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ABSTRACT
We present Mash, a library that provides software tools for
developing interactive and transparent machine learning
systems. Mash provides tools for (1) back end: specifying ma-
chine learning models, and (2) front end: generating User In-
terfaces (UIs) that allow non-technical end-users to interpret
and interact with the models. In the back-end, Mash includes
probabilistic modeling and computation graph utilities. On
the front-end, UIs generated by Mash enable end users to
examine the model’s predictions, manipulate model’s param-
eters, and observe changes in model’s predictions. Together,
Mash can help developers rapidly build new models and ob-
tain feedback from end users. We present two case studies
in which Mash UIs enable end-users to: (1) assess model
fairness in predicting student performance, and (2) explore
movie recommendations. To support future work, we will
open source Mash.

CCS CONCEPTS
•Computingmethodologies→Machine learning; •Hu-
man centered computing→ User interface toolkits; • Soft-
ware and its engineering→ Development frameworks and
environments.
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1 INTRODUCTION
The traditional goal of machine learning (ML) is to create
accurate predictors. In a typical development process, ML
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developers are provided a dataset and are tasked with build-
ing a prediction system that achieves high performance as
measured by standard metrics such as accuracy. The system
is then often presented to end users as a black box, with little
interactive capability. A user interface (UI) may be built, but
the interactions are often limited to specifying the inputs
and observing the outputs; the black box remains opaque. Al-
though that development process has been successful, there
are many applications where richer end-user interactions are
beneficial or even necessary: when the systems are used to
make high-stakes decisions that affect people, when human
knowledge or creativity is needed, or when the capability to
explore the systems’ predictions may help engage users.

Developing ML systems capable of providing rich interac-
tions is a difficult and lengthy process, as it involves the inte-
gration of back-end predictive model building with front-end
UI design. If developers focus only on optimizing predictive
performance without considering end users then the sys-
tem may become too complex for end users to meaningfully
interact with.

To address these issues, we propose Mash, a library for de-
veloping interactive and transparent ML systems. For devel-
opers, Mash facilitates ‘user-aware’ ML development, where
predictive models are integrated with associated UIs. For
end-users, Mash-generated UIs enable rich interactions with
ML systems, helping the users make decisions, explore the
systems, or inject their knowledge into the system.
Advances in ML are often accompanied by software li-

braries. The success of Support Vector Machines (SVMs) in
the 2000s was due in part to software packages such as LIB-
SVM [11] and SVMLight [21]. Recent progress in ML has
been accelerated by the availability of many probabilistic
programming and computation graph libraries (PyMC [28],
Stan [9], Theano [5], Tensorflow [1], PyTorch [27], and oth-
ers). The creation of specialized software tools for transpar-
ent and interactive ML, such as Mash, has the potential to
similarly accelerate progress.
Mash integrates existing ML libraries with tools for gen-

erating UIs automatically, including tools for specifying how
an end-user can interacts with the models (for example, the
end-user can inspect and manipulate some of the model
parameters and observe how these change the prediction).
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Given these tools, developers can build systems with end-
users in mind: they can construct or identify intelligible com-
ponents in the systems to expose to end users. For instance,
developers may define a model with a sparsity constraint
(requiring a large number of parameters to be zeros) and
define the UI to include only non-zero parameters for users
to interact with.

We demonstrate the applicability of Mash in two case stud-
ies. First, we consider predicting student performance using
linear regression, mixed effects model, and neural networks.
Such predictions can be used to make important decisions,
which may raise the question of fairness. For example, a ML
system that supports student admission decisions [36] must
be fair with respect to race and gender. Second, we present
an interactive movie recommendation UI powered by proba-
bilistic matrix factorization [31], allowing users to directly
manipulate model parameters to explore recommendations.

