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ABSTRACT  
The increasing ubiquity of artificial intelligence (AI) has spurred 
the development of explainable AI (XAI) to make AI more 
understandable. Even as novel algorithms for explanation are 
being developed, researchers have called for more human 
interpretability. While empirical user studies can be conducted to 
evaluate explanation effectiveness, it remains unclear why 
specific explanations are helpful for understanding. We leverage 
a recently developed conceptual framework for user-centric 
reasoned XAI that draws from foundational concepts in 
philosophy, cognitive psychology, and AI to identify pathways for 
how user reasoning drives XAI needs. We identified targeted 
strategies for applying XAI facilities to improve understanding, 
trust and decision performance. We discuss how our framework 
can be extended and applied to other domains that need user-
centric XAI. This position paper seeks to promote the design of 
XAI features based on human reasoning needs.  
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1 Introduction  
The recent success of artificial intelligence (AI) is driving its 
prevalence and pervasiveness in many domains of decision 
making from supporting healthcare intervention decisions to 

informing criminal justice. However, to ensure that we 
understand how these models and algorithms work, and to better 
control them, these models need to be explainable. As a result,  
explainable AI research has been burgeoning with many 
algorithmic approaches being developed to explain AI and many 
HCI driven empirical studies to understand the impact of these 
explanations. We refer the interested reader to several literature 
reviews [1, 5, 10, 43].  

To help end users to understand, trust, and effectively manage 
their intelligent partners, HCI and AI research have produced 
many user-centered, innovative algorithm visualizations, 
interfaces and toolkits (e.g., [7, 20, 25, 36]).  To make sense of the 
variety of explanations, several explanation frameworks have 
been proposed for knowledge-based systems [10], recommender 
systems [12], case-based reasoning [39], intelligent decision aids 
[40], tutoring systems [10], intelligible context-aware systems 
[24], etc. These frameworks are mostly taxonomic or driven by 
clearly defined principles (e.g. [21]). In this work, we aim to 
identify theories in human thinking that drives the needs for 
different types of explanations. 

Indeed, some work has drawn from more formal theories. 
Recent writings by Miller, Hoffman and Klein discussed relevant 
theories from philosophy, cognitive psychology, social science, 
and AI to inform the design of eXplainable AI (XAI) [13, 14, 15, 19, 
31].  Miller noted that much of XAI research tended to use the 
researchers’ intuition of what constitutes a “good” explanation. 
He argued that to make XAI usable, it is important to draw from 
social sciences. Hoffman et al. [13, 14, 15] and Klein [19] 
summarized several theoretical foundations of how people 
formulate and accept explanations, empirically identified several 
purposes and patterns for causal reasoning, and proposed ways 
that users can generate self-explanations to answer contrastive 
questions. However, it is not clear how best to operationalize this 
rich body of work in the context of XAI-based decision support 
systems for specific user reasoning goals. Hence, adding on to this 
line of inquiry, we have recently proposed a theory-driven, user-
centric XAI framework that connects XAI explanation features to 
underlying reasoning processes that users have for explanations 
[42].  Drawing on this framework, XAI researchers and designers 
can identify pathways along which human cognitive patterns 
drives needs for building XAI. By articulating a detailed design 
space of technical features of XAI and user requirements of 
human reasoning, we intend that our framework will help 
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developers build more user-centric explainable AI-based systems 
with targeted XAI features. 

We have previously introduced the conceptual framework in 
[42] and we refer interested readers to study the original work. In 
this position paper, we further demonstrate how to use the 
framework to design targeted explanation features, focusing on 
the choice of explanation types defined by Lim and Dey [24, 25]. 
Lim and Dey defined their explanation taxonomy for context-
aware computing and described how users might use them [24] as 
well as empirically demonstrated the effectiveness of some 
explanation types [23]. However, in later studies, they found that 
users could also reason differently than anticipated and have 
different preferences for explanation types even for the same 
tasks [27, 29]. For example, to understand how a mobile app would 
behave in a new situation, Lim and Dey found that users could 
either use the What If explanation, or exercise the actual scenario 
and inspect the Why explanation.  
Our conceptual framework in [42] provides theoretical support 
for why users preferred certain explanations in addition to also 
describing how people are subject to reasoning fallacies and 
cognitive biases as well as how to select explanations to mitigate 
these biases. In this work, we focus on supporting three 
explanation goals by providing examples for specific XAI features 
that support them and relate them to Lim and Dey's intelligibility 
types. To provide some context before we apply the framework, 
we summarize relevant parts of the original work [42] in the next 
section. 

