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ABSTRACT
Analysts can make better informed decisions with “Explainable AI”.
Visualizations are often used to understand, diagnose, and refine
AI models. Yet, it is unclear what type of interactions are appro-
priate for a given model and how the visualizations are perceived.
Furthering research into sensemaking for visual analytics may be
useful in understanding how user’s are interacting with visualiza-
tions for AI and in developing a naturalistic model of explanation.
Conventional approaches consist of human experts applying the-
oretical sensemaking models to identify changes in information
processing or utilizing recorded rationale provided by the users.
However, these approaches can be inefficient and inaccurate since
they heavily rely on subjective human reports. In this research, we
aim to understand how data-driven techniques can automatically
identify changes in user behavior (inflection points) based on user
interaction logs collected from eye tracking and mouse interac-
tions. We relay the results of a supervised classification system
using Hidden Markov Models to predict changes in a visual data
analysis of a cyber security scenario. Preliminary results indicate
a 70% accuracy in identifying inflection points. These preliminary
results suggest the feasibility of data-driven approaches further-
ing our understanding of sensemaking processes and interaction
provenance.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing theory, concepts and paradigms; Visual analyt-
ics; • Computing methodologies → Knowledge representation
and reasoning; Machine learning approaches.
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1 INTRODUCTION
The effectiveness of AI applications is limited by the disconnect
between experts knowledgeable in AI and subject matter experts.
Using “Explainable AI” (XAI), analysts can make better informed
decisions [17]. In particular, visualizations are used to understand,
diagnose, and refine AI models. However, it is unclear what type of
interactions are appropriate for a given model and how the visual-
ization is perceived [23]. Sensemaking can aid in the development of
a naturalistic model of explanation and visualization tools [17, 19].
In visual analytics, understanding the user’s sensemaking process
comprises an important milestone for improving tools, supporting
collaboration among analysts, and training new workers [30]. Fur-
thering existing research in sensemaking for visual analytics may
in turn further research in XAI.

Due to the complexity and ad-hoc nature of sensemaking dur-
ing exploratory data analysis, it is difficult to comprehensively
characterize sensemaking using solely theoretical models with-
out expertise and assumptions to map analyst behavior to the
model [20, 29, 32]. Capturing the provenance of sensemaking of-
ten requires explicit feedback or annotations from the analyst. Re-
searchers often investigate “thinkaloud protocols” [11] to study
analytic processes by asking analysts to verbally describe what
they are doing or thinking over time (e.g., [31]). Unfortunately, col-
lecting explicit user feedback—whether from annotations or verbal
comments—can be distracting or burdensome for the analyst. How-
ever, research has demonstrated the benefits of using interaction
behavior to learn about the analysis and sensemaking processes
(e.g., [5, 8, 26]). In this way, information about sensemaking can be
inferred automatically without requiring explicit user feedback.

In our research, we explore summarizing analysis activity from
collected visual analytics interaction logs. Our post-hoc approach
focuses on techniques to summarize different periods of analysis
time based on changes in the analyst’s goals and behaviors, referred
to as inflection points. Inflection points can be indicative of changes
in a analyst’s thought process, but qualitatively identifying these
changes can be a laborious process. Finding alternative ways to
detect inflection points could help quantitatively model such be-
haviors and provide additional insights to analytic provenance. The
problem is formulated as a supervised classification task, accord-
ing to which the goal is to determine the presence or absence of
inflection points from a time-sequence of eye-tracking and mouse
interaction logs over a pre-determined length of time. We capture
interaction logs and think-aloud comments from human partici-
pants during a data analysis activity with a sample visual analytics
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application. We employ a simple heuristic rationale to label inflec-
tion points during the analysis session and extract features from
the interaction logs. Two supervised Hidden Markov Models were
trained with the features and labels to predict inflection points.

We present this research as preliminary work from an analysis
of sample records collected from a seven-participant user study. We
share our results on identifying changes in analyst behavior along
with insights learned regarding the challenges of using features
from different interaction logs to understand sequence segments.
The results of our study can be used in future research aimed to-
wards explaining the training/model building process of AI.