2 RELATEDWORK
Model visualization
Software tools for visualizingMLmodels exist: TensorBoard [1],
ShinyStan [9], ModelTracker [4] and others [19]. However,
they aim at helping developers debug models, or helping ex-
pert users (who have ML knowledge) understand and deploy
systems. Tools that aim at non-expert users (Tensorflow Play-
ground or ConvnetJS) are mainly educational and are used
in toy problems. In contrast, we aim at helping developers
generate UIs to assist non-expert end-users in interpreting
and interacting with ML models in real world problems.
The recently released What-if tool1 enables the manip-

ulation of the data to observe how the prediction changes.
Mash goes further in enabling the manipulation of the inter-
nal model parameters. Furthermore, What-if is a post-hoc
tool on built models, while Mash is a development tool for
building models.

Interpretable machine learning
Two main directions in this area are developing inherently
interpretable models, and (2) probing black box models to
generate explainations. In the first direction, popular meth-
ods are decision trees [29], sparse linear models [33], and
additive models [10]). Although these methods facilitate user
interpretation, their predictive performance can be limited.
In the second direction, recent work has considered us-

ing a simpler model to approximate a complex black-box
model [30] or finding the most influential training exam-
ples [22]) for each test instance. These methods can provide
insights into black-box models. However, their explanations

1https://ai.googleblog.com/2018/09/the-what-if-tool-code-free-probing-of.
html

Figure 1: Mash and its main dependencies.

may not be faithful since they are simpler approximations
to complex models.
There has also been concern that ‘interpretable’ is not a

well-defined concept [24], and that a more ‘rigorous science’
is needed [14]. Other than providing the tools for develop-
ers, we see Mash as a framework toward a ‘science of ML
interpretation’. By building the general tools instead of fo-
cusing on a model or an application, we expect to see general
principles for ML interpretation.

Interactive machine learning:
Work in this area aims at using human interaction to improve
ML systems [3] in a number of applications: image segmen-
tation [15], text classification [23], and image search [16].
Our work aims at creating the tools for building UIs that
enable the interaction between humans and ML systems. We
focus on system transparency, although user interaction can
be used to improve system prediction performance.

Development tools for human computation
Turkit [25] is a tool for developing iterative crowdsourcing
tasks, such as iteratively improving text [6]. Jabberwocky [2]
provides a programming environment for social computing.
These tools have roughly the same goal: providing an abstrac-
tion layer connecting back-end and front-end components
in order to help developers focus on high-level ideas in hu-
man computation algorithms. Mash has a similar goal for
developing ML systems.

3 BACKGROUND
Computation graphs
Computation graph libraries (Theano [5], Tensorflow [1],
PyTorch [27] and others) provide the tools for defining op-
erators (from scalars, vectors, and matrices to tensors) and
operations (arithmetic, indexing, conditioning). The key func-
tionality of these libraries is automatic differentiation, which
enables gradient based parameter learning. In the develop-
ment of new deep neural networks models, these computa-
tion graph libraries have become essential: without them,
developers would need to tediously derive gradients for all
variables in the networks (and repeat after every change).

https://ai.googleblog.com/2018/09/the-what-if-tool-code-free-probing-of.html
https://ai.googleblog.com/2018/09/the-what-if-tool-code-free-probing-of.html
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Probabilistic programming
Probabilistic programming systems (PyMC [28], Stan [9],
BUGS [32], Anglican [34] and others) provide the tools for
defining probabilistic models, which are probability distri-
butions over a collection of random variables. Probabilistic
models can also be interpreted as computation graphs in
which the operators (scalars, vectors, ...) are ‘lifted’ from
fixed values to random variables. Similar to automatic dif-
ferentiation, probabilistic programming systems provide the
key functionality of automatic inference: infering the distri-
bution over all variables given the observed data. Markov
Chain Monte Carlo [17] and Variational Inference [35] are
two families of commonly implemented automatic inference
methods.
Probabilistic modeling is the foundation for many pop-

ular ML algorithms: mixture models, probabilistic matrix
factorization for recommendation [31], Latent Dirichlet Al-
location (LDA) topic models [7], and others. The advantage
of a probabilistic approach is the clear meaning of variables
in the models and the uniform representation of uncertainty.
However, this approach often does not scale well to very
large datasets.

