CEUR-WS.org/Vol-2327/IUI19WS-UIBK-1.pdf

TUI Workshops’19, March 20, 2019, Los Angeles, USA

WoS - Open Source Wizard of Oz for Speech Systems

Birgit Briiggemeier
Fraunhofer IIS, AudioLabs
Erlangen, Germany
birgit.brueggemeier @iis.fraunhofer.de

ABSTRACT

Wizard of Oz (WoZ) systems are widely used in the study of
human-machine interactions. In WoZ studies, users are made
believe that they are interacting with artificial intelligence
(AI), while — in fact — the putative Al is controlled by a human
behind the scenes. This setting allows the simulation of Al
and the recording of users’ reactions to it. These reactions can
then be used to train actual Al systems and learn about how
people can interact with them. WoZ experiments are common
in the field of natural language processing (NLP) and can be
used to design and evaluate NLP systems. To our knowledge,
currently no open WoZ systems for NLP exist. We designed
a WoZ framework for NLP, that we call Wizard of Oz for
Speech Systems, WoS and that is available for open-access on
http://github.com/audiolabs/wos [9].

ACM Classification Keywords
C.3 Special-purpose and application-based systems: Signal
processing systems; H.5.2 User Interfaces: Natural Language

Author Keywords
Wizard of Oz; Speech Systems; WoS; WoZ; Open Source;
Natural Language Processing; NLP; Speech Assistant

INTRODUCTION

Wizard of Oz (WoZ) is a widely-adopted method for studying
human-computer interaction (HCI) [3, 15, 13]. In WoZ studies
participants are made to believe that they are interacting with
an intelligent machine. This machine is however controlled
by human associates backstage. These associates are aware
of what participants do, participants however are not aware of
the associates controlling the machine.

WoZ is a popular method [3, 15, 13] for a number of reasons.
One reason is that WoZ can be a solution to a chicken and egg
problem of designing user-friendly systems [6]: we require
tests to develop user-friendly systems, but for tests we need
a running system. With WoZ researchers can simulate an
intelligent system and test it with users, without having to
build a system from scratch. This enables evidence-based
decision making in early stages of system development.

IUI Workshops’19, March 20, 2019, Los Angeles, USA. Copyright©2019 for the in-
dividual papers by the papers’ authors. Copying permitted for private and academic
purposes. This volume is published and copyrighted by its editors.

IUI Workshops’19, March 20, 2019, Los Angelas, USA, Joint Proceedings of the
ACM IUI 2019 Workshops

© 2019

Philip Lalone
Fraunhofer IIS, AME
Erlangen, Germany
philip.lalone @iis.fraunhofer.de

In addition, WoZ can provide valuable training data for system
development. Machine learning methods are widely used to
train and develop artificial intelligence (AI) [11]. This Al can
then be used in intelligent machines, that interact with humans.
The quality of Al depends on the quality of training data, and
high-quality data needs to be representative of the use context
[11]. Consider a speech assistant, which can interact with
users via voice. When training such a speech assistant, one
option is to strive for designing the assistant to be as human
as possible, so that users can interact with the machine as if
they would with fellow human beings [17]. A caveat of this
approach however is that users do not interact with speech
assistants as they do with people [6, 3, 10]. In fact, researchers
find that users are aware that a speech assistant is a machine
with limited abilities and adjust their language, for example
forming shorter sentences, eliminating articles and simplifying
their grammar [10]. If a system was trained on human interac-
tions and then confronted with commands that are common
in human-machine interactions, it might perform poorly. In
WoZ studies data can be collected in a similar context as the
eventual usage context, thus providing more representative
data. Instead of simulating a system with WoZ, developers
could collect data with existing systems. Interactions between
humans and existing machines will be constrained by existing
errors of machines [6, 3]. WoZ overcomes this constraint by
enabling the simulation of potential systems, before imple-
menting them.

WoZ studies can be differentiated based on simulation type
[6, 15, 13], modalities used (Fraser and Gilbert, 1991) and
whether natural language is used for HCI [6]. There exist other
categories that can be used for differentiating WoZ studies,
that we do not name here (e.g. whether the simulated system
is embedded in a robot or not, see [8]). Here we focus on
WoZ that use natural language for HCI and we call this special
kind of Wizard of Oz system WoS for Wizard of Oz for Speech
Systems.

SYSTEM DESIGN GOALS

We designed WoS as an open software framework for sim-
ulating speech systems. WoS is modifiable and usable for
researchers with little technical knowledge.

