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ABSTRACT
With the creation of neural synthesis systems which output raw
audio, it has become possible to generate dozens of hours of music.
While not a perfect imitation of the original training data, the qual-
ity of neural synthesis can provide an artist with many variations
of musical ideas. However, it is tedious for an artist to explore the
full musical range and select interesting material when searching
through the output.We needed a faster human curation tool, and we
built it. DOME is the Disproportionately-Oversized Music Explorer.
A PCA-component k-means-clustered rasterfairy-quantized t-SNE
grid is used to navigate clusters of similar audio clips. The color
mapping of spectral and chroma data assist the user by enriching
the visual representation with meaningful features. Care is taken in
the visualizations to aid the user in quickly developing an intuition
for the similarity and range of sound in the rendered audio. This
turns the time consuming task of previewing hours of audio into
something which can be done at a glance.

CCS CONCEPTS
•Human-centered computing→ Visualization systems and
tools; • Applied computing → Sound and music computing;
• Computing methodologies→ Machine learning.
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1 MOTIVATION
With the creation of neural synthesis systems which output raw
audio, it has been getting easier to generate dozens of hours of
music in a specific style. [1] describe a music production process
where this generated audio is curated and arranged into albums.
However, much of what is generated from these networks tends to
fall into similar patterns. It can be tedious to discover sections of
musical interest when searching through the output. We have felt
a need for faster human curation tools.

Digital audio workstations such as Ableton Live only supply
the user with an amplitude visualization, which makes searching
difficult. Other digital audio workstations such as Audacity have
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a spectrogram visualization, but no method of clustering similar
audio together.

Neural synthesizers include architectures based on convolutional
neural networks (WaveNet [22]), recurrent neural networks (Sam-
pleRNN [11], WaveRNN [4]), and flow-based networks (WaveGlow
[15]). This family of tools is often utilized as a vocoder component
in end-to-end text-to-speech models [15] and can be appropriated
for music synthesis [2, 25].

2 RELATEDWORK
Self-organizing maps (SOMs) have been created for the purpose of
organizing large libraries of audio using clustering techniques to
build grids of audio [16]. These interfaces are useful for seeing the
similarity between artist or genre. Some systems have used non-
technical-looking designs to encourage a feeling of exploration by
stylizing the clustered datapoints into island-like [6, 14] and galaxy-
like [19] environments. Our prototype adds to this grid approach
by introducing visualizations of the audio which allow the user
to leverage visual cues resulting from spectral, chroma, and other
metadata features.

Unlike [24] which uses text or thumbnails to represent audio, and
unlike [6, 14] which use a histogram of critical bands, we choose to
use mel-spectrograms to maintain local detail along the time axis.

3 METHOD
3.1 Audio Preparation
Our tool works well on audio datasets up to dozens of hours in total
length, where individual audio files are typically 1 minute to 20
minutes long. Larger datasets of 100+ hours have not been tested.

In one example, we start with the entire wav output of a Sam-
pleRNN experiment, as described in [25], where the training data is
the album ‘Time Death’ by earth metal band (((::ofthesun::))) and the
output is generated music in the style of the training data. At each
epoch during training, and after training, wav files are generated,
each 1 to 5 minutes long, for a total of 10 hours of audio.

In another example, we worked with breakcore/electronic artist
Drumcorps, to train a separate net on each of the stems (guitar,
voice, drums, synth) on his newest unreleased album, as well as
the combined master recording. For each net, at each epoch, and
after training, wav files were generated, each 1 to 5 minutes long,
totaling 50 hours.

3.2 Analysis
Three types of analysis are performed: a mel-spectrogram rolloff
visualization, a source-separation-pre-processed chromagram visu-
alization, and a PCA fingerprinting used for clustering and nearest
neighbor sorting. Each audio file is loaded into our analyzer, which
uses scikit-learn and the librosa library [9]. STFT is done with 44.1k
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sample rate, 1024 fft size, 1024 window size, and 256 hop size. The
power spectrogram is made by squaring the absolute value of the
STFT, discarding the phase. Frequencies are weighted according to
A-weighting, a perceptual weighting scheme. Power is converted
to dB.

3.3 Color
We follow the usability guidelines of memorability, informational
delivery, distinguishability [24] through our use of color choices
which make it easier to distinguish between different pieces of
audio.

