned Inference (ALI) [5] model is an adaptation of a GAN that 
can be exploited for anomaly detection. The ALI model modifies a 
standard GAN by adding an Encoder (E) that simultaneously learns 
to generate a latent input vector that will allow the Generator (G) 
model to fool the Discriminator (D) model. To generate 
discriminative features in DAART, we use an approach based on 
GANomaly [1], an extension of ALI.1 

GANomaly extends ALI to perform anomaly detection as part of 
the feature extraction process. This approach consists of three sub-
networks: A Generator (G), Encoder (E), and Discriminator (D). 
During the training process, the GANomaly model is trained only 
on normal images, in essence learning a model of normalcy. The 
images (video frames, or vectors from other sensor types) are fed 
into the Generator, which learns two things: (1) a lower dimensional 
mapping (z), and (2) to reconstruct the image (xʹ). The reconstructed 
image is then fed into both the Encoder and Discriminator. The 
Encoder learns a second lower dimensional mapping of the 
reconstructed image (zʹ), and the Discriminator learns to tell the 
difference between real and fake images. During the training 
process, the Generator learns by minimizing the loss between the 
original image and the fake image (x - xʹ).  The Encoder learns by 
minimizing the loss between the first and second lower dimensional 
spaces (z - zʹ).   

Once trained, GANomaly is used in live operations to test each 
input vector (e.g. video frame) to compute an anomaly score. Since 
the model was trained only on normal behavior, an anomaly score 
that determines whether an input is anomalous or not can be 
computed based on the L1-normalized Euclidean difference between 
the first lower dimensional mapping learnt by the encoder and the 
lower dimensional mapping learnt from the reconstructed image (z 
- zʹ).  

3.2 Scopes and Normalcy Model 
Scopes define specific filters on sensor and facility conditions that 
the user wants the anomaly detection system to be restricted to 
when discovering anomalies.  When a Scope is specified, all data 
that matches the defined filters will be processed by the anomaly 
detection algorithm, which calculates an n-dimensional probability 
distribution of the data over the features learned during feature 
extraction. The result is a baseline normalcy model defining what 
sensor data is considered normal activity. 

This baseline normalcy model is incrementally updated each 
time new sensor data is ingested into the DAART system. We use 
this normalcy model to compute a strangeness metric proposed in 
prior work [2]: incoming sensor data is compared against the 

                                                             
1  We performed a qualitative comparison of GANomaly and ALI and found that 
GANomaly demonstrated super results and stability in the training phase. 

baseline model to determine how strange the observation is 
compared to normal behavior. Once this strangeness metric has 
been calculated for each individual sensor modality, the metrics are 
merged across all modalities to determine whether an incident 
observed by multiple sensors is anomalous. 

3.3 Interactive Threat Classification 
When the DAART system identifies anomalous activity, it alerts the 
user. An example of the DAART system upon identifying 
anomalous activity is shown in Figure 2. 

 

Figure 2: The DAART system's interactive threat 
classification involves alerting anomalous behavior to the 
security operator who can then reject the alert or select an 
appropriate threat class. 

Figure 2 (right) shows the alert, which includes a video clip of 
the anomalous activity and a timestamp at which the activity occurs. 
Users interact with an alert to either specify that it is “Not a threat” 
or provide a threat class for it. In addition to viewing the clip, the 
system also explains the anomaly using a timeseries chart showing 
the strangeness score of the anomaly compared to prior readings as 
shown by Figure 2 (left). Users can additionally modify the 
strangeness threshold above which an anomaly is alerted.  We 
propose additional methods for explanation and user feedback in the 
following section. 

4 Explanation Methods 

4.1 Localization (Attention) 
For operators to better understand the anomalies and threats that 
DAART alerts them to, it would be ideal to be able to isolate which 
part of the sensor reading was anomalous. In the case of EO video, 
this could mean showing the user a bounding box which identifies 
where in the video stream the anomalous activity is occurring. This 
type of functionality is extremely valuable in helping the operator 
decide what threat label to assign to new unknown threats, and to 
help them better determine what course of action is reasonable in 
response to a threat. 

Because of the fully unsupervised GAN-based approach DAART 
uses for anomaly detection, localization of the anomalous activity 
in sensor readings is non-trivial. Unlike many supervised 
approaches, in which the detection of specific objects or actions are 
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triggers for anomaly or threat alerts, the current GANomaly-based 
unsupervised approach uses a more context-oriented approach 
which examines the entire sensor reading at once. 

Recently, however, because of the popularity of GAN-based 
techniques for unsupervised machine learning, approaches have 
been developed for fully unsupervised object detection and 
localization using GANs [4]. These approaches use introspection of 
the hidden layers of the GAN feature extractor, mapped back to the 
original input space, to identify which areas in the input data are 
contributing to the network recognizing an object. 

We propose to integrate this introspection-based approach into 
its unsupervised GAN-based feature learning, allowing anomalies 
detected using those learned features to be localized. The operator-
facing DAART explanation interface will then be updated to show 
which parts of an anomalous sensor reading are most responsible 
for the reading being considered anomalous. 