Modifiability

The first paper on simulating speech systems with WoZ [6]
suggested an iterative design of WoZ studies, in which WoZ
systems are modified based on findings in user tests. Note,
that the authors did not use the term WoS for their Wizard
of Oz speech system and thus we follow their nomenclature


http://github.com/audiolabs/wos

TUI Workshops’ 19, March 20, 2019, Los Angeles, USA

when referring to their work. Fraser and Gilbert suggest that
in early phases of WoZ studies researchers can learn what
their system should or should not say. These findings can
then be used to refine the WoZ system. In addition, Fraser
and Gilbert note that at each iteration improved hardware or
software components can be added [6]. This process makes
it possible to incrementally approach the actual speech sys-
tem [13], as human-controlled software components can be
replaced by computer-controlled ones. Thus, the WoZ can
incrementally resemble an actual fully-automated speech sys-
tem. Researchers in HCI agree that such WoZ studies produce
results that are practical to implement, as the WoZ resem-
bles the speech system closely [13]. We designed WoS such
that it enables incremental addition, removal and modification
of system components and implemented it using Python and
NodelJS.

Usability

System development requires evaluation and in some cases,
the people who develop the system are not the same people
who evaluate it [8]. In addition, evaluators may not have an
engineering background, but may be trained psychologists,
linguists or other human-centred fields [8]. Thus a WoS sys-
tem should allow researchers with little technical knowledge
to make changes to the system. In our WoS system, small
changes can be made without technical knowledge, thus en-
abling experimenters with non-technical backgrounds to adjust
the WoS independently from developers [8]. For example, ad-
justments to what the system can say, can be made in a text
file, which experimenters can select in the Graphical User In-
terface (GUI) of WoS. In addition, experimenters can directly
type responses in the GUI and send these text responses to a
module that translates text to synthetic speech. The resulting
speech gives the impression of a machine-generated response.

We present an open source WoS system that is modifiable and
usable by researchers without technical background. More-
over, we implemented our system on a Raspberry Pi 3B,
demonstrating that it can be implemented at a low cost.

ARCHITECTURE

Nomenclature

WoS consists of two systems, a backstage and a frontstage
system (see Figure 1). Backstage denotes the system that
is running on a computer which is controlled by an experi-
menter. Frontstage describes the system that is the alleged
smart speaker. Frontstage implements audio streaming and
text-to-speech and is what test users interact with. Backstage
provides a user interface to experimenters, and enables them to
monitor audio in near real-time from a frontstage microphone.

Frontstage

The frontstage consists of a Raspberry Pi 3B running Raspbian
Linux. Audio streaming is accomplished using FFmpeg and
FFplay. FFmpeg sends an RTP (Real-time Transport Proto-
col) audio stream over UDP (User Datagram Protocol) from
the frontstage to the backstage, where it is then saved, and
restreamed to another port on the backstage. FFplay is then
used to play the audio. In addition, the frontstage integrates a

Frontstage system Backstage system

\ O i
T

WoS workstation

storage
Raspberry Pi
media ‘ ffmpeg rtp/udp fplay
player
audio
out out
user
tts http http 5 imetadataf
dul server interface storage
app

Figure 1. Illustration of Wizard of Oz for Speech Assistants (WoS). (a)
WoS consists of two systems, a frontstage and a backstage system. The
frontstage system (left and in orange) is the system users get to inter-
act with, the backstage system (right and in blue) is the system experi-
menters interacts with. The frontstage system captures users’ utterances
and sends them to the backstage system for observation (orange wave-
forms). In addition the frontstage system plays back commands selected
by the experimenter (blue waveform). (b) A detailed overview of the
modules used in WoS. Arrow heads indicate abstract information flow.

laudiol

http server that controls a media player (e.g. for remote song
playback) and Text-to-Speech (TTS) modules. TTS converts
text that is selected by an experimenter into artificial speech.
For an illustration of the WoS system see Figure 1.

Backstage

The backstage environment can be any laptop or desktop com-
puter. We tested the system on Linux and MacOS but we have
not tested Windows. The user interface is implemented using
NodelJS and Electron. When started, the backstage software
connects to the frontstage and requests the audio stream. The
experimenter can then begin to monitor audio signals from the
frontstage system. The user interface enables experimenters
to enter text which is then spoken by the frontstage system.