2 XAI Framework of Reasoned Explanations 
We performed a literature review and synthesized a conceptual 
framework from rationalizing logical connections. Rather than 
perform a comprehensive encyclopedic literature review of 
relevant concepts in XAI [1, 5, 10, 43], our goal was to create an 
operational framework with which developers of XAI interfaces 
and systems can use. We started with an existing literature review 

of different XAI techniques [1] and considered what reasoning or 
cognitive theories would justify the need for such methods. In 
addition, we considered how people reason and make decisions so 
as to design XAI that normalizes to their thought processes; this 
minimizes the learning curve of XAI facilities. Our literature 
search was inspired by work from Miller [31], but we limited our 
scope to philosophy, cognitive psychology, and AI. We iteratively 
refined our framework by 1) finding concepts in XAI, reasoning 
and psychology, 2) drawing connections between them to 
elucidate relationships, 3) finding gaps to justify why certain XAI 
techniques could be useful, and 4) searching for more concepts. 

We have developed a conceptual framework that links 
concepts in human reasoning processes with explainable AI 
techniques. By considering two aspects of the human and the 
machine, we further divide the framework into four main 
modules. We focus on two modules here. First, we identify how 
people ideally reason and why we seek explanations (2.1). These 
articulate reasoning methods and explanation types that provide 
the foundation of what good decision aids should support. Second, 
we describe various AI modeling and XAI facilities, and 
contextualize how they have been developed to support certain 
reasoning methods (2.2). Figure 1 shows these key modules and 
pathways linking them to illustrate how some reasoning methods 
can be supported by XAI facilities. 

2.1 How People should Reason and Explain 
This section informs how XAI can support different explanation 
types by articulating how people understand events or 
observations through explanations. We drew these insights from 
the fields of philosophy, and cognitive psychology, specifically 1) 
different ways of knowing, 2) what structures contain knowledge, 
3) how to reason logically and 4) why we seek explanations.  

2.1.1 Explanation Goals. The needs for explanations are 
triggered by a deviation from expected behavior [31], such as a 
curious, inconsistent, discrepant or anomalous event. 

 

Figure 1. Partial Conceptual framework for Reasoned Explanations (of [42]) that describes how human reasoning processes (left) informs 
XAI techniques (right). Points describe different theories of reasoning, XAI techniques, and strategies for designing XAI. Arrows indicate 
pathway connections: red arrows for how theories of human reasoning inform XAI features, and grey for inter-relations between different 
reasoning processes and associations between XAI features. Only some example pathways are shown. For example, to find the cause of an 
application behavior, user could seek a contrastive explanation of counterfactuals to filter causes (grey arrow); this can be supported with 
why not and how to explanations, respectively (red arrows). To help users generalize and learn about the application behavior, we should 
support reasoning processes (grey arrow) of induction, analogy and deduction by highlighting similarity/differences, various forms of 
probability and rule boundaries respectively (red arrows). 

 

Explaining AIUnderstanding People

• Explanation goals
filter causes | generalize and learn | predict and control
|

transparency | improve decisions | debug model | moderate trust

• Inquiry and reasoning
|

induction | analogy | deduction
abduction | hypothetico-deductive model

• Causal explanation and causal attribution
|

contrastive | counterfactual | transfactual | attribution

How People should Reason and Explain How XAI Generates Explanations 

informs

• Bayesian probability
prior | conditional | posterior

• Similarity modeling
clustering | classification | dimensionality reduction | rule boundaries

• Intelligibility queries
inputs | outputs | certainty | why | why not | how to | what if | when

• XAI elements
name | value | attribution | clause | instance
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Alternatively, users may also seek to monitor for an expected, 
important or costly event. Miller identified that the main reason 
why people want explanations is to facilitate learning by allowing 
the user to (i) filter to a small set of causes to simplify their 
observation, and to (ii) generalize these observations into a 
conceptual model where they can predict and control future 
phenomena [31]. The latter goal of prediction is also described as 
human-simulatability [30]. We orient our discussion of 
explanations with respect to these broad goals of finding causes 
and concept generalization. 