2 RELATED LITERATURE
Research of analytic provenance in visual analytics broadly consists
of integrated workflow management, post processing of captured
interactions, and visualization of captured tool states and/or interac-
tions using a combination of analytics and sensemaking theory [30].
Some visual analytics tools utilize node-based workflows by allow-
ing users access to a view showing previous states and operations
used to manipulate the data flow (e.g., [6, 9]). Alternatively, the
overall visual analysis task can be composed of subtasks derived
from user interactions [4, 15]. Dou et al. [8] compared human-coded
interpretations of interaction logs to their ground truth of think-
a-loud transcriptions based on analysis findings, strategies, and
methods. While these results were based on human interpretation
of the reasoning process, they showed that there was a correlation
between interactions and cognitive reasoning. Research has also
been made in summarizing the analysis task through meta data
visualization using topic modelling for breaks in time [22, 25]. How-
ever, there is debate in determining parameters for segmentation
and deciding which interactions are most meaningful to indicate
changes in the analysis process.

Given feature rich information from interaction logs, it is possi-
ble to use machine learning techniques to gain insights on the user’s
sensemaking process. Work by Harrison et al. [18] employed inter-
action features such as mouse clicks in conjunction with Hidden
Markov Models (HMMs) to predict transitions in user frustration.
Research also shows that mouse and interface interactions can be
used to predict task performance and infer user personality traits
[5]. Kodagoda et al. [21] compared machine learning techniques to
infer reasoning provenance. However, they relied on using experts
to code user’s interactions as processes based on Klein’s data frame
theory of sensemaking [20] and were not successful in identifying
all processes. Similarly, Aboufoul et. al explore using HMMs to
determine the cognitive states of users by mapping hidden states
to sensemaking processes defined by Piroli et. al. to validate their
models [1].

Recent techniques introduce objective signal-based indices of
eye-tracking and mouse log data that provide an alternative view
of the interaction between the user and the visualization. The work
by Coltekin et al. [7] provide a deeper understanding of how people
make inferences and decisions when using visualizations tools and
complex displays by comparing a hypothetical sequence of strate-
gies to recorded sequences of participants. Eye tracking-derived
metrics can also be highly beneficial for understanding visualization
usage and analysis behavior. Eye tracking metrics often highlight

Figure 1: The visual analytics tool with six areas of interest:
Detailed Histogram (i), Overview Histogram (ii), Network
Graph (iii), Offices (iv), Info (v), Table (vi).

the importance of areas of interests (AOIs) by including factors such
as number of fixations within areas of the display and sequential
transitions among areas [2, 3, 13]. AOIs are specified regions of an
interface such as a particular view, button, or piece of content.

In our own research, instead of employing elaborate coding
schemes that might be time-consuming and hard to replicate, we
relied solely on inflection points observed when a user changed tac-
tics in tool usage as labels. We included eye tracking data in addition
to mouse interaction features and tested for which features pro-
duced the highest model precision. The extracted features required
less dependency on the structure of the visual interface compared
to previous approaches that relied on a variety of task-dependent
indices (e.g., features related to keyword highlighting, new search).
Our automated systemwas designed to be implemented on a variety
of visual analytics tasks, including those towards XAI (e.g., feature
analysis [17]). Having an understanding of when inflections occur
can later aid in semantic interactions [10] or developing adaptive
UIs [28].

3 METHODOLOGY
In our approach we attempt to identify inflection points using
mouse and eye tracking interaction logs as features to a super-
vised classification model. We discuss a prior study that collected
interaction logs from a visual analysis scenario and the associ-
ated visualization tool. A human experimenter labelled perceived
changes in behavior during analysis to create a “ground truth” set
of labels. Processed features and labels were used to train two HMM
models.

3.1 Analysis Scenario and Interaction Logs
Our research makes use of prior data collected from a visual anal-
ysis scenario, available on a public repository of analytic prove-
nance records and interaction logs [24]. The analysis scenario im-
plemented used the Badge and Network Traffic dataset from the
VAST 2009 mini-challenge [16]. The challenge had two high-level
tasks regarding an embassy employee suspected of sending data
to a malicious corporation within the network. The tasks were
finding which computer was used to send confidential data and
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characterizing patterns of suspicious computer use. Information
such as employee identification numbers, proximity log card uses,
and network traffic logs were provided for a period of one month.

As the basis for data collection, the visual analytics tool was
designed to be similar to common designs of visualization tools
with multiple coordinated views used for network analysis (e.g., [14,
27]). Using this tool, test participants conducted multi-dimensional
data analysis. The tool included six views in total that supported
interactive exploration of the cyber security data. Throughout the
paper, we refer to these views as areas of interest (AOI). Five AOIs
provided interactive tabular and visual presentations of the network
data, and one AOI provided static information relevant to network
traffic (see Figure 1). They are summarized as follows:

• Detail Histogram: An interactive histogram for filtering the
period of time being analyzed by the user.

