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Figure 1: Understanding the behavior of a black-box Machine Learning model using the explanatory visual interface of our
proposed technique. Interacting with the user-interaction-panel (A) a user can choose a combination of model and dataset
that they desire to analyze. The built model is a surrogate decision tree whose structure can be analyzed in the tree Panel (B)
and the details of the leaves are featured in the Rule Panel (C). The user can interact with the tree, collapsing any node they
see fit and automatically updating the performance Overview (D).

ABSTRACT
With the growing interest towards the application of Machine
Learning techniques to many application domains, the need for
transparent and interpretable ML is getting stronger. Visualizations
methods can help model developers understand and refine ML mod-
els by making the logic of a given model visible and interactive.
In this paper we describe a visual analytics tool we developed to
support developers and domain experts (with little to no expertise
in ML) in understanding the logic of a ML model without having
access to the internal structure of the model (i.e., a model-agnostic
method). The method is based on the creation of a “surrogate” deci-
sion tree which simulates the behavior of the black-box model of
interest and presents readable rules to the end-users. We evaluate
the effectiveness of the method with a preliminary user study and
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analysis of the level of fidelity the surrogate decision tree can reach
with respect to the original model.
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INTRODUCTION
In this paper we propose an interactive visualization based on de-
cision rules: treating every model as an unknown black-box we
use a Decision Tree to replicate the prediction done by a model
in a classification problem and we visualize it with the purpose
of using the rules of the decision tree to propose simple yet effec-
tive explanations towards the logic that the model adopts for its
classification.

With the growing adoption of machine learning techniques,
there is an increasing demand for research towards makingmachine
learning models transparent and interpretable [7]; especially in
critical areas such as medicine [1], security and law.

In this paper we will follow two definitions of interpretability:
(1) interpretability is the degree to which a human can understand
the cause of a decision [4] and (2) interpretability is the degree to
which a human can consistently predict the model’s result [3]. These
definitions provide an intuition regarding the type of user who
may be in need of interpretability methods: data scientists or de-
velopers for model debugging and validation; end-users (typically
domain experts) for understanding and gaining trust in the model
in the process of decision making; and regulators and lawmakers
for making sure a given system is fair and transparent.

RELATEDWORK
In this section we discuss related work that may share some of our
goals through different techniques; both on the approach in the gen-
eration of rules to describe a model and the need for interpretability
in Machine Learning.

Rule Generation and Visualization
Many attempts have been performed in summarizing a model
though simple and effective rules: rule lists, rule tables, decision
rules have been used in the community to describe ML models.
Very established in the community is also LIME (Local interpretable
model-agnostic explanations) which creates a local surrogate model
and computes local weights which one can use for interpretation
of single instances [7]. Using LIME allows to have short, simple,
human-friendly explanations that can help any user gain insights
about how the model computes a prediction of a specific instance.
The same authors later developed Anchors [8], an improved version
that computes local explanatory rules instead of weights.

Methods exists also for global explanations of model. A current
method is to learn if-then rules that globally explain the behavior of
black-box models by first gathering conditions that are important
at instance level and then generalizing them into rules that are
meant to be descriptive of the overall behavior of the model [6].
Another project that has much in common with this proposal is
RuleMatrix by Ming et al. [5], which derives surrogate rules from an
existing black-box model and visualizes them with a custom matrix
visualization. Our solution is a follow-up of RuleMatrix with an
additional innovation: the use of a decision tree structure to com-
pute and visualize the rules. The tree structure, which is explicitly
visualized, helps navigate the rules in a hierarchical fashion and as
such makes it easier to spot rules of interest.

Interpretable Machine Learning
Understanding a computer-induced model is often a prerequisite for
users to trust the model’s predictions and follow the recommendations
associated with those predictions [2]. In order for a user to trust a
model in the process of decision making, it is necessary that the

model be transparent or that methods are used to enable its users to
verify and understand its behavior. A clear example of the necessity
of interpretability is presented in [9][1], where a interpretability
method enabled a group of experts to identify a major fault in a
model used for medical predictions.

Ilknur Kaynar Kabul, a Senior Manager in the SAS Advanced
Analytics division, describes in a post about interpretability desir-
able characteristics of an interpretable model: Transparent - it can
explain how it works and/or why it gives certain predictions; Trust-
worthy - it can handle different scenarios in the real world without
continuous control; Explainable - it can convey useful information
about its inner workings, for the patterns that it learns and for the
results that it gives. These are goals we took into consideration
when building our Surrogate Tree Visualization.