4.2 Normalcy Exemplar 
We propose to generate normalcy exemplars that can be displayed 
to operators to compare against detected threats. These normalcy 
explanations allow the system to describe what the 
situation typically looks like to help explain why a new instance is 
deemed anomalous or threatening.  

We propose two techniques for generating normalcy exemplars 
for this comparison. The first technique is to simply determine the 
existing normal exemplar (non-anomalous prior reading) that is 
most similar to the anomalous input using the features space. A 
side-by-side view displays that exemplar sensor reading against the 
detected anomalous reading for comparison. Furthermore, 
bounding boxes can be added to highlight differences in the 
anomalous input by utilizing the localization information. One 
limitation to this technique is that not all differences between the 
normal and anomalous scenes are important. The second, and more 
complex, proposed technique accounts for this limitation by 
generating a synthetic “normal” feature vector that is similar to the 
anomalous reading, but without the features that make it an 
anomaly. The GAN then generates a synthetic sensor reading from 
feature vector. In this case, the only difference between the two 
displayed exemplars are the elements of the input that make it 
anomalous. 

We can similarly use the GAN to determine normalcy exemplars 
for other data types, such as audio and acoustic sensor data, but a 
challenge of this task will be determining appropriate ways to 
expose this information to operators. Audio can be handled 
similarly to imagery, for example, by providing two audio clips the 
operator can listen to for comparison. However, for the other data 
types, we will work with operators to determine what view of each 
modality fits best into their existing threat detection workflow as 
part of this task.  

4.3 Interactive Explanation Interface 
In addition to the explanation information discussed in prior 
sections, prior work has introduced simple explanation types [13,17] 
shown to improve end user understanding of complex algorithm 
processes. These types include the classification, system confidence 

in the classification, human-understandable features of the 
classifier, and alternate classifications. We propose to implement a 
set of explanation information within a DAART interactive 
explanation interface to best support system transparency and user 
feedback. Figure 3 is a notional representation of a sample anomaly 
input and the explanation information that might be displayed to 
the user. How many and which of these explanation types to display 
to the user must be chosen to maximize transparency without 
overwhelming or confusing the operator [14]. In particular, prior 
work has shown that confidence should only be displayed when it 
is high or else will result in negative impacts on trust [16]. We 
propose a user study for evaluating these explanation types in the 
following section. 

 

Figure 3: Notional explanation interface showing a detected 
anomaly and the varied explanation information that could 
be displayed to the user. The normal exemplar paired with 
the localization information provide the operator with 
quick understanding of what about the input is anomalous. 
The exposed system confidence and underlying feature 
information alongside the threat classifications resulting 
from prior operator feedback provide a more detailed 
understanding of how the system works. Finally, exposing 
the threat cluster graph provides a global understanding of 
previously recorded threatening and benign behavior. 

These explanation presentations additionally provide an 
intuitive means for user feedback [13], which yields more and better 
feedback from the user in the loop. Operators can provide alert-level 
feedback to correct classifications by interacting with the assigned 
classification (accepting or rejecting the class) and furthermore by 
interacting with the alternative classes to select the correct class if 
it exists. Operators can provide system-level feedback by interacting 
with the features or localization information from the input that 
resulted in the classification. Additionally, as the DAART tool 
utilizes clusters of previously classified anomalies to perform 
classification, we propose to expose these clusters to the user as part 
of the interactive explanation interface. This view provides a global 
explanation of all threat data and how it is understood by the 
system. An operator may notice that two separate clusters can be 

System 
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merged to represent a single threat type or that a single cluster 
should be split to represent two distinct threat types.  

5 User Study 
We outline a user study of our proposed explanation interface to 
evaluate the effects of varied explanation information on trust, 
feedback quality, and overall human-machine team performance. 

5.1 Research Questions 
The goal of the proposed study is to answer the following research 
questions: 
Q1: Which explanation information yields the optimal human-
machine team? 
Similar to [20], we hope to determine a set of the explanation 
information to provide to the user to maximize performance while 
reducing system complexity. 
 
Q2: How is trust affected by varied explanation information? 
As trust is particularly important to the adoption of a system such 
as ours in the military domain, we intend to evaluate the effect of 
varied explanation information on system trust 

5.2 Method 
To support examination of the identified research questions, we 
propose a crowdsourced user study. We will identify a dataset and 
specific task that is representative of real system usage, but also 
approachable to non-security experts. This might include video on 
a street corner for which the human-machine team is tasked with 
identifying suspicious behavior or video replay from a tower 
defense-style game2 for which the human-machine team is tasked 
with identifying aggressive behavior towards a base. In the study, 
we will hold all aspects of the DAART system constant, but simply 
vary the explanation information shown to the user during the task. 
After the task we will evaluate the human-machine team 
performance, as well as ask users to score the system in terms of 
trust, frustration, complexity. In this way, we can study the effects 
of the various explanations on user experience.    

6 Conclusion 
In this paper we present an unsupervised anomaly detection system, 
DAART, that identifies anomalies from normal behavior and 
classifies those anomalies as threats through interaction with 
operators. We additionally propose and explanation interface 
towards the goal of a DAART system that the user not only 
understands and trusts but is maximally accurate due to increased, 
improved user feedback. Our proposed user study aims to evaluate 
the explanation interface to increase effectiveness and reduce 
complexity. 
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