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ABSTRACT
Machine learning (ML) models are often considered “blackboxes” as
their internal representations fail to align with human understand-
ing. While recent work attempted to expose the inner workings
of ML models they do not allow users to interact directly with the
model. This is especially problematic in domains where labeled
data is limited as such the generalizability of ML models becomes
questionable. We argue that the fundamental problem of general-
izibility could be addressed by making ML models explainable in
abstractions and expressions that make sense to users and by allow-
ing them to interact with the model to assess, select, and build on.
By involving humans in the process this way, we argue that the co-
created models will be more generalizable as they extrapolate what
ML learns from few data when expressed in higher level abstrac-
tions that humans can verify, update, and expand based on their
domain expertise. In this paper, we introduce RulesLearner that
expresses MLmodel as rules on top of semantic linguistic structures
in disjunctive normal form. RulesLearner allows users to interact
with the patterns learned by the ML model, e.g. add and remove
predicates, examine precision and recall, and construct a trusted set
of rules.We conducted a preliminary user study which suggests that
(1) rules learned by ML are explainable and (2) co-created model is
more generalizable (3) providing rules to experts improves overall
productivity, with fewer people involved, with less expertise. Our
findings link explainability and interactivity to generalizability, as
such suggest that hybrid intelligence (human-AI) methods offer
great potential.

CCS CONCEPTS
• Human-centered computing→ User studies; • Computing
methodologies→ Artificial intelligence.
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1 INTRODUCTION
As machine learning models advance and become widely used
in a variety of domains, they have also become more complex
and difficult to understand. They are often viewed as “blackboxes”,
because their inner representation often have large number of
parameters (tens of millions) and these parameters don’t necessarily
align with human understanding. As such, humans cannot hope to
even begin to interpret the interplay and how it achieves its final
prediction.

While model performance is important, explainability often mat-
ters more, especially in high-stake domains, such as predicting
in-hospital mortality, where users would want to understand why
a decision is made [8, 9]. Explainability is further more critical in
domains where labeled data is limited due to ownership, privacy,
or regulations, where ML models tend to overfit to data at hand [1].
The premise of explainability is to make the models understandable
such that users can diagnosize and refine the model [5].

Recent work has shown that by explaining each prediction to
the user, user would be able to provide necessary correction back to
the system [6]. However, such human-model interaction is limited
as people cannot directly modify the inner representation of the
model. The key insight in this paper is that, by making ML models
explainable in abstractions and expressions that make sense to
users, we enable them to interact with the model directly to assess,
select, and build on the learned rules. By involving humans in the
process this way we argue that the co-created model will be more
generalizable as it extrapolates what ML learns from few data when
expressed in higher level abstractions, so that humans can verify,
update, and expand based on their domain expertise.

In this work, we propose a hybrid human-machine intelligence
approach which first learns a white box model in the form of rules
that people can understand, and then employs domain experts to
enhance the model by selecting or perhaps even updating the rules
that can generalize beyond the data trained.We built a user interface
in RulesLearner, to allow users to quickly explore and understand
the rules for text analytics, specified as semantic linguistic struc-
tures in disjunctive normal form. Through RulesLearner, users can
rank and filter rules by performance measures (precision, recall,
F1), read examples, decompose rules into its predicates, and update
rules by adding or dropping predicates. Since the users are experts,
they have the necessary domain knowledge to determine whether
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or not each learned rule makes sense. Hence, by selecting or up-
dating rules, they can create a trusted model that generalizes over
never-before-seen data.

We evaluated RulesLearner with 6 participants to examine the
interaction between people and an explainable model. Our results
show that, within 30 minutes, participants are able to co-create a
model that outperforms a black box model (LSTM) on F1 by a range
of 35.58% to 43.72%. When compared to experts who write rules
from scratch, we found out that participants with the RulesLearner
are able to achieve a better recall (88.64%) and F1 (58.75%) on average.
Our results link explainability and interactivity to generalizability,
as such suggest that hybrid intelligence (human-AI) can potentially
do better than either human or machine alone.