BUILDING SURROGATE TREES
In the following section we introduce our steps in creating our
’Surrogate Decision Tree Visualization’.

Goals and Targets users
In our paper we target as potential user of our tool not only model
developers but also domain experts that are impacted by the ma-
chine learning techniques (e.g., health care, finance, security, and
policymakers). Model developers use interpretability with the goal
of model debugging: understanding a model with the final goal of
refining and improving its classification. Domain experts, who may
have little to no-knowledge in ML, have the goal to understand how
the model behaves and what conclusions it draws when making its
classification. In both cases, there is a need for profound and deep
understanding of what the model does.

Our tool aims to facilitate the answer to the following questions:

Q1 What rules did the model learn?

Q2 Which of these rules can be considered descriptive of the
model?

Q3 What are the behaviors of the model that the surrogate is
not able to simulate?

Q4 What are the most important features used by the model?

Decision Trees
A decision tree is a simple recursive structure that expresses a
sequential process of classification. Every tree-based model splits
the data multiple times according to multiple threshold values of
the features. At each node a splitting of the dataset occurs: going
forward the dataset keeps getting split into multiple subsets until
each subset, if every leaf in the tree is pure, contains instances from
one class only.

The reason why we chose to use a Decision Tree as the surrogate
model is the simplicity of its rules and the natural tree-based visual
representation one can build with it. Starting from the root node
one can check the next nodes and trace the path down to the leaf
to form a rule.

The following formula describes the relationship between out-
come ŷ and the features x :
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ŷi = f̂ (xi ) =
N∑
j=1

c j I {xi ∈ Rj }

Each instance xi reaches exactly one leaf node which can be
described as a subset Rj of the dataset. The identity function I {.}
has the purpose of representing the combination of rules at each of
the internal nodes.

It’s important to clarify that we use decision trees as a way to
simulate a black-box model. To achieve this purpose we do not train
the tree using the original data but rather use the labels obtained
from the original model as training data for the decision tree. This,
in turn, allows us to build a tree whose rules simulate the original
model.

Feature Importance. The overall importance of a feature in a deci-
sion tree can be computed by going through all the splits for which
the feature was used and adding up how much it has improved
the predictions in the child nodes compared to the parent node
(e.g., measured as decrease of Gini index). The sum of all the values
of importance is scaled to 100, so that the interpretation for each
feature importance is the percentage of the overall importance.

Rule Presence. In addition to feature importance we compute a
second metric that we call rule presence. The purpose of this metric
is to give more weight to features that appear more often in the
tree (in multiple splits). The metric is computed as follows:

RPf eati =
Number o f Nodes involvinд f eaturei

Number o f Internal Nodes
.

Disadvantages
Decision trees have a number of disadvantages as model interpre-
tation tools. First, the number of nodes increases exponentially
with depth, therefore the more terminal nodes, the more difficult
it becomes to understand the decision rules of a tree. Even with a
moderate number of features it is not unlikely to have trees with
hundreds of nodes and links. Second, the same feature may occur
multiple times at different levels in the tree; making it hard for the
a viewer to understand how a feature is used by the model across
all rules it generates.

In our solution, we provide two techniques to mitigate this issue:
(1) We enable the user to interactively contract and expand the
tree at different levels of granularity; (2) We provide a coordinated
supplementary view which visualizes the rules generated by the
tree in a tabular format. As explained in the section explaining how
our visualization works, our design aligns rules so that a viewer
can see how a given feature is used across the whole set of rules.

Performance Evaluation
There are three main aspects we take into account when evaluating
the performance of a surrogate model:

• Fidelity. The accuracy with which the tree can simulate the
original black-box model;

• Speed. The time needed to generate the tree as well as the
time performance of the interactive functions (to explore the
tree interactively);

• Complexity. The overall complexity of the surrogate tree,
measured as the number of nodes in the tree.

The overall fidelity of the tree is computed as the ratio of samples
for which the tree predicts the outcome of the simulated model

Table 1: Mean Time and Complexity requirements to reach
maximum fidelity with the available datasets.

