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Abstract—Capsule endoscopy is a recent technology with a 
clear need for automatic tools that reduce the long exam 
annotation times of exams. We have previously developed a 
topographic segmentation method, which is now improved by 
using spatial and temporal position information. Two approaches 
are studied: using this information as a confidence measure for 
our previous segmentation method, and direct integrating of this 
data into the image classification process. These allow us not only 
to automatically know when we have obtained results with error 
magnitudes close to human errors, but also to reduce these 
automatic errors to much lower values. All the developed 
methods have been integrated in the CapView annotation 
software, currently used for clinical practice in hospitals 
responsible for over 250 capsule exams per year, and where we 
estimate that the two hour annotation times are reduced by 
around 15 minutes. 

Index Terms— Endoscopic capsule, image classification, 
biomedical engineering, medical imaging 

I. INTRODUCTION

The clinical importance of the endoscopic capsule is now 
solidly established in literature: Iddan [1], Oureshi [2], etc. 
Due to space limitations, we refer to our previous work [3,4], 
for more extensive capsule details and clinical importance 
information. All this attempts to solve an important limitation 
of the endoscopic capsule, excessively long annotation times. 
Currently it takes about 2 hours to fully view, annotate an 
exam and write its corresponding report. Our clinical studies 
show that the task of topographic segmentation is both 

difficult (the median error performed by three senior capsule 
specialists was about 400 images) and time-consuming 
(around 15 minutes can be saved by automation). 
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The main contribution of this paper is the improvement of 
our previous topographic segmentation methods using color 
and texture, by incorporating not only temporal but also 
spatial position information in the image classification 
process.

II. METHODS

The ultimate objective of the presented methods is to 
reliably divide the video of the gastrointestinal tract into its 4 
constituent parts (entrance, stomach, small intestine, large 
intestine) and thus determine its corresponding junctions (eso-
gastric junction, pylorus, ileo-cecal valve).

A. Capsule Position and Velocity 
We can theoretically estimate the spatial position of a 

capsule via antenna signal triangulation. We have selected 47 
capsule exams where a clinical specialist manually annotated 
the temporal location of the pylorus (tPYL) and of the ICV (tICV)
in the video using the CapView annotation software. We’ve 
then used our automatic topographic segmentation algorithm 
to determine these same temporal locations. Using our 2D 
position information, we can then obtain the corresponding 
spatial locations: xPYL, yPYL, xVIC, yVIC etc. For comparison 
purposes, these were normalized. Besides analysing 2D 
position information, we have looked at average capsule 
displacement velocity (module of the displacement vector 
between two points with temporal references t and t+1).

B. Topographic Segmentation Algorithm 
Our previously developed automatic topographic 

segmentation method, from now on referred as TSA, is 
described in Coimbra [4]. 

C. Spatial Information as a Confidence Measure 
Two high-confidence areas were defined, one for the pylorus 
and another for the ILC. We have measured the median 
segmentation error SEz for all marks  (z12 - eso-gastric 
junction; z23 – pylorus; z34 – ileo-cecal valve), and for all 
exams SE, whose junctions are inside and outside these areas, 



and results presented in section 3 have showed that this 
information is indeed useful as a confidence measure for 
automatic segmentation results.  

D. Integrating Spatial and Temporal Information for 
Classification 

An alternative way of using this information is to use it 
directly for individual image classification. Our previous 
method trained 4 SVM classifiers, one for each zone, which 
determine the topographic section each image belongs to as 
the classifier with the highest positive distance to the SVM 
hyperplane (see [4] for details). We can however, use these 
distances to build a feature vector for each image, along with 
additional information such as spatial and temporal location. 
Our new feature vector F is now defined as: 
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where x and y are the normalized spatial location coordinates 
(1,2), Z1, Z2 Z3 Z4 are the SVM classifier results [4] (distances 
to SVM hyperplanes), V is the spatial velocity, and t the 
temporal location in number of frames. The combination of 
these different features into a single vector requires that all 
coefficients are previously normalized. 
A variety of well-known distances was used for classification 
(L1 Norm, Euclidean, Mahalanobis). Finally, we have 
measured the relevance of each coefficient for the 
segmentation process using a step-wise elimination analysis. 

III. RESULTS
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Fig. 1. Spatial distribution of correct (green) and incorrect (blue) estimations. 
Points in high confidence areas are highlighted with a black bounding box. 
We can observe that most correct detections fall into high-confidence areas 
while incorrect ones are more distributed over the whole 2D space. 

Table 1. Numerical analysis of the spatial distribution of automatic 
topographic estimations. Accuracy = correct estimations / total estimations; 
recall = correct estimations / total annotations; mean and median segmentation 
errors are given in number of images.  

Pylorus ICV
Accuracy Recall Accuracy Recall

Correct 80 % 93 % 58 % 96 % 
Incorrect 89 % 70 % 92 % 39 % 

Mean
Err.

Median
Err.

Mean
Err.

Median
Err.

All 2157 158 3966 844
High-

confidence
493 45 2096 246

An analysis of Table 1 and Figure 1 shows that high-
confidence areas contain almost all correct estimations, and 
low-confidence areas mainly contain incorrect estimations. 

Table 2. Segmentation results using various distances and classifiers for 
feature vector F. L1, L2, and Full Multivariate were previously defined. Max 
Z corresponds to our previously used classification method [7], which is the 
maximum positive distance to the SVM hyperplanes. Finally, we use 
Mahalanobis distances on a reduced feature vector F = [Z1, Z2, Z3, Z4] – 
Multivariate Color. 

Accuracy SE SE-EGJ SE-PYL SE-ICV

L1 82.2% 2285 7 50 2228
L2 83.1% 1730 5 23 1702

Max Z 79.4% 3063 5 16 3042
Multivariate Color 77.4% 1052 5 22 1025
Full Multivariate 79.7% 2285 6 433 1846

Table 3.  SE values as coefficients are removed from the feature vector F in a 
step-wise elimination process. In each step we eliminate the coefficient that 
produces the minimum SE when removed from the vector. These areas are 
marked in light grey in the table. The corresponding individual classification 
accuracy is presented instead. Discrepancies with are highlighted in dark grey. 

Median Segmentation Error 
Maximum 83.6% 83.1% 83.5% 82.8% 82.2% 82.1% 79.2% 

x 82.3% 82.3% 83.1% 82.8% 82.2% 82.1% 79.2%
y 83.6% 83.1% 83.1% 82.8% 82.2% 82.1% 79.2%

Z1 81.8% 81.2% 81.7% 80.8% 79.9% 79.2% 79.2%
Z2 81.9% 81.0% 82.8% 82.8% 82.2% 82.1% 79.2%
Z3 80.9% 82.6% 83.4% 79.3% 70.3% 69.8% 68.7%
Z4 80.8% 82.5% 83.5% 82.2% 82.2% 82.1% 79.2%
V 83.2% 82.4% 83.1% 82.8% 82.1% 82.1% 79.2%
t 80.4% 79.9% 79.9% 79.5% 66.4% 63.0% 54.2%

IV. DISCUSSION

Results show that doctors can trust that automatic 
segmentation errors in high-confidence areas are as low as 
human ones. Including other information has allowed us to 
improve segmentation results significantly. Step-wise 
elimination analysis has shown us that the most relevant 
features for segmentation are capsule temporal position, and 
the color recognition of the entrance and the small intestine 
topographic sections. It has also shown us that spatial location 
is not a relevant factor for individual image classification.  
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