From the AI research perspective, a recent review by Nunes 
and Jannach summarized several purposes for explanations [32]. 
Explanations are provided to support transparency, where users 
can see some aspects of the inner state or functionality of the AI 
system. When AI is used as a decision aid, users would seek to use 
explanations to improve their decision making. If the system 
behaved unexpectedly or erroneously, users would want 
explanations for scrutability and debugging to be able to identify 
the offending fault and take control to make corrections. Indeed, 
this goal is very important and has been well studied regarding 
user models [3, 16] and debugging intelligent agents [21]. Finally, 
explanations are often proposed to improve trust in the system 
and specifically moderate trust to an appropriate level [4, 6, 26].  

2.1.2 Inquiry and Reasoning. With the various goals of 
explanations, the user would then seek to find causes or generalize 
their knowledge and reason about the information or 
explanations received. Pierce defined three kinds of inferences 
[34]: deduction, induction, and abduction. Deductive reasoning 
“top-down logic” is the process of reasoning from premises to a 
conclusion. Inductive reasoning “bottom-up logic” is the reverse 
process of reasoning from a single observation or instance to a 
probable explanation or generalization. Abductive reasoning is 
also the reverse of deductive reasoning and reasons from an 
observation to the most likely explanation. This is also known as 
“inference to the best explanation”. It is more selective than 
inductive reasoning, since it prioritizes hypotheses. 

Popper combined these reasoning forms into the Hypothetico-
Deductive model as a description of the scientific method [2, 35]. 
The model describes the steps of inquiry as (1) observe and 
identify a new problem, (2) form a hypothesis as induction from 
observations, (3) deduce consequent predictions from the 
hypotheses, and (4) test (run experiments) or look for (or fail to 
find) further observations that falsify the hypotheses. It is 
commonly used and taught in medical reasoning [8, 9, 33]. A key 
aspect of the HD model is hypothesis generation where 
observation of the current state can help the user decide whether 
to test for relationships between potential causes and the outcome 
effect. 

Finally, analogical reasoning is the process of reasoning from 
one instance to another. It is a weak form of inductive reasoning 
since only one instance is considered instead of many examples 
[41]. Nevertheless, it is often used in case base reasoning and in 
legal reasoning to explain based on precedence (same case) or 
analogy (similar case) [22]. 

2.1.3 Causal Attribution and Explanations. As users inquire for 
more information to understand an observation, they may seek 
different types of explanations. Miller identified causal 
explanations as a key type of explanation, but also distinguished 
them from causal attribution, and non-causal explanations [31]. 

Causal attribution refers to the articulation of internal or 
external factors that could be attributed to influence the outcome 
or observation [11]. Miller argues that this is not strictly a causal 
explanation, since it does not precisely identify key causes. 
Nevertheless, they provide broad information from which users 
can judge and identify potential causes. Combining attribution 
across time and sequence would lead to a causal chain, which is 
sometimes considered a trace explanation or line of reasoning. 

Causal explanation refers to an explanation that is focused on 
the selected causes relevant to interpreting the observation with 
respect to existing knowledge. This requires that the explanation 
be contrastive between a fact (what happened) and a foil (what is 
expected or plausible to happen). Users can ask why not to 
understand why a foil did not happen. The selected subset of 
causes thus provides a counterfactual explanation of what needs 
to change for the alternative outcome to happen. This helps 
people to identify causes, on the scientific basis that manipulating 
a cause will change the effect. This also provides a more usable 
explanation than causal attribution, because it presents fewer 
factors (reduces information overload) and can provide users with 
a greater perception of control, i.e., how to control the system. A 
similar method is to ask what if the factors were different, then 
what the effect would be. Since this asks about prospective future 
behavior, Hoffman and Klein calls this transfactual reasoning; 
conversely, counterfactual reasoning asks retrospectively [13, 14]. 
This articulation highlights the importance of contrastive (Why 
Not) and counterfactual (How To) explanations instead of simple 
trace or attribution explanations typically used for transparency. 