Dataset Mean Time (s) Mean Nodes

Iris 0.131 13
Fico 22.841 190
Housing 13.818 200
Demographic 25.262 319
Car 19.141 238
Cancer 1.128 32

Table 2: Fidelity, time and Complexity for the FICO Dataset
with different models and values of max Depths

Model maxDepth fidelity time (s) nNodes

KNN 6 0.940 13.01 111
KNN 8 0.976 27.71 235
KNN 10 0.996 39.62 337
KNN 12 1.000 41.57 353
LDA 6 0.954 13.08 113
LDA 8 0.988 26.22 221
LDA 10 0.998 31.59 259
LDA 13 1.000 31.95 271
MLPC 6 0.942 12.02 101
MLPC 8 0.977 23.99 203
MLPC 10 0.993 34.49 291
MLPC 12 0.999 37.73 319
MLPC 14 1.000 39.59 325

correctly. The fidelity of a single node computes the same measure
restricting it to the samples that fall into the node.

Time performance is calculated as the combination of time nec-
essary to perform the fitting of the model and the fitting of the
surrogate but also the time necessary to explore the tree and gather
the necessary information for the visualization.

Complexity is measured as the number of nodes in the tree: in
fact, this impacts not only the time needed to generate the tree data,
but also the amount of information displayed in the visualization. As
we will see in the following discussion, there is a trade-off between
complexity and fidelity.

We tested our tool with 6 datasets: Iris Flower, Cancer, Car Safety,
Housing Price, Demographic Life Quality, FICO Risk. We also used
5 distinct type of models to simulate as black-boxes: KNN, Linear
Discriminant Analysis, MultiLayer Perceptron, AdaBoost, Support
Vector Machine. Table 1 and table 2 show the results of our tests.

As we can see from Table 1, it is possible with reasonable com-
plexity and time requirements to reach maximum fidelity with any
combination of model and dataset.

What is more interesting is that for a user that is willing to
trade-off fidelity in order to obtain a less complex visualization it is
possible to do so. In Table 2, we analyze the FICO Dataset (one of
the most complex datasets used in our evaluation). As one can see,
for almost every model it is possible to save about 20-30 seconds
and a complexity of 160-240 nodes by reducing fidelity only of
4%-6%. Therefore, depending on the need of the user there may be
plenty of room for compromising on fidelity without reaching too
low values.



Figure 2: The pipeline the tool follows once a dataset and a
model have been chosen: there is a data pre-processing step
(A) followed by the fitting of the model that needs to be sim-
ulated (B). Once the model is fitted, its prediction is then
given as input to the surrogate model block (C) and to the
Fidelity Evaluation Block (D1). Once the surrogate has been
fitted, its prediction reached the Fidelity Evaluation Block
and is compared with the output of the Model, which it is
meant to replicate. Simultaneously, the tree and its data are
visualized in block (D2).

VISUALIZING SURROGATE TREES
To gather all necessary data for the visualization, the tool follows a
specific pipeline (see Fig. 2) which has the purpose of obtaining both
information about the performance of the surrogate in replicating
the model (Fidelity Evaluation) and the data contained in each node
of the tree, necessary for the Visual Analytics step. The visualization
itself is made of 4 components (see Fig. 1). A user interaction panel
(A), a tree panel (B), a rule panel (C) and performance overview (D).

User interaction panel
The interaction panel allows the user to select the combination of
model and dataset to use as well as parameters such the preferred
value for Max Depth for the decision tree. Being able to choose
in advance the max depth is helpful for those users who want to
guarantee the maximum fidelity possible, or to those users who
want to start with a small tree. Once the surrogate is generated, the
user can use the fidelity slider to automatically cut the tree at the
level that provides the desired fidelity.

Performance Overview
The two bars in the top-right have the purpose of keeping track
of updates performed by the user in case of interaction with the
tree. Surrogate Overall Fidelity provides the measure of the starting
fidelity of the surrogate: this is the maximum value that can be
reached, in fact any interaction with the tree itself that does not
involve an increment of max-depth can only negatively affect the
overall fidelity. Tree Dimension shows the current proportion of the
tree that is shown with respect to the original dimension. When
the tree is loaded the first time tree dimension is 100%, but with any
toggling of the tree it decreases to represent the current proportion.
The combination of the two bars is meant to help users find a good
balance between tree size (i.e., complexity) and fidelity.

Tree Panel
The tree panel shows the tree as a node-link diagram. Each node is
depicted by a pie chart which shows number of instances with size
and proportion of labels with the segments of the pie chart.