• Overview Histogram: An interactive histogram view of the
data at a more macro scale.

• Network Graph: A network graph visualization showing
network traffic between IP addresses. Mousing over a node
dimmed unconnected nodes to facilitate visual inspection.

• Offices: A graphical layout showing employee desks and
whether or not employees were in the office during the time
selected via the histograms.

• Info: A static textual view with basic information about net-
work traffic and common usage of socket numbers.

• Table: An interactive table containing network traffic be-
tween IP addresses. Users could click to sort the table by
attribute, select particular exchanges for further inquiry, or
filter to a specific time.

3.2 User Study for Data Collection
Seven participants engaged in an analysis session using our tool
for a 90 minute duration. All participants majored in computer
science and had taken at least one university level class in computer
networking. The median age was 23 years. Participants were briefed
on the visual analysis tool and tasked with finding the computer
being used to send confidential data to malicious corporations. They
were also asked to “think out loud” by verbalizing their thoughts
throughout the process.

The tool was a standalone web application viewed on a 27-inch
monitor with mouse input. Mouse interactions such as the position
of the cursor, click events, hovering, and filtering were recorded
via the application. The screen was also recorded using screen
capture software. Eye tracking data was collected using a Tobii
EyeX (70 Hz) eye tracking equipment attached to the bottom of the
monitor. A standard microphone was employed to record audio of
the think-aloud data.

3.3 Extracting Features from User Interactions
We categorized the interactions from the raw eye tracking x-y coor-
dinates and mouse events to lay out a foundation for feature extrac-
tion. Following Brehmer et al. [4], we identified abstract analysis
tasks by methods of interaction: select, navigate, arrange, change,
filter, and aggregate. For our study, navigation solely relied on the
x-y coordinates of the eye tracking data as a means of navigating

Figure 2: Ratio of eye fixations for each AOI per participant.

Figure 3: Schematic representation of the feature design
method. Sequences were segmented by frames that include
counts for: fixations per AOI, categorized mouse interac-
tions, and eye tracking transitions originating from each
AOI.

between AOIs. The remaining methods were used to categorize the
mouse interactions.

To summarize the navigation data, we mapped the x-y coordi-
nates of the eye tracking data to the six AOIs. By examining the
ratio of fixations per participant across the AOIs (see Figure 2), we
observed that the offices and table views had the highest occur-
rence of fixations, while the network graph and detail histogram
had the least. The interactions were heavily skewed towards select
interactions (Table 1), wherein a participant either hovered over
an item for more information or selected an item to single it out
visually. This might have been a result of it being the easiest and
most natural way of viewing information while using the tool.

We derived three feature sets from the described interaction
methods and AOIs. Due to the high sampling rate of the eye-
tracking data in comparison with mouse interactions, we binned
interactions into analysis frames of pre-determined length (Fig-
ure 3). Within each analysis frame we computed the number of
fixations of the eye-tracking data per AOI, the number of mouse
interactions methods, as well as the total number of eye tracking
transitions that originated from each AOI. The maximum number
of features per frame was seventeen (six for the fixation counts
in each AOI, six for transitions between AOIs, and five for mouse
interaction methods)
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Table 1: Normalized mouse data categorized by method of
interaction for each participant.

3.4 Hidden Markov Model Classification
Our system was designed to solve a binary classification problem
of whether or not a sequence of interactions contained an inflec-
tion point. The inflection points were manually labeled by the
experimenter based on the participant’s think out louds and cor-
responding interactions with the visualization tool as the study
was conducted. The experimenter marked an inflection when he
observed the participant changing tactics in tool usage. While the
use of one experimenter is not ideal, the experimenter took notes of
the entire session, was well versed in the tool’s usage, and listened
for verbal cues. An example of an inflection would be a participant
shifting from a period of time using the detail histogram and scan-
ning offices for changes to a new strategy of looking through the
table of network traffic. There was a mean of 15 inflections per
participant, with counts ranging from 9 to 22.