The contributions of this paper are the following:
• a hybrid approach of training awhite boxmodel and allowing
human to interact, review, modify it

• RulesLearner, the system that facilitates the exploration and
evaluation of rules

• evaluation of the approach through a user study with text
analytics software engineers

2 FORMATIVE STUDY
To inform our approach, we interviewed (2) expert text analytics
researchers and (4) developers, in one-to-one and group sessions,
on their practices, tools, and challenges when developing rules to
classify sentences into categories for text extraction.

Essentially, current practice amounts to an iterative approach,
in which they would study the domain of interest, identify con-
cepts and relations, manually examine documents for variety of
ways they are expressed, sketch semantic patterns matching these
concepts and relations, transform patterns to a text extraction lan-
guage (e.g. regular expressions to semantic role labels), execute
them over sample labeled data, examine results and output, and
iterate over, until they can convince themselves that this could
work in a robust-enough way, running regression tests throughout
the process. While they measure performance quantitatively on
test datasets, they also examine lots of unlabeled documents just
to look for elements that they should have picked up. The whole
process often takes several weeks for a team of software engineers.

Improving recall (the fraction of true positives over all true in-
stances) is identified to be by far the most difficult part of the whole
process. One researcher stated, “Identifying and fixing precision
errors tends to be relatively easy. Thinking of additional ways that
something can be expressed is a lot more difficult because you don’t
necessarily know what to look for. You are extrapolating from labeled
data and labeled data is hard to come by..." The scale of the data poses
serious challenges for experts, “even if you have all labeled data you
still need help, cause you can’t just read through all.” As for expe-
riences with machine learning so far, the researchers commented
that it is not easy to obtain training data (corporate contracts) in
their domain, so machine learning models typically overfit and do
very poorly on real-world datasets.

In summary, we identified two challenges for human to create
rule-basedmodels: (1) Achieving high recall is very difficult, because
humans do not know what pattern to look for among the labeled
datasets. (2) Developing rules is time consuming, because humans
need to manually look through massive datasets. These challenges

Figure 1: Overview of the Approach

motivated us to introduce a hybrid approach where AI can go
through large datasets to create rules that humans can validate,
update, and build on.

3 APPROACH
Fig. 1 shows an overview of our approach where we begin by
learning rules from labeled data using deep learning followed by
using our system to explain said rules to domain experts so they
can understand, ratify and possibly, modify these into potentially
better rules. In this section, we will first briefly explain the Semantic
Linguistic Structure used to learn rules and how we learned rules.
We will then describe the features of our system in detail, and then
demonstrate the usages in a hypothetical scenario.
Semantic Linguistic Structure (SLS)We learn rules on top of SLS
that refer to the shallow semantic representations of sentences gen-
erated automatically with natural language processing techniques
such as semantic role labeling [7] and syntactic parsing [4]. Such
SLS are interpretable by human experts and captures “who is doing
what to whom, when, where and how” described in a sentence as
depicted by the following example (simplified for readability).

John︸︷︷︸
agent

bought︸   ︷︷   ︸
action

daisy︸︷︷︸
theme

for Mary︸︷︷︸
beneficiary

yesterday︸      ︷︷      ︸
context:temporal

.

One may use such SLS as predicates to build rules. For instance, the
rule tense(action) = past ∧ action ∈ BuyingVerbsDictionary
holds true for sentence examples that depict the buy action in past
tense (note that multiple actions may be present within the same
sentence).
Rule Learning Learning rules has been a long-standing research
task for which recent work has resorted to deep learning [3, 10].
To avoid overfitting on the training data, these works constrain the
power of deep learning by introducing inductive bias presented in
the form of SLS-based predicates to learn models in the form of
interpretable rules. While reduced, the risk of overfitting however
is not completely eliminated especially when labeled training data
is scarce, to which end we propose to expose the learned rules
to domain experts who can modify them into rules that better
generalize to unseen data. Since we are more interested in studying
the interaction between humans and explainable models, we refer
the interested reader to the above references for the precise details
of the learning algorithm which are out of scope of this paper.

3.1 User Interface
Our system allows people to interact with machine-learned rules
and facilitate cooperative model development. There are two pri-
mary challenges: (1) present users with a quick overview of learned
rules; enable them to organize, order, and navigate rules effectively,
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Figure 2: UI allows users (1) to get an overview of rules (2) filter by precision, recall, and F1, (3) rank, (4,5) filter by predicates,
(6) remove rules by predicate, (7) examinemetrics and (8) examples for each rule, (9) monitor overall progress as users add and
remove rules to their collection, and (10) provide a ‘playground’ allowing users to examine and modify rules.