4 SYSTEM
Mash uses Theano [5] for computation graphs, PyMC [28] for
probabilistic modeling, Dash2 for web application building,
and React3 for user interface rendering. Figure 1 shows
Mash and its dependencies on other tools.
Consider a linear regression model to predict student

grades from two features: ‘study time’ and ’health’ (we will
later use this example as a case study). Linear regression sim-
ply assumes that the target (grade) is a linear combination
of the features:

grade = α + βS × studytime + βH × health + ϵ (1)

where α , βS , and βH are the parameters to be learned and
ϵ is Normally distributed random noise. Taking a Bayesian
approach, we place zero-mean Normal priors on all param-
eters. These priors help regularize parameter estimates to
avoid over fitting.

Source code for using Mash to implement this model and
specifying the UI is shown below:
1 import mash as ms
2 m = ms.Model()
3 # Assume data is a Pandas dataframe with 3 columns:
4 # studytime, health, and observed_grade
5 m.set_pd_data(data)
6

7 with m:

2https://github.com/plotly/dash/
3https://github.com/facebook/react

Figure 2: UI generated by Mash for Linear Regression (with
Bayesian priors) for predicting student grades.

8 # Priors on parameters
9 alpha = ms.Normal('alpha', mu=0, sd=10)
10 beta_S = ms.Normal('beta_S', mu=0, sd=10)
11 beta_H = ms.Normal('beta_H', mu=0, sd=10)
12 sigma = ms.HalfNormal('sigma', sd=1)
13

14 # Likelihood
15 grade = ms.Deterministic('Grade', alpha +
16 beta_S * m.data['studytime'] +
17 beta_H * m.data['health'])
18 observed_grade = ms.Normal('Observed_Grade',
19 mu=grade, sd=sigma,
20 observed=m.data['observed_grade'])
21

22 # Set the roles of variables
23 m.set_prediction(features=['studytime', 'health'],
24 params=[alpha, beta_S, beta_H],
25 predict=grade)
26

27 m.inference()
28

29 # Define UI
30 ui = ms.UI(model=m)
31 ui.add_sliders(['studytime', 'health',
32 'alpha', 'beta_S', 'beta_H', 'Grade'])
33 ui.run_server()

Figure 2 shows the generated web UI, which consists
of six sliders. The two data sliders (studytime and health)
are set to their default values (they can also be set to the
values of some test datapoints). The three model parameter
sliders (alpha, beta_S, and beta_H) are set to the values that
the model has learned from the training data. These first
five sliders can be manipulated by the end-users, while the
prediction slider (Grade) reacts to these manipulations. For
example, if an end-user moves the ‘studytime’ slider, the
‘Grade’ slider will move to the model’s predicted grade for
a student with the selected study time. End-users can also
move a model parameter slider such as alpha and observe the
change in the model’s prediction. This interaction may help
end-users make sense of how the model works internally.
The overall UI also provides transparency in letting end-
users see and interact with model’s parameters. We note that
the developers make the decisions on which data features
and model parameters to add to the UI. There is a trade-off
between adding all parameters for more transparency vs.
adding fewer parameters for easier end-user sense-making.
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In general, developers use Mash by declaring an MLmodel
and declaring the corresponding UI. Under the hood, Mash
creates a PyMC probabilistic model, extracts a Theano com-
putation graph, matches the UI elements to features or model
parameters, sets up callbacks for handling interactions, and
renders the interface.

For back-end ML model building, Mash provides:
• Placeholders for data.
• Common probability distribution (e.g. Normal).
• Operations on data or model parameters (arithmetic,
indexing, and matrix operations).