2.1.4 Summary. We have identified different inquiry and 
explanation goals, rational methods for reasoning, causal and 
non-causal explanation types, and evaluation with decisions to 
describe a chain of reasoning that people make. We next describe 
various explanations and AI facilities and how they support 
reasoning.  

2.2 How XAI Generates Explanations 
Now we turn to how algorithms generate explanations, in 
searching for connections with human explanation facilities. We 
characterize AI and XAI techniques by how they (1) semantically 
support human reasoning specific methods of scientific inquiry, 
such as Bayesian probability, similarity modeling, and queries; 
and (2) how to represent explanations with visualization methods, 
data structures and atomic elements. Where relevant we link AI 
techniques back to concepts (green text) in rational reasoning. 
Bold text refers to key constructs in each module in the 
framework, and italic text refers to sub-constructs. 

2.2.1 Bayesian Probability. Due to the stochastic nature of 
events, reasoning with probability and statistics is important in 
decision making. People use inductive reasoning to infer events 
and test hypotheses. Particularly influential is Bayes theorem that 
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describes how the probability of an event depends on prior 
knowledge of observed conditions. This covers specific concepts 
of prior and posterior probabilities, and likelihood. Understanding 
outcome probabilities can inform users about the expected utility. 

Bayesian reasoning helps decision makers to reason by noting 
the prevalence of events. E.g., doctors should not quickly conclude 
that a rare disease is probable, and they would be interested to 
know how influential a factor or feature is to a decision outcome.  

2.2.2 Similarity Modeling. As people learn general concepts, 
they seek to group similar objects and identify distinguishing 
features to differentiate between objects. Several classes of AI 
approaches have been developed, including modeling similarity 
with distance-based methods (e.g., case base reasoning, clustering 
models), classification into different kinds (e.g., supervised 
models, nearest neighbors), and dimensionality reduction to find 
latent relationships (e.g., collaborative filtering, principal 
components analysis, matrix factorization, and autoencoders). 
Many of these methods are data-driven to match candidate objects 
with previously seen data (training set), where characterization 
depends on the features engineered and the model which frames 
an assumed structure of the concepts. Explanations of these 
mechanism are driven by inductive and analogical reasoning to 
understand why certain objects are considered similar or 
different. Identifying causal attributions can then help users 
ascertain the potential causes for the matching and grouping. 
Note that while rules appear to be a distinct explanation type, we 
could consider them as descriptions of the boundary conditions 
between dissimilar groups. 

2.2.3 Intelligibility Queries. Lim and Dey identified several 
queries (called intelligibility queries) that a user may ask of a 
smart system [24, 25]. Starting from a usability-centric 
perspective, the authors developed a suite of colloquial questions 
about the system state (Inputs, What Output, What Else Outputs, 
Certainty), and inference mechanism (Why, Why Not, What If, 
How To). While they initially found that Why and Why Not 
explanations were most effective in promoting system 
understanding and trust [23], they later found that users may 
exploit different strategies to check model behavior and thus use 
different intelligibility queries for the same interpretability goals 
[26, 29].  

2.2.4 XAI Elements. We identify several building blocks that 
compose many XAI explanations. By identifying these elements, 
we can determine if an explanation strategy has covered 
information that could provide key or useful information to users. 
This reveals how some explanations are just reformulations of the 
same explanation types but with different representations, such 
that the information provided and interpretability may be similar. 
Currently, showing feature attribution or influence is very 
popular, but this only indicates which input feature of a model is 
important or whether it had positive or negative influence 
towards an outcome. Other important elements include the name 
and value of input or outputs (generally shown by default in 
explanations, but fundamental to transparency), and the clause to 
describe if the value of a feature is above or below a threshold (i.e., 
a rule). 

3 Intelligibility Types 
We employ the taxonomy of Lim and Dey [24, 28] due to its 
pragmatic usefulness to operationalize in applications and to 
leverage the Intelligibility Toolkit [25] that makes it convenient 
to implement a wide range of explanations. While it does not 
currently generate recent state-of-the-art explanations and 
models, the explanation data structures allow it to be extended to 
support feature attribution and rules explanations. We reapply the 
original definitions to more general applications of machine 
learning beyond context-aware systems and introduce new types. 
We also describe and situate the explanation types in context of 
underlying reasoning processes. 