(2) help understand each rule’s semantics and quality through ex-
amples and statistics; deepen understanding by providing a ‘play-
ground’ to verify and modify rules while examining impact (Fig. 2).

3.1.1 Ranking. Ranking allows users to quickly see the rules with
high performance on training data and process recommended rules
in order. Each rule has its precision, recall, and f1 score, which are
calculated by running the individual rule on the training data. To
rank rules, users can choose a metric to sort by in the Ranking
panel, which would order the rules in decreasing order according to
the selected measure. Users can also rank by a secondary measure
by selecting an additional rank order. This is useful especially when
the list of rules is enormous, causing many rules to tie on the first
selected measure.

3.1.2 Filtering. Filtering allows people to quickly narrow down to
a small subset of similar rules, and focus on evaluating those rules
without being overwhelmed or distracted. Users can filter rules by
setting a a minimum threshold on several performance measures
using the scrollbars, one for each measure. Users can also filter
rules by predicates. As each rule is composed of one or multiple
predicates, they can filter rules by clicking on the predicate within
the rule. This is useful when the users reckon a rule potentially
generalizable, and would like to see similar rules that share one or
more common predicates.

3.1.3 Adding / Removing. The end goal of the system is to create a
collection of trusted rules. After evaluating a rule, users can click
the ‘+’ or ‘-’ button to add the rule to the ‘approved’ or ‘disapproved’
collection of rules, respectively. Each time a rule gets approved, the
performance measures of the ‘approved’ collection are recalculated.
The overall collection classifies an instance ‘true’ (retrieve from
now on) for a category if any rule in the collection retrieves it,
otherwise it classifies it ‘false’. By comparing the predictions against
the ground truth, we obtain true positives, false positives, and false
negatives, which are used to calculate precision, recall, and F1. This
helps users to keep track of the remaining rules and their overall
progress.

3.1.4 Batch Removing. As users evaluate rules, they may discover
rules that overfit by realizing one or more predicates do not make
sense for the task. Our UI provides the ability to remove rules in
batches which have such predicates. To do so, they can click on the
‘X’ button next to a predicate, and then click on the trash button.
This feature can help users quickly prune out the overfitting rules
en masse, leaving more potentially useful rules.

3.1.5 Examples. To help users assess the rules, our UI provides
matching example sentences. As each rule is trained on a large num-
ber of sentences, enumerating all of them would be overwhelming.
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Instead, we provide a random sample of up to 4 relevant (true pos-
itives) and 4 irrelevant (false positives) examples. Each example
sentence highlights the matching predicates in the rule, and show
the name of the predicate, when hovered (Fig. 2).

3.1.6 Look Ahead. Our UI provides a "look ahead" feature that
allows users to see the effect of adding a rule to the existing collec-
tion of trusted rules. To “look ahead”, users can simply hover over
the Effect button next to the rule. Then, they will see the change in
performance measures if such a rule gets added.

Although we show the performance measures underneath each
rule, these numbers may be misleading as the sentences retrieved
by the rule may be already covered by other rules in the collection.
So the ‘Look Ahead’ function is a second glimpse people can take to
quickly see the quality of the rule, and determine if they would like
to take a close look by reading its associated examples, or examine
it in ‘Playground’ mode.

3.1.7 Playground. Our UI provides a Playground mode to allow
users inspect and modify rules by adding or dropping predicates,
and examine its effects. To activate the Playground mode, users
need to click the Inspect button on the rule.

In the Playground, a rule is decomposed into individual predi-
cates and are shown in two sections: Selected and Dropped. Initially,
all predicates are in the Selected section. When a predicate in the
Selected section is clicked, it is moved over to the Dropped section,
and the performance measures are updated accordingly, shown un-
der each section. Conversely, if people click on a dropped predicate,
then it will be added back to the Selected section, again updating
the measures.