For front-end UI, Mash provides:
• Sliders for manipulating data or parameters, or for
observing model’s predictions.
• Graphs for plotting data.
• Markdown text for explaining the model and instruct-
ing end-users.

Mash also connects back-end and front-end components
automatically, enabling developers to focus on declaring
what they want in the ML model and the UI.

5 CASE STUDIES
Predicting student performance
Some institutions have used ML systems to support making
student admission decisions to their programs [36], due to
the rapid increase in the number of applicants. Although
reducing the workload for the admission committee, these
systems raise the issue of fairness and transparency: how
do we know these systems do not discriminate between stu-
dents based on race or gender, even though these attributes
are not used as features for the predictors? For example, a
common feature is the student’s current school. If a system
has a negative weight on an all-female school then that sys-
tem may discriminate between students based on gender
(although it is also possible that the system has correctly
identified a school with low quality teaching). Fairness in
ML is an active research area, such as in the context of credit
rating or criminal justice. Many criteria for fairness have
been proposed [26], such as equality of opportunity [18] or
demographic parity [8], but there is still no consensus. Tech-
nical criteria may provide some insight, but fairness is a more
complex concept, which necessitates human interpretation.
In this case study, we address the issue by making the

system transparent to the end-users, who might be respon-
sible for making admissions decisions. We use the Student
Performance Dataset from the UCI repository [12, 13] and
implement three models: linear regression, a mixed effects
model, and neural networks.

Our linear regression implementation is presented in the
previous section. In this case study, to help end-users assess
model fairness, we include an interactive histogram of the

Figure 3: The interactive histogram showing themodel’s pre-
dicted grades by student gender: the x-axis is the grade, the
y-axis is the number of students in the provided test dataset.

model’s predictions with respect to student gender (Figure
3):
1 m.set_pd_test_data(test_data)
2 ui.add_test_histogram(hue='gender')

The interactive histogram reacts to end-users’ manipula-
tions of the model parameters. If the end-users determine
that there are biases, they can try tomanipulatemodel param-
eters to reduce these biases. Other visualization techniques
for assessing fairness are possible. For example, another his-
togram may show the distribution of the prediction errors
for each gender.

Our mixed effects model extends linear regression in spec-
ifying a random effect on the intercept parameter α based
on the school that the student attends4:
1 school_alphas = ms.Normal('school_alphas',
2 mu = alpha, sd=1, shape=(2,))
3 grade = ms.Deterministic('Grade',
4 school_alphas[m.data['school']] +
5 beta_S * m.data['studytime'] +
6 beta_H * m.data['health'])

In the dataset, there are two schools called MS and GP. The
first line generated an intercept α for each school. Next, in
line 4, we select the intercept based on the school that the
student attends (m.data['school'] is 0 if the school is MS
and 1 if the school is GP). Figure 4 shows our interface, in
which end-users can specify the school of the student (in
addition to study time and health). End-users can also inspect
and manipulate the intercept α for each of the two schools.
For (Bayesian) neural networks, we implement a model

with two hidden units, F0 and F1. The model’s parameters
are: weights from the inputs to the hidden units, and weights
from the hidden units to the final grade prediction. The value
of a hidden unit is a linear combination of the inputs passed
through a non-linear activation function (we use the tanh

4This random effect can be written in R formula as (alpha |school)
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Figure 4: The UI for the mixed effects model.

Figure 5: The interface for our Bayesian neural networks.

function):

F0 = tanh[studytime ×W (studytime, F0)+
health ×W (health, F0)] (2)

Where W(X,Y) is the weight from X to Y (for example the
weight W(health, F0) connects the input health to the first
hidden unit F0). In Figure 5, we display our UI. End-users can
manipulate data, manipulate model parameters, and observe
the predicted grade (similar to previous UIs). A potential
issue is that the hidden units F0 and F1 have no obvious
interpretations. Furthermore, for applications with a large
number of features, the large number of parameters in a
neural network may make it difficult for user to inspect and
manipulate. To address these, developers can implement spar-
sity or disentangled representations [20] to reduce the num-
ber of parameters and construct hidden units with clearer
meanings.