We implemented a supervised learning algorithm based on two
HiddenMarkovModels (HMM): onemodeling interaction sequences
that included inflections and one with sequences that did not [33].
Approximate inflection points were classified by using the forward
algorithm to determine the log-likelihood score of a sequence occur-
ring from each model and selecting the model with the higher score.
Specifically, we marked the time at the beginning of a sequence
as an inflection point if the inflection model had a higher score.
Sequences were formed using a sliding window of frames on the
90 minute session. The duration of the frames was always under
one minute and the number of features ranged between 5 and 17.
Figure 3 provides an example of the input sequence, that consists
of successive analysis frames. For training, if an inflection occurred
within the first half of the sequence length, the sequence would
be used to estimate the model parameters of the inflection model.
Remaining sequences were used on the non-inflection model. The
number of hidden states for each model was either 4 or 5.

4 EVALUATION
To further understand the impact of interactions in determining
the occurrence of inflections, experiments were performed using a
leave-one-user-out cross-validation. One participant was held out
in the test set for each fold, while the remaining data was used in
the training set. The number of folds was equivalent to the num-
ber of users. Evaluation metrics were averaged over all folds. We

experimented with the number of hidden states N for the inflec-
tion and non-inflection models (N ∈ {4, 5}), frame length K (K ∈

{0.1, 0.5, 1.0}minutes), sequence length L (L ∈ {4, 8, 12}frames),
and all possible combinations of the feature sets.

Evaluation metrics include the recall for the inflection and non
inflection classes. In addition, unweighted accuracy is computed as
the average of the separate recalls per class. Unweighted measures
are usually employed to yield unbiased estimators of the system
accuracy respective of the number of samples per class. They are
common measures in applications with unbalanced data, since they
give the same weight to each class, regardless of how many samples
of the dataset it contains [12]. Table 2 shows the results from the
highest scoring models (overall and for each feature set).

Results indicate that sequences of 4 one-minute frames generally
had the best scores. Intuitively, this can be justified by the fact
that reducing granularity in time provides more room for error,
resulting in improved accuracy. Counts of eye tracking fixations
per AOI and mouse interactions were the most helpful feature
sets. These were the only sets used in the highest scoring system
and individually scored better than the AOI transition feature set.
The highest unweighted accuracy of our system was 70.8% with
an average of 23 classified inflection points. While the achieved
accuracy is greater than chance (50%), additional experimentation
with a greater amount of participants is required to more-reliably
classify inflection points.

5 DISCUSSION AND CONCLUSION
Visualizations used to understand, diagnose, and refine models are
a subset of “Explainable AI” (XAI). However, it is unclear what
types of interactions are appropriate for a given model and how
the visualizations are perceived. By developing methods to under-
stand the user’s sensemaking process in visual analytics we may
be able to gain insight on how visualizations for AI are being used
and in development of a naturalistic model of explanation. The
study of sensemaking processes in visual analytics typically re-
lies on having elaborate coding schemes, where human experts
with domain specific knowledge provide annotations. However,
this requires time-consuming reporting from analysts who are bur-
dened with explaining their rationale. Our research explores the
use of supervised classification to detect inflection points and its
features derived solely from interaction logs. The proposed classifi-
cation system of twoHMMmodels reached an unweighted accuracy
of 70% when detecting inflection points, suggesting feasibility of
inflection-point classification.

Best results were obtained using a reduced time granularity of 4-
minute time precision within the total 90-minute user session. The
count of AOIs from eye tracking fixations and mouse interactions
proved to be slightly more useful feature sets in comparison to
transitions between AOIs. As part of our future work, we will
experiment with time trajectory approaches that will not bin eye-
tracking and mouse interaction features over an analysis frame,
as this might remove valuable sequential information. We will
also consider more detailed feature extraction techniques such as
saccade information, raw x-y coordinates, or specific parts of the
AOI to increase granularity.
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Table 2: Recall rates for classifying inflection and non-inflection points using eye tracking and mouse interaction features
with Hidden Markov Models. Results are from the highest scoring model across all experiments and per feature set.

Going forward, we seek to increase the number of participants
for more generalizable models and to group participants based on in-
teraction sequences. The analysis activity per participant consisted
of highly diverse combinations of tasks and subtasks due to the
nature of complex task and unstructured data exploration. Cleaner
analysis tasks with more clearly defined subtasks may help our
understanding of participants’ inflection points and guide insights
on individual sensemaking. While we do not expect to be able to
perfectly capture the human analytic process through interaction
logs alone, the results of this work are promising for further analy-
sis such as comparing sequences between inflection points amongst
users or segmenting the analysis session to augment visualizations
of meta data.
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