Users can also examine examples as they play with the rules. The
Example sections show the “delta” examples, that is, if a predicate
gets dropped, then the rule becomes more general, so it will retrieve
more sentences, compared to the original rule. Conversely, if a
predicate is added, it will retrieve fewer sentences, and we will
show examples of the difference. This is beneficial because it allows
users to see the effect of individual predicates. For example, if they
believe a predicate is not necessary, yet they cannot quite decide
solely based on performance measures, they can drop the predicate
and verify whether or not more true positives or false positives are
being retrieved, thus gaining a deeper understanding.

In the Playground, users can also add new predicates that are not
part of the original rule. This is especially useful if experts already
have a sense of what predicates are potentially good. To try them
out they can click on the ‘Add Predicate’ button, and then choose
from the list of all predicates to construct a new rule. Performance
measures and examples are updated accordingly, helping users
decide whether or not to keep the modification.

3.2 Scenario
Jan, an expert NLP engineer, wants to build a model for corporate
contracts. Specifically, she wants to analyze and extract sentences
related to ‘Communication’, i.e. exchange of information among
parties in contracts.

Jan starts off with 188 machine-generated rules. She first ranks
rules by precision and recall, and then filters by setting minimal

thresholds, quickly cutting down the number of potentially inter-
esting rules to 11. Noting that the top rule has reasonably high
precision and recall, she decides to examine it further. She reckons
that the matching examples belong to ‘Communication’, yet she is
unsure about one particular predicate. She opens the Playground,
and drops this predicate to examine its impact. She figures that,
while precision remains roughly constant, recall increases. She also
notices that the additional sentences retrieved by the new rule are
valid matches. She then adds the updated rule to her collection.
Noting that the dropped predicate does not make sense for ‘Com-
munication’, she batch removes all rules containing that predicate.
From her previous experience, Jan knows that a particular predicate
could be useful, so filters rules by the predicate to examine them.
She hovers over Effect on the top rule to look ahead the performance
measures, and reckons that it may potentially generalize well but
wants to examine further. She opens up the Playground and after
adding and removing predicates, she feels confident to add the new
rule based on all the examples. She then iterates through additional
rules until she is satisfied with precision and recall of the model.

4 STUDY
4.1 Hypotheses
We hypothesize that our approach: (H1) creates an explainable
model, (H2) allows users to co-create a more generalizable model,
and (H3) increases productivity of the rule development process.
To examine these hypotheses, we designed three experimental
conditions, as explained below.

Baseline B1 is the machine-learning-only approach, trained on a
dataset of sentences from corporate contracts, using Long Short-
term Memory Model (LSTM), one of the most competitive machine
learning models for the task.

Baseline B2 is the human-only approach, where (2) expert users
develop a rule-based model from scratch, given limited tooling
support. B2a has the same level of expertise as the participants in
the treatment condition, and B2b , the super expert, is much more
experienced, with above 10 years of rule development experience
in industry.

Treatment group T1 is the human-machine co-operative ap-
proach, where (4) expert users co-create a rule-based model, by
examining machine generated rules, adding and removing predi-
cates, as necessary, to build a trusted collection of rules.

We hypothesize that the human-machine co-operative approach
would allow our experts (T 1) to develop rules better than the expert
(B2a ) with the same level of expertise, while the super expert (B2b )
is considered as an upper-bound, a goal. As such we measured how
close, if not better, would the experts achieve with our system.

Typically, engineers develop AQL [2] rules by first examining
examples, writing rules based on the patterns they found, compiling
and running the rules to test on different validation sets. While our
tool would clearly save time, we are not interested in measuring the
low-level development time saved. Hence, we built a tool for human-
only condition (B2) to easily select predicates to construct rules,
see examples (relevant and irrelevant), examine dictionaries, and
measure performance (precision, recall, and F1 score). Essentially it
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is the same UI as in the treatment condition, without the machine-
generated rules. As such, it allows us to focus on their ability to find
and refine patterns without the assistance of machine intelligence.

Comparing T1 to B1 allows us to measure the ability of our
approach to generate an explainable and generalizable model. Com-
paring T1 to B2 allows us to study human-machine cooperation,
and evaluate the effect of our system.

4.2 Participants
6 engineers specialized in developing rule-based models for text
extraction were recruited. While we consider them all as experts,
their level of expertise varied. One expert is designated as a super
expert, as she has over 10 years of experience.