Inputs explanations inform users what input values from data 
instances or sensors that the application is reasoning for the 
current case. When a user asks a why question, she may naively 
be asking for the Inputs state. We also consider this to be the basic 
form of explanation to support transparency by showing the 
current measured input or internal state of the application. 

What Output explanations inform users what is the current 
outcome, inference, or prediction and what possible output 
options the application can produce. For applications that can 
have different outcome values (multiclass or multilabel), we can 
also show Outputs explanations. This lets users know what it can 
do or what states it can be in (e.g., activity recognized as one of 
three options: sitting, standing, walking). This helps users 
understand the extent of the application’s capabilities. 

Certainty explanations inform users how (un)certain the 
application is of the output value produced. They help the user 
determine how much to trust the output value and whether to 
consider an alternative outcome. While originally, Lim and Dey 
considered the confidence outcome of a predictive model, this can 
now include stochastic uncertainty from Bayesian modeling 
approaches, which is essentially the posterior probability. 
Furthermore, we have found that users may reason with prior and 
conditional probability, so three types of uncertainty should be 
supported: prior, conditional, posterior. 

Why explanations inform users why the application derived 
its output value from the current (or previous) input values. This 
is typically represented as a set of triggered rules (rule trace) for 
rule-based systems or feature attributions (or weights of 
evidences) for why the inferred value was inferred over 
alternative values. Compared to Input explanations, Why 
explanations focus on highlighting a subset of key variables or 
clauses, though this does not specifically support counterfactual 
reasoning, especially for multi-class classification systems.  

Why Not explanations inform users why an alternative 
outcome (foil) was not produced, with respect to the inferred 
outcome (fact), given the current input values. Why Not 
explanations provide a pairwise comparison between the inferred 
outcome and an alternative outcome. Similar to Why explanations 
that help users to focus on key inputs, Why Not explanations 
focus on salient inputs that matter for contrasting between the 
fact and foil. With the fewer features highlighted, this can support 
counterfactual reasoning, where the user learns how to change 
key input values to achieve the alternative outcome. Hence, such 
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Why Not explanations are essentially How To explanations. Note 
that we can also interpret a Why explanation as a contrast 
between the inferred outcome and all other alternative outcomes. 
However, also note that Why Not explanations generated as 
feature attribution or weights of evidence are not particularly 
useful for How To explanations. As with Lim and Dey, we note 
that Why Not explanations are important to support, since users 
would typically ask for explanations when something unexpected 
happens, i.e., they expect the foil to happen. This agrees with 
Miller that most users truly ask for contrastive explanations (Why 
Not) and that these should be explained with counterfactuals 
(How To) [31]. 

What If explanations allow users to anticipate or simulate 
what the application will do given a set of user-set input values. 
While this straightforward explanation type has received little 
attention in recent AI research, it is an intuitive technique to 
support human simulatability defined by Lipton [30] and supports 
transfactual reasoning defined by Hoffman and Klein [13]. 

When explanations (new) indicate under what circumstance or 
scenario, or with what instance case would a particular outcome 
happen. This can be used to explain for inferred or alternative 
outcomes. Unlike Why or Why Not explanations which focus on 
input feature attributions or values, this focuses on the instance 
entity as a whole. Thus, it is suitable for exemplar, prototype or 
case-based explanations. Unlike How To explanations, this does 
not describe counterfactuals of a subset o inputs to change a 
scenario to have a different outcome. Note that we use a different 
definition as originally defined by Lim [28], which referred to the 
timestamp of the inference event. 

4 Selecting Intelligibility for Explanation Goals 
We had previously summarized several goals or reasons why 
people ask for explanations. These are primarily to improve their 
understanding of the AI-driven application, or the situation, or to 
improve their current or future ability to act predictably and 
correctly. In this section, we describe how to support three 
explanation goals — filter causes, generalize and learn, and predict 
and control — with the Intelligibility explanation types. By 
relating the use of these explanations explicitly back to user goals, 
we identify pathways to justify the use of various explanations in 
explainable AI. While our text and Figure 1 already describe some 
pathways, we articulate these clearer in this section. 