The backstage system can be controlled with a simple
Graphical User Interface (GUI) (see Figure 2). The GUI shows
a drop-down list for language selection for speech generated
by WoS. Experimenters can type custom responses in the GUI
and send them to the frontstage to be synthesised into speech.
In addition, the GUI features a list for selecting prepared sys-
tem responses, which can reduce the duration between user
request and system response, as the experimenter does not
have to type prepared responses. Moreover the GUI shows a
box with audio files that are saved on the frontstage system.
Selecting and playing these audio files can further reduce re-
sponse time. Responses can thus be prepared both in text and
in audio, reducing waiting times for research subjects. What
is more, the audio file box can be used to access songs that



TUI Workshops’ 19, March 20, 2019, Los Angeles, USA

are saved on the frontstage system, thus WoS can act as a
multimedia player system.

e0e oz ul
WAETTEM seeakiPlay | Stop

German

Starting audio stream
R

Media:

appy.mp3

Figure 2. Screenshot of the Graphical User Interface (GUI) of WoS. The
GUI of WoS shows menus for language selection, for selection of pre-
determined responses, and for playback and stopping of media files.

Implementation

We provide an open-source, MIT-like GitHub repository
for WoS: http://github.com/audiolabs/wos [9]. Our code is
openly accessible via this repository. We implemented the
system twice: on a home network and at a research institute.
Both times, the frontstage system ran on a Raspberry Pi 3
Model B. The backstage system ran on a Thinkpad T61 run-
ning Ubuntu 16.04.5 LTS, an iMac, running macOS High
Sierra, a MacBook Air, running macOS Sierra, and a Mac-
Book Pro running macOS Yosemite. We tested the set-up with
a HDE-X43 microphone connected to a SYBA external USB
Stereo Sound Adapter with the Raspberry Pi to relay recorded
speech to the backstage system and an Anker Super Sound
Core Mini Mobile Bluetooth Speaker, as well as a Acemile
Theatre Box speaker, to play back speech generated by the
WoS TTS module.

We implemented Google Translate’s text-to-speech API [5] in
WoS, which can be used free of cost. In addition we provide
support for the open source TTS solution festival [2].

INTERACTION WITH WOS

We piloted our system with a naive participant (22 years, fe-
male, technical background). We wanted to test (1) if our WoS
system worked in an experimental setting and (2) if our WoS
system could convince people that they were interacting with
a machine. Thus we told a cover story, saying that we were
evaluating a prototype of a speech assistant system for music
control. Regarding (1), we found that our WoS system worked
as expected throughout the experiment. After the experiment
the participant was debriefed and told that the speech assistant
was controlled by a human experimenter. The participant re-
ported that she had believed that she was interacting with a
machine and that she was surprised to learn this was not the
case, which suggests that (2) was the case.

In order to illustrate application of WoS, we present a sample
interaction between a participant and experimenters using
WoS. This interaction is structured similarly to a screenplay,

showing elements of dialogue and describing actions in square
brackets. There are two experimenters, one who introduces the
participant to the frontstage set-up (experimenter F) and one
who listens to the conversation backstage (experimenter B). In
addition, there are two rooms, a room for the frontstage system
(room F) and a room for the backstage system (room B).

[Participant and experimenter F enter room F.]

Experimenter F: [pointing to the speaker] This is the smart
speaker that you agreed to test today. You can interact with
the speaker using your voice. The speaker can be used to play
songs. For example you can ask it: Play ‘Californication’ by
the ‘Red Hot Chilli Peppers’.

[Experimenter B selects the song backstage and clicks
‘Speak/Play’ in the GUI of WoS. The song plays in room F']

Experimenter F: [to participant] 1 will leave you alone now,
so that you can test the speaker. Please ask for at least three
songs and come to see me after you are finished.

[Experimenter F leaves room F.]

Participant: [to speaker] Please play ‘We will rock you’ by
the ‘Rolling Stones’.

[Experimenter B selects the error message ‘Sorry I can’t help
you with that” and clicks ‘Speak/Play’ in the GUI of WoS. The
error message plays in room F.]

Farticipant: [reformulating request to speaker] Play the song
‘We will rock you’ by the band ‘Rolling Stones’.

[Interaction continues until participant decides to stop.]

CONCLUSION

WoS was built as a proof of concept of a simple Wizard of
Oz system for simulating speech assistants that can be imple-
mented cost-effectively. We wanted to make WoS usable by
experimenters without a technical background. Control of the
GUI requires little technical expertise, however starting the
GUI requires usage of command line, which arguably may be
an obstacle for non-technical experimenters. Moreover, new
responses and media files have to be added in a text file and
the GUI has to be restarted for them to appear. Thus usability
of WoS can be improved by enabling the GUI to start without
command line and building a media and response importer
within the GUI. In addition, the GUI is plain and could be
aesthetically improved.