4.3 Procedure
In both B2 and T 1 conditions subjects were briefed about the study
goals and were asked for permission to record the experiment,
who all agreed. Each section was conducted individually and lasted
anywhere from 1 to 1.5 hours. At the beginning of each session we
gave the subjects documentation on rules and the relevant system.
The documentation clarified the difference between the ML rules
and the AQL rules, which subjects are familiar with. We also gave
them hands-on demo, and allowed them to ask any questions. Each
session included a pre-study where subjects were given ten rules
and were asked to describe what the rule does in plain English. We
then conducted the main experiment where subjects were asked to
build a rule-based model, until they felt comfortable with the model
performance, limited max. to an hour. During the experiment, we
recorded the computer screen and audio and asked the subjects
to speak aloud. Finally, we conducted a short interview on their
experience.

4.4 Dataset
We conduct experiments on a dataset consisting of proprietary,
legal contracts. The training set contains 28174 sentences extracted
from 149 IBM procurement contracts while the test set has 1259
sentences extracted from 11 non-IBM procurement contracts. From
these sentences, we extract 6 distinct SLS such as verbs, noun-
phrases and agents (do-er of the verb). We use predicates of two
flavours: predicates that test properties such as tense and predicates
that check presence of extracted SLS in dictionaries. With 6 such
property-based predicates and by looking up the different SLS in
33 distinct dictionaries we generated a total of 183 predicates.

4.5 Task
The task is to build a model for binary text classification. Specifi-
cally, the experts were asked to develop a rule-based model that
determines whether or not the sentences from corporate contracts
belong to the ‘Communication’ category, defined in the Scenario
section.

4.6 Performance Measures
To assess success of our approach, wemeasured the precision, recall,
and F1 score of the models created in B1, B2, and C1. To do this,
we ran our models on the held-out test data set and compared the
predictions of the models against the ground truth labels, which

gave us the number of true positives(tp), false positives(fp), and
false negatives(fn).

Precision =
tp

tp + f p

Recall =
tp

tp + f n

We get F1 by taking the harmonic mean of precision and recall.

5 RESULTS
5.1 A generalizable model
To measure generalizability we compared F1 scores on held-out
test sets in our human-machine cooperative treatment group, T1,
and machine-learning only B1 (LSTM) condition.

When examined individually, one expert (F1 = .55) does strictly
better than LSTM (F1 is in the range1 of [0.3558, 0.4372]), and one
expert (F1 = .39) does comparably to LSTM (Figure 3). While the
other two experts’ rules did not have a F1 score as high as LSTM,
note that the experts only spent 30 minutes on the task. Within
the short amount of time, 2 out of 4 experts are able to construct a
model that is comparable to or even better than LSTM.

When examined collectively, we see that as a group the experts
did better than LSTM. For this analysis, we chose any 3 out of 4
experts and joined their rules as a union, resulting in 4 aggregate
models. We consider such aggregation an appropriate comparison
in the real world engineers often work as a team. While joining the
rules as a union is a naive way of collaboration, due to overlapping
tasks, it is a simple measurable metric. Figure 4 shows that 3 out
of 4 aggregate models (F1 = .55 for all three) are performing better
than LSTM, while the remaining (F1 = .42), is close to the peak of
LSTM (F1 = .4372). On average, the F1 of experts is higher than the
LSTM by a range of 35.58% to 43.72%. This indicates that, within
30 minutes, and with no interaction among subjects, 3 experts
together are able to produce a white-box model that outperforms a
competitive opaque ML model.

5.2 A more productive rule developing process
Individually, Figure 3 shows that 3 out of 4 subjects with the assis-
tance of our system, are able to produce a model that generalizes
better than the baseline subject with the same level of expertise.
Among them, 2 subjects (F1 = .55 and F1 = .39) are doing much
better than the subject without the system (F1 = .22). The recall of
the three experts (.13, .25, .39) are all higher than the baseline (.11).
On average, the F1 and recall of the hybrid approach are higher
than that of the baseline subject by 58.75% and 88.64%, respectively.
This indicates that our system helps users to quickly recognize
correlations between examples and labels, allowing them to create
rules that correctly classify more examples. One possible reason
that one of our experts with the system (F1 = .11) did not do as well
is that, she may not have enough expertise in the domain. As she
later said in the post-study interview, “I have worked with categories,
but not communication specifically.” Her rules actually yield a high
performance (F1 = 0.78) on the training set. This score is always