It is important to choose the color mappings with care. Rainbow
palettes are prone to illusions and misrepresenting variance. How-
ever, in the case of chromagrams, because of the shared symmetry
between pitch and hue, a rainbow palette is useful. Another con-
sideration is the difficulty a color blind person might have with
some palettes. Since 1 in 12 men, and a little over 4% of the whole
population, are color blind [23], we have included a key command
to rotate hues to accommodate incomplete color blindness.

3.4 Rolloff Spectrogram
For the rolloff visualization (Figure 1) the spectrograms are scaled to
23 mel bins. Spectral rolloff is calculated for each frame and colored
accordingly. We find rolloff to be a useful measure of bassiness
to trebliness. When looking at a spectrogram colored this way,
at a distance, the eye clearly sees long-term structure and spots
similar-sounding sections in a collection. We also include the option
to vertically reflect the spectrogram along the time axis, which
seems to assist the eye in seeing structure, perhaps because of the
vertical symmetry, or perhaps because users are conditioned to see
waveforms this way.

Figure 1: Rolloff visualization mode. Frequency is on the y-
axis, time is on the x-axis. The spectrogram is vertically re-
flected, and colored reddish when bass frequencies are dom-
inant and blue for treble. Notice a quiet section on the left,
followed by a rhythmic section to the right.

Figure 2: The same wav from Figure 1 in chroma visualiza-
tion mode. Pitches are on the y-axis, time is on the x-axis.
Notice it starts with a drone which holds out a 5th dyad be-
tween G (cyan) and D (yellow). The drone is comparatively
quiet, but normalization of the chromagram makes it stand
out visually.

Figure 3: Chroma visualization with (above) and without
(bottom) pre-processing with harmonic source separation
using HPSS. Notice how removal of non-pitched audio de-
noises the chromagram.

3.5 Chromagram
For the chromagram visualization (Figure 2) the STFT is pre-processed
with harmonic-percussive source separation (HPSS) [3]. A large
margin of 10 is applied to single out the harmonic component, on
which the chroma values are calculated. The percussion and residual
components are discarded. The chromagram is colored according
to the rainbow, such that the same pitches have the same color. To
make true pitches to pop out, and to avoid the case where white
noise looks colorful, a norm of 1 is used, any chroma value under
0.5 is desaturated, and values between 0.5 and 1.0 are progressively
saturated.

3.6 Metadata Visualization
More advanced visualization is possible if the generative model
supplements the audio with metadata.

In Figure 4 we display the current epoch and iteration of the
model which generated the audio, along with parameters such as
beam_width [10].

In Figure 5 we display the change in temperature [18] over time.
Temperature is a parameter related to autoregressive sequence
generation which regulates stochasticity when sampling the multi-
nomial distribution during inference. A lower temperature often
causes the model to get stuck in repetitions.

In Figure 6 we display local conditioning [8, 17] over time. If
we condition the model during training using a one-hot vector of
size n for each of the n songs in the training data, then during
generation we can change the value of this conditioning vector
over time, which influences the audio to sound more like those
particular songs.

Figure 4: Visualizing epoch, iteration, and beam_widthmeta-
data

Figure 5: Visualizing change in temperature over time dur-
ing inference
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Figure 6: Visualizing change in local conditioning over time
during inference

3.7 Fingerprinting
For fingerprinting, the entire dataset is iteratively loaded, seg-
mented into ten-second chunks with five-second hops, and con-
verted to dB mel-spectrograms. Dimensionality reduction is per-
formed using Incremental PCA rendering 10 components per chunk.
The learned PCA basis functions are shown in Figure 7.

Figure 7: PCA basis functions for each of the 10 components.
The y-axis represents the 23mel-frequency bands and the x-
axis represents STFT frames over time.

3.8 Grid building Process
The grid interface is 10x10. To fit thousands of chunks to this grid,
k-means clustering is used on the PCA components with k=100. The
cluster centroids are then spaced using t-SNE [7] , and quantized
into the final 10x10 grid using Rasterfairy [5].

This process is intended to allow for the inspection of single
audio chunks. With t-SNE visualizations there tends to be many
overlapping points in the space which reduces the ease at which
a single example can be previewed. t-SNE interfaces work well
with short audio samples like those found in the infinite drum
machine [20], but interface issues arise with larger sections of
music. Rasterfairy, on the other hand, stretches these points out to
cover an entire 2D grid.