While non-technical experimenters can use WoS, it is useful
for the experimenter to be acquainted with responses typical of
speech assistants in order to realistically mimic them. Cathy
Pearl gives an overview of design principles of VUIs, that
can guide response formulation [12] for experimenters with
no prior knowledge of speech assistant systems. Notably, re-
sponses can be preformulated in WoS and selected in the GUI,
which allows experimenters to premeditate responses before
running a study. Selecting responses instead of typing them
also reduces response time during experimentation. Nonthe-
less, it may be useful to warn participants that the VUI may
have prolonged response times. This will prepare participants
to expect a waiting time, if it should occur.


http://github.com/audiolabs/wos

TUI Workshops’ 19, March 20, 2019, Los Angeles, USA

To improve the experience of experimenters WoS could be
complemented by video streaming, so that the experimenter
sees the participant. Currently WoS supports only audio
streaming. Furthermore, analysis of interactions could be
simplified by adding automatic transcription of recorded au-
dio files. This could be achieved by implementing Automatic
Speech Recognition (ASR) softwares.

The audio streaming protocol currently used in WoS is RTP
over UDP, and a different audio streaming protocol could
be used. First we tried the icecast server and we found that
there was an audio delay of five to ten seconds, which was
unacceptable for our purposes. FFmpeg supports different
protocols. We chose FFmpeg with RTP over UDP as low-
latency transmission of audio was a key requirement for us
and RTP over UDP satisfies that.

Currently we provide support for Google Translate’s TTS API
[5] and the festival speech synthesis system [2]. In addition,
espeak [16], macOS’s say [14], Google Cloud’s TTS [7] I
Amazon Polly [1], and Deepspeech [4] could be implemented
in WoS. Some of these services enable researchers to select
voices, thus enabling evaluation of users’ preferences for spe-
cific voices, for example male or female voices or specific
accents. This is possible in the festival speech synthesis frame-
work, which is implemented in WoS: developers can build new
voices and select voices developed by other users of festival

[2].

Google Translate’s TTS API [5] currently supports 103 lan-
guages (checked on November 23rd 2018). Thus WoS, which
supports Google Translate’s TTS, can be used for evaluation
for a wide range of languages.

Reasons for conducting Wizard of Oz experiments include
simulating a realistic human-computer interaction. In order to
achieve a realistic simulation, participants have to believe that
they are interacting with an actual smart speaker. In order to
achieve this, some improvements have been planned. Current
commercial smart speakers give visual feedback when they de-
tect users addressing them. WoS could be modified to include
a speech detection module which activates LEDs to give visual
feedback for users of WoS. This could create a more realistic
user experience, which could make WoS more convincing for
user tests. In addition, experimenters can choose speakers and
microphones in such a way as to convince users that the device
they see is a smart speaker. For this the physical appearance of
the frontstage system can be modified: the frontstage system
of WoS runs on a Raspberry Pi and experimenters can choose
to hide or display the Raspberry Pi. In addition, the Pi can be
connected with any microphones and speakers that are com-
patible with a USB sound card that runs on a Raspberry Pi
3. Notably, commercial smart speakers conceal speaker and
microphone arrays in speaker cases, thus concealing may help
the illusion of interacting with a smart machine.

Our intention is to provide WoS as a framework for HCI
research on speech systems. Moreover, WoS can be run as is
on a Raspberry Pi and a Laptop. We want to make it easier

'Google Cloud’s TTS is different from Google Translate’s TTS. We
used Google Translate’s TTS via the Python library gTTS.

for the community of HCI researchers to use the powerful
Wizard of Oz paradigm for studies on voice user interfaces.
In addition, we wish for WoS to be adopted and improved by
the HCI-community, by adding new languages and features.
Therefore, we make our code available under an MIT-like
license at http://github.com/audiolabs/wos [9].

REFERENCES
1. Inc. Amazon Web Services. unknown. Amazon Polly —
Turn text into lifelike speech using deep learning.
(unknown). https://aws.amazon.com/polly/?ncl=h_1s
[Online; visited on November 24, 2018].