1A crucial hyperparameter that determines LSTM performance is the number of hidden
units it contains. By varying this hyperparameter, one may learn different LSTMs that
produce different test set F1.
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Figure 3: F1 scores comparing individual model perfor-
mance of treatment groupT 1 (human-machine cooperative)
subjects, against baseline B1 (machine-learning only) and B2
baseline (human only) subjects

available as a reference to her. So, she might have constructed rules
primarily based on the training set, which results in low perfor-
mance in the test set. This shows that domain expertise is indeed
necessary to be part of our model development process.

The expert with over 10 years of experience (F1 = .56) is doing
better than 3 of our experts with the system. However, we are
aware that this is not a fair comparison, but consider her as an
upper-bound of the task. It is worth noting that one of our experts
produced a collection of rules (F1 = .55) that is comparable to the
super expert.

We then compared our post-hoc aggregated results to the super
expert. Among the 4 aggregated rule-based models, Figure 4 shows
that 3 of them yield comparable performance (F1 = .55, precision
and recall vary) to that of the super expert. This shows that, with
the assistance of our system, a few experts together can accomplish
a task as well as a super expert, who is much more difficult and
costly to find. Since combining rules as a union is only a naive way
of leveraging the crowd effort, we anticipate the experts to create
a better model if they collaborate in person, as opposed to offline
aggregation.

5.3 An explainable model
By explainability, we mean that people can understand ‘what the
machine thinks’, not necessarily ‘how it thinks’. In the pre-study,
we asked the 6 participants to write 1-2 sentences of explanation of
10 rules. To measure explainability, we treated the explanations of
super expert as the ground truth, and scored others’ explanations on
a 5-point scale, from 1 (no match) to 5 (complete match). As a result,
on average, 2 participants obtained a score of 5, suggesting that
they can explain the rules as well as the super expert. 3 participants
scored above 4, which shows that they can explain how each rule
operatesmostly correctly. The fact that experts’ explanationsmostly
match with that of super expert also indicates that they can provide
consistent explanation. After all, the rules are more intuitive and
interpretable than the contemporary powerful machine learning
models that can have millions of parameters.

5.4 Interviews
At the end of the studywe interviewed subjects on the explainability
of rules, usability of the tool, and if and how they would use the
tool in their work. Most subjects expressed that the semantics of
the rules made sense, given its simple disjunctive normal form and
use of semantic linguistic structures. As for the machine-generated

Figure 4: F1 scores comparing collective group performance
of treatment group T1 (human-machine cooperative) sub-
jects, aggregating all subjects except self, against baseline B1
(machine-learning only) and B2 baseline (human only) sub-
jects

rules, a few subjects said that some predicates were surprising
given their domain knowledge but noteworthy to check out: “I was
surprised to see mood imperative with a verb, which we would have
not thought.” Quantitative measures played a key rule building trust
with themodel, as one subject put it: “Tome trust is numbers!” Others
seemed to rely on examples: “Looking at the examples, verifying
what they were bringing, assuring that it is a good rule.”

The tool was found to be very useful by many of our subjects,
especially given that current practice is very manual. In particu-
lar, many liked interactive calculation of precision and recall in
response to their selection: “It is great to see just removing it and
putting in something else and find the delta so easily.” Another sug-
gested this sheds off quite a bit of time from their practice: “Some-
thing that I can complete in half a day, here it would be done in a
couple of minutes.”

All participants said that they would incorporate this tool into
their practice. Some focused on initial use when they receive new
data to improve models, others suggested they would use it to
explore predicates: “Looking at overall (common) predicates gave me
a good idea of what I might add.”

6 CONCLUSION
Attaining the right level of abstraction is crucial for achieving
meaningful and scalable interaction in human-machine coopera-
tive model development. Our preliminary user study suggests that
when rules recommended by ML are explainable and interactive,
co-created models can be more generalizable and could improve
individual and collective performance on a text classification task.
Much remains to be examined, but we hope our tool will guide and
inform future research directions.
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