4.1 Find and Filter Causes 

 
Figure 2. Pathways for using Inputs, Why and Why Not 
explanations to help the user to find and filter causes for the current 
system inference behavior. 

We identified three pathways to help users narrow down and 
identify specific causes for a particular system outcome (see 
Figure 2). While Input explanations are most basic and 
colloquially queried by users, we identify that users would inspect 
the input feature values to find anomalies, discrepancies, or 
surprising values, then generate hypotheses for what could be 
wrong. This is not particularly efficient, since users are not 
directed to any salient cause, but it can allow users to determine 
their own hypotheses for causes. Going even further and giving 
users more choice for hypothesis generation, we can support the 
discovery of latent factors. While not originally defined in the 
Intelligibility framework [24, 25, 28], recent work by Kim et al. on 
TCAV [18] allows users to specify their own concepts of interest 
and test if they are influential in a model’s inference. 

The second pathway involves showing Why explanations as 
either a rule trace or feature attribution (or importance). This is 
driven by the users identifying the influence or attribution due to 
various causes (features) or by tracing deductive paths in the 
system rule logic. 

The third pathway involves contrasting the inferred outcome 
(fact) with the expected outcome (foil). Salient large feature 
attribution differences can call the user’s attention to potential 
causal features, but rules provide a more actionable method that 
explains how specific feature values could have led to the 
counterfactual case outcome. 

4.2 Generalize and Learn 

 
Figure 3. Pathways for using Certainty and When explanations to 
support users to generalize and learn about how the system would 
behave for similar cases. 
 
We identified two main pathways to help the user learn a general 
mental model of how the system would behave (see Figure 3). The 
first pathway involves reasoning by induction, the user could be 
interested to know the likelihood of the outcome i) in general 
(overall), ii) the system’s confidence or certainty of the outcome 
prediction for the current instance, or iii) an intermediate 
certainty where only some features matter (e.g., disease risk for 
all males, given that a patient is male). 

The second pathway involves simpler but narrower reasoning 
by analogy, where the user looks at one instance at a time to form 
a detailed understanding of similar specific cases. Here, the 
system proposes the examples, such as i) prototypes to indicate 
median instances for each outcome type, ii) critique examples to 
indicate examples of a desired outcome that are close to the 
decision boundary [17], or iii) counter-examples that are similar 
to the current instance but have different predicted outcomes [38]. 
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4.3 Predict and Control 

 
Figure 4. Pathways for using How To and What If explanations to 
support users to predict how the system would behave in a future 
case and to control its behavior for current or similar cases. 

 
We identified three pathways to help users to predict the system’s 
future behavior and control current behavior (see Figure 4). First, 
using deductive reasoning, users can read the full rule-set of the 
general How To explanation to predict how the system would 
inference. However, this can be tedious for a large rule-set. 
Second, focusing on a specific contrast case, users can use the 
How To counterfactual explanations of rule-based Why Not 
explanations to understand how they could try to change the 
situation for a different outcome. Anchors by Ribeiro et al. provide 
a good recent method for counterfactual explanations to support 
How To explanations [37]. Third, users could use a What If 
explanation to test specific instances that they are interested in; 
i.e., they set input values and observe the simulated outcomes. 
This is similar to When explanations, but the user chooses the 
input states and example. 

Note that we consider explanations that build tree explainer 
models to be equivalent to rule-based explanations, since we can 
use first-order logic to transform them [25, 28]. Furthermore, we 
do not know of any feature attribution-based explanations that 
can specifically satisfy the explanation goal of prediction and 
control. The popularity of feature attributions presents a big gap 
in the research in XAI which tend to not produce actionable 
explanations. 

5 Conclusion 
We have described a theory-driven conceptual framework for 
designing explainable facilities by drawing from philosophy, 
cognitive psychology and artificial intelligence (AI) to develop 
user-centric explainable AI (XAI). Using this framework, we can 
identify specific pathways for how some explanations can be 
useful, how certain reasoning methods fail due to cognitive biases, 
and how to apply different elements of XAI to mitigate these 
failures. By articulating a detailed design space of technical 
features of XAI and connecting them with user requirements of 
human reasoning, our framework aims to helps developers build 
more user-centric explainable AI-based systems. 
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