3.9 Exploratory Interface Design
In grid view, each gridcell represents a cluster centroid and ran-
domly displays one of the top 6 nearest neighbor chunks to the
centroid. By clicking on a gridcell, the program sorts the chunks
by distance to the centroid of that original audio chunk. In the list
view, the full audio files which contain those chunks are listed. The
user scrolls down in list view. The user seeks to any position in
the audio by clicking. Highlighted sections can be exported as wav
files. At the end of every audio file it finds a new file to play. This
autoplay ability enables a continuous listening experience that we
find useful while passively auditioning renderings.

Figures 8 and 9 show what the app looks like with the rolloff
and chroma visualizations. The left side of the app is grid view. The
right side of the app is list view.

Figure 8: DOME in spectrogram rolloffmode. The left side is
grid view, an overview of the diversity of sound which has
been loaded. Clicking a gridcell changes the list view on the
right, sorting the audio by closeness to that gridcell.

Figure 9: DOME in chromagram mode. At a glance, for ex-
ample, the user can see melodic vs non-melodic sections,
drones, melodies, and occurrences of the note G (cyan).

3.10 Crowd Curation
Our prototypeworks in all modernweb browsers. This environment
was chosen with a concern for cross-device compatibility. Our
intention is to make curation more accessible for the purpose of
crowd-sourcing. Export functionality allows the end user to rapidly
collect variations of sonic elements and facilitates crowd-sourced
collaboration.

4 INFORMAL EVALUATION
Informally, we gave three producers, experienced in sampling and
curating music, the task of curating "interesting" pieces of music
from 10 hours of SampleRNN generated audio. They first used their
preferred method of curation (which included "load all 10 hours
into Ableton Live and look at the raw waveform" and "hunt around
with the MacOS Finder and hope for the best"), then later used
DOME. They self-reported the curation process was between 5x
and 20x faster with DOME.

Producer Drumcorps reported, "DOME was quite helpful in this
project. Being able to scan through the audio content visually made
it much easier to pick out useful and interesting sounds. After a
short time browsing, I can get a sense of what a specific type of
sound might look like, and I can start to find what I’m looking
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for much faster. I found it good to build a little directory of my
favorite clips from DOME, and work from there, rather than the
usual ‘hunt around with the MacOS Finder and hope for the best’
method. The two methods are incomparable, the differences are
night and day, and the results end up different as well. With the
Finder, I start out listening to files, but then often get frustrated
and just select a few files at random, then choose the best one from
those. With DOME I end up finding a wide variety quickly - and
then can choose further work from a more informed position - it
gives me a larger sample size. There’s only so much listening one
can do in a day, and if you need to listen to samples in real-time
to determine which you’re going to use, that’s less time available
for getting down to the actual composition work. Some samples
contain wild shifts and interesting artefacts within them - you’ll
see this in DOME right away and be able to listen to that piece
immediately. With the Finder, it’s listening and hoping. There’s
a place for randomness and hidden surprises too - but I find that
when I’m trying to get something done quickly, DOME is most
helpful."

5 FUTUREWORK
The use of PCA for fingerprinting is limiting. While it is helpful at
clustering similar audio textures together, it is not powerful and
precise enough to distinguish nuances in sound. In the future, for
fingerprints, we could use embeddings from a trained deep net
audio classifier.

The use of Librosa for analysis was slow. A 10-hour dataset takes
a few hours to analyze on a MacBookPro. A C-compiled analyzer,
or a distributed process (using cloud compute or AWS Lambda)
would be more efficient.

Additional audio visualizations could include: the fingerprint
embeddings over time, and annotating audio used when priming
the sequence before generation.

With the addition of a composing feature, the end user could
arrange music by sticking curated sections together. With the addi-
tion of an upvoting feature, the crowd could further curate their
favorite sections and arrangements.

6 CONCLUSION
Steady progress has been made on fast generative raw audio with
neural synthesis. With the advent of audio style transfer [12, 13, 21],
one could render all possible permutations of style transfers, yet
would still need a good way to explore the output. Digital audio
workstations such as Ableton Live are not fit for this task. We
designed an interface to minimize the time and effort required by
listening to hours of similar audio clips. Care was taken in the
visualizations to aid the user. This turned the time-consuming task
of previewing hours of audio into something which can be done at a
glance. We believe self-organizing interfaces like ours will be more
important as large directories of generated audio can be rendered
with faster inference speeds and greater parallelization.

A demo of this tool will be available online at dadabots.com/dome
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