Each edge has a width proportional to the number of instances
that follow the path. Hovering a node one can see its details in a
tooltip which includes: number of samples, fidelity and the rule
that characterizes the node. When a node is clicked it collapses and
becomes a leaf node generating an update of our surrogate model.
As a consequence, the performance numbers, as well as the panel
that shows them, updates to reflect the change.

Rule Panel
The rule panel is structured as a table: each column is a feature
of the dataset and each row is a leaf in the tree and, as such, a
rule. Reading the table by row it is possible to identify the rules
that describe the model in its entirety thus providing an answer to
question Q1.

The predicates of the rules are depicted as rectangular ranges,
which show, for a given rule-feature combination, what the con-
strains of the rule are, that is, the range depicts constraints of the
type lb ≤ f eature ≤ ub.

For each row/leaf we also provide details of the distribution of
instances that satisfy the rule, including information about rule car-
dinality and distribution across the existing classes, the prediction
of the rule, and the fidelity. These details are crucial to judge the
fidelity and relevance of the rules: questions Q2 and Q3.

Finally, next to every feature we provide details about feature
relevance using the two metrics feature importance and rule pres-
ence which characterize each feature in terms of how relevant it
is (according to relevance computed from the decision tree) and
in how many rules it is used. These details provide the user with
information necessary to understand the role of each feature, which
covers the needs expressed in question Q4.

USABILITY STUDY
In order to provide preliminary evidence of the utility and usability
of our proposed solution, we conduced a small user study. The
purpose of the study was to verify whether people would be able to
understand the interface and solve the most basic interpretability
problems it proposes to solve.

Which Users
We selected 5 users, ranging from 25 to 35 years of age, with ex-
tended experience in Machine Learning: Master’s degree students
in Data Science, PhD students in Computer Engineering and Data
Visualization. We chose expert users to target the population who
would be interested in using our method as a model verification
and debugging method.

Tasks and Results
We divided the study in two phases: a training phase in which users
were shown the IRIS flower dataset and asked a series of question,
and a testing phase in which users where asked only three questions
to test the usability of the system.

The questions were aimed at testing whether the users were able
to formally express the rules, by reading the table, and to evaluate
their fidelity.

The training phase was meant to introduce the interface to the
participants to make sure they were ready to use it in the test



phase. An important goal of this first phase was to make sure that
every component of the tool was readable and that the participants
understood the need to find a balance between complexity and
fidelity. The participants were asked specific questions on how to
read the rules in the rule panel and their characteristics. All of them
provided correct answers to these questions, confirming they had
understood how to use it.

In the testing phase we gave our participants time to load the
FICO dataset (a much more complex one than the previously shown
one) and to interact with the tool for the time they felt necessary to
provide a description the model. Two of the subjects spent almost
an hour observing and analyzing the dataset and they were able
to draw many significant conclusions regarding the relationships
between some of the features and the classification performed from
the datasets. One user in particular was able to spot many outliers
observing the pie chart that summarizes each leaf and the features
involved in the corresponding rules.

CONCLUSIONS AND FUTUREWORKS
We presented a description and a preliminary evaluation of our sur-
rogate tree visualization. This visualization can be used by domain
experts as well as data scientists to gain an understanding of model
behavior, including what the model does right and where issues
may arise. Application of such method includes healthcare pro-
fessionals who want to understanding ML models for diagnostics
and other medical outcomes; finance experts who use models for
prediction or credit scoring; or even in security to understand how
a model detects fraudulent transactions or other illegal activities.

Thework presented here is very preliminary.We indent to extend
the tool further in many ways. We want to provide a tighter link
between the tree and the table and find a way to make it scale
to a higher number of features. We also need to test the methods
with a much larger number of data sets and models. In particular,
we need to verify the extent to which decision trees can simulate
more complex models and how fidelity changes when some of the
parameters we use change (e.g., tree complexity).

The most important aspect that we will be working on in the fu-
ture is a wider testing of our tool. We need to test the methods more
formally to better understand the extent to which it helps answer
the questions we outlines in the introduction. More importantly,
we need to better understand how interpretability is affected by vi-
sual representation. For this purpose we plan to develop controlled
experiments to compare our alternative visual representations. In
particular, we deem it important o better understand how the tree
representation and the tabular representation of the rules compare
and how they score in comparison to a simple textual list of rules.
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