2. Alan W. Black and Paul A. Taylor. 1997. The Festival
Speech Synthesis System: System Documentation (1.1
ed.). Technical Report HCRC/TR-83. Human
Communciation Research Centre, University of
Edinburgh, Scotland, UK. Avaliable at
http://www.cstr.ed.ac.uk/projects/festival/.

3. Nils Dahlbick, Arne Jonsson, and Lars Ahrenberg. 1992.
Wizard of Oz Studies Why and How. Intelligent User
Interfaces (1992), 193-200.

4. Kelly Davis. 2016. A TensorFlow implementation of
Baidu’s DeepSpeech architecture. (2016).
https://github.com/mozilla/DeepSpeech [Online; posted
on 22 Februar 2016].

5. Pierre Nicolas Durette. 2014. Python library and CLI tool
to interface with Google Translate’s text-to-speech API.
(May 2014). https://github.com/pndurette/gTTS [Online;
posted 15 May 2014].

6. Norman M. Fraser and G. Nigel Gilbert. 1991.
Simulating speech systems. Computer Speech and
Language 5, 1 (1991), 81-99.

7. Google. 2017. Cloud Speech-to-Text. (2017).
https://cloud.google.com/speech-to-text/ [Online;
visited on November 24, 2018].

8. Guy Hoffman. 2016. OpenWoZ: A
Runtime-ConfigurableWizard-of-Oz Framework for
Human-Robot Interaction. 2016 AAAI Spring Symposium
Series (2016), 121-126.

9. Philip Lalone. 2018. An implementation of the Wizard of
Oz experiment. (2018). http://github.com/audiolabs/wos
[Online; posted on 8 August 2018].

10. Page Laubheimer and Raluca Budiu. 2018. Intelligent
Assistants: Creepy, Childish, or a Tool? Users’ Attitudes
Toward Alexa, Google Assistant, and Siri. (August 2018).
https:
//www.nngroup.com/articles/voice-assistant-attitudes/

[Online; posted 5-August-2018].

11. Ryszard S Michalski, Jaime G Carbonell, and Tom M
Mitchell. 2013. Machine learning: An artificial
intelligence approach. Springer Science & Business
Media.

12. Cathy Pearl. 2016. Designing Voice User Interfaces:
Principles of Conversational Experiences (1st ed.).
O’Reilly Media, Inc.


http://github.com/audiolabs/wos
https://aws.amazon.com/polly/?nc1=h_ls
https://github.com/mozilla/DeepSpeech
https://github.com/pndurette/gTTS
https://cloud.google.com/speech-to-text/
http://github.com/audiolabs/wos
https://www.nngroup.com/articles/voice-assistant-attitudes/
https://www.nngroup.com/articles/voice-assistant-attitudes/

TUI Workshops’19, March 20, 2019, Los Angeles, USA

13.

14.

15.

Laurel Riek. 2012. Wizard of Oz Studies in HRI: A
Systematic Review and New Reporting Guidelines.
Journal of Human-Robot Interaction 1, 1 (2012),
119-136. http://vwww.humanrobotinteraction.org/journal/
index.php/HRI/article/view/9

SS64.com. unknown. say — Convert text to audible
speech. (unknown). https://ss64.com/osx/say.html
[Online; visited on November 24, 2018].

Aaron Steinfeld, Odest Chadwicke Jenkins, and Brian
Scassellati. 2009. The oz of wizard. Proceedings of the
4th ACM/IEEE international conference on Human robot

16.

17.

interaction - HRI ’09 January (2009), 101. http:
//portal.acm.org/citation.cfm?doid=1514095.1514115

Unknown. unknown. eSpeak text to speech. (unknown).
http://espeak.sourceforge.net/ [Online; visited on
November 24, 2018].

Astrid Weiss. 2010. Validation of an Evaluation
Framework for Human-Robot Interaction. The Impact of
Usability, Social Acceptance, User Experience, and
Societal Impact on Collaboration with Humanoid Robots.
Ph.D. Dissertation. University of Salzburg.


http://www.humanrobotinteraction.org/journal/index.php/HRI/article/view/9
http://www.humanrobotinteraction.org/journal/index.php/HRI/article/view/9
https://ss64.com/osx/say.html
http://portal.acm.org/citation.cfm?doid=1514095.1514115
http://portal.acm.org/citation.cfm?doid=1514095.1514115
http://espeak.sourceforge.net/

	Abstract
	Introduction
	System design goals
	Modifiability
	Usability

	Architecture
	Nomenclature
	Frontstage
	Backstage
	Implementation

	Interaction with WoS
	Conclusion
	References 