Movie recommendation
Recommendation systems provide suggestions of items to
users. For instance, a movie recommendation system may
suggest newmovies to a user given the ratings that user gave
to other movies, often leveraging a large dataset of previous
ratings.

Explanations for recommendation systems exist and have
been widely used in commercial systems such as in Netflix,
but they are typically static, such as ‘people like you also
watch’. In this case study, we consider making a recommen-
dation system transparent and interactive to users. Users
can directly manipulate the model’s parameters, and observe
how the recommendation changes. This is useful for users
to see how the system works, explore different recommen-
dations, or find recommendations for friends.

One of the most common techniques for recommendation
is Probabilistic Matrix Factorization (PMF) [31], in which the
system identifies and estimates a number of hidden factors
for each item (movie) and user (viewer). Assuming that there
are n users andm movies. The idea in PMF is to factor the
n ×m ratings matrix into two matrices: a n × k user matrix
U and am × k movie matrix M , where k is the number of
factors (which is usually set to a small number, we set k = 3).
PMF assumes that the rating by user i for movie j is the
dot product of two k dimension row vectors: Ui and Mj .
Intuitively,Ui describes user i andMj describes movie j . Our
implementation first defines the PMF model:
1 # User matrix
2 Users = ms.Normal('Users', mu=0, sd=1,
3 shape=(n_users, n_factors))
4

5 # Movie matrix
6 Movies = ms.Normal('Movies', mu=0, sd=1,
7 shape=(n_movies, n_factors))
8

9 # Rating matrix
10 rating = ms.Deterministic('Rating',
11 Users[m.data['userId']]
12 .dot(Movies[m.data['movieId']].T))

We next define the UI:
1 # Sliders for selecting user and movie
2 userId = ui.add_slider('userId')
3 movieId = ui.add_slider('movieId')
4

5 # Shows the name of the selected movie
6 ui.add_dynamic_text(data=movie_names,
7 from_index=movieId)
8

9 # Sliders for user factors
10 for i in range(n_factors):
11 ui.add_slider('Users', (0, i),
12 display_name='User F' + str(i))
13

14 # Sliders for movie factors
15 for i in range(n_factors):
16 ui.add_slider('Movies', (0, i),
17 display_name='Movie F' + str(i))
18

19 # The predicted rating
20 ui.add_slider('Rating')

In Figure 6, we show our UI, where end-users can: (1)
select a user (movie viewer) and a movie, (2) manipulate the
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Figure 6: The interface for our movie recommendation sys-
tem based on PMF.

factor values for the selected user and movie, and (3) observe
the predicted rating (also for the selected user and movie). A
potential difficulty is that the factors (F0, F1, and F2) have
no clear meanings. To better understand the predictions, the
end-users may need to look at a large number of movies
and movie factors. For example, if the value of ‘Movie F0’ is
consistently high for action movies, then the factor F0 may
be correlated with that genre. End-users can then interpret
the value of ‘User F0’ as a measure of how much the selected
user likes action movies.

6 DISCUSSION
Conclusion
We have presented Mash, a software library for developing
interactive and transparent ML systems. We also presented
ourMash implementations of four models in two case studies.
We see Mash as a step toward better interactions between
human and ML systems.

Limitations and future work
Mash is built on top of PyMC [28], which has a limitation
in scaling to large datasets, and Theano [5], which is no
longer in active development. Future work could integrate
Mash to more recent ML libraries such as Tensorflow [1]
or PyTorch [27]. The main interactions in Mash-built UIs
are manipulating sliders and observing model predictions,
which could be difficult for end-users in applications with
a large number of features or parameters. Future work may
develop techniques for interacting with high-dimensional
features or parameters.
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