
To Re-use is to Re-write: Experiences with Re-using IIR
Experiment Software

Mark M Hall
mark.hall@informatik.uni-halle.de

Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg
Halle (Saale), Germany

ABSTRACT
Interactive Information Retrieval experiments have two main re-
quirements. They need to follow a workflow that takes the par-
ticipant through the individual steps of the experiment and they
need to show the user an interface to interact with. Both of these
aspects look like they should lend themselves to re-use. This paper
analyses the experience of developing and re-using software for
both of these aspects across a time period of approximately five
years. The main conclusion is that re-use of workflow management
software should be possible, but for software for interface creation
the question of whether re-use is possible is still open.

CCS CONCEPTS
• General and reference → Evaluation; • Software and its
engineering → Software design tradeoffs; Reusability; Soft-
ware evolution;

KEYWORDS
Interactive Information Retrieval; Re-Use; Software; Evaluation

1 INTRODUCTION
Interactive Information Retrieval (IIR) experiments use a wide range
of terminology, research designs, methodologies, resources, and
reporting structures. As has been stated before, one of the issues
this has led to is that re-use in IIR is, on the face of it, harder and
thus less common, a situation that the BIIRRR workshop series
seeks to address [1]. While IIR studies can be deployed via a range
of devices, delivery via the web is a common scenario and thus
creating tools to ensure this process supports as much re-use as
possible is a potential starting point.

This paper discusses the experience of creating and re-using two
IIR software systems for building IIR experiments across multiple
IIR studies.

2 BACKGROUND
This analysis of the issues around re-using IIR web software compo-
nents is based on the experience of re-using two software systems
across three shared tasks (Session TREC, iCHiC, and iSBS) and a
number of individual (IIR) studies.

Workshop on Barriers to Interactive IR Resources Re-use at the ACM SIGIR Conference on
Human Information Interaction and Retrieval (CHIIR 2019), 14 March 2019, Glasgow, UK
2019. Copyright for the individual papers remains with the authors. Copying permitted
for private and academic purposes. This volume is published and copyrighted by its
editors..

2.1 Software
The two software components that form the focus of this analysis
are the Experiment Support System (ESS) and the Python Interactive
information Retrieval Evaluation (PyIRE).

2.1.1 Experiment Support System. The ESS [5] was developed
to handle the challenge of introducing and promoting a standard-
ised, yet flexible methodology for a range of IIR evaluation study
structures, including generic, standardised measures that can be
deployed across studies and then allow for at least partial compa-
rability of the results. Over time, the accumulated studies should
also provide a comprehensive data-set that includes both context
and process data that may be used by the IR community to test
and develop algorithms seated in human cognition and behaviour,
and additionally to provide a sufficiently robust, detailed, reliable
data-set that may be used to test existing measures and develop
new ones. The core aims were to

(1) Provide a systematic way of setting up an experiment or
user study that may be intuitively used by students and
researchers;

(2) Provide a standard set of evaluation measures to improve
comparability;

(3) Ensure that standard and consistent data formats are used
to simplify the comparison and aggregation of studies;

(4) Extract a standard procedure for the conduct of IIR studies
from past research, so that studies can share a common
protocol even if the system, the tasks, and the participant
samples are different;

(5) Reduce resource (financial, time, users, ...) commitment in
the conduct of such studies.

To achieve this the overarching architecture in Figure 1 was devel-
oped, which consists of the following components:

• The Research Manager is the primary point of interaction
for the researcher setting up an experiment. It is used to
specify the workflow of the experiment, the tasks and inter-
faces to use, and all other measures to acquire. To simplify
and standardise both the experiment process and results, the
Research Manager is primed with a generic research proto-
col, that specifies the basic experiment workflow and into
which the researcher only has to add the experiment-specific
aspects;

• the Experiment System takes the experiment defined by
the Research Manager and generates the UI screens that the
participants interact with. It also ensures that the tasks and
interfaces are correctly distributed and rotated between the
participants, in accordance with the settings specified in the
Research Manager. Finally it loads the Task-specific UI



Workshop on Barriers to Interactive IR Resources Re-use at the ACM SIGIR Conference on Human Information Interaction and Retrieval
(CHIIR 2019), 14 March 2019, Glasgow, UK Mark M Hall

Figure 1: Design of the evaluation framework proposed in
[5], with the three core and the two study-specific compo-
nents. In a study not situated in the IIR field, different study-
specific components would be used. In the framework, the
researcher interacts only with the Research Manager and
Data Extractor, while the participant only ever sees the Ex-
periment System and Task-specific UI

and records the participants’ responses and ensures that they
conform to the requirements specified by the researcher. To
ensure the flexibility of the system, any web-based system
can be used as the Task-specific UI;

• the Data Extractor takes the participant data gathered by
the Experiment system and provides them in a format that
can be used by analysis packages such as SPSS or R. The data
includes not only the participants’ responses, but also data
on tasks / interfaces used by the participants and the order
in which they appeared.

To simplify the setup and further standardise IIR studies, the
following two IIR-specific components have been developed. In a
study outside the IIR context, these would be replaced with compo-
nents developed for that context.

• the Generic IIR Research Protocol aims to define a stan-
dardised and re-usable workflow and set of evaluation mea-
sures for IIR evaluation studies;

• the TaskWorkbench provides an extensible and pluggable
set of UI components for IIR interfaces, with the aim of
simplifying the set-up of IIR evaluation experiments.

The software was written in Python as a web-based application
under an OpenSource license. It allows the researcher to define
complex experiment workflows, including reponse-driven or data-
driven conditional branching, loops, crowdsourcing-style sampling
of questions from a data-set, and full latin-square setups. In the case
of the data-driven and latin-square functionalities the system also
automatically balances participants across the various conditions.
Researchers can also import and export individual questions, pages,
and complete experiment workflows in order to ease re-use.

2.1.2 PyIRE. The PyIRE system [4] implements what in Figure 1
is referred to as the “Task-specific UI / TaskWorkbench”. It provides
a Python-based, standardised API, which allows the researcher to
define IIR user-interface (UI) components, their layout on screen,
and the data-flows both between the interface and the components
and between components directly. To achieve this the PyIRE system
uses the architecture shown in 2. To achieve maximum flexibility,

Figure 2: The evaluationworkbench consists of the four core
modules (Web Frontend, Message Bus, Session, and Logging)
into which the IIR components used in the experiment are
plugged.

Figure 3: The workbench’s main workflow starts with the
generation of the initial UI and then waits for the partici-
pant to generate a UI event. The event is processed, the af-
fected component’s state and UI are updated and the work-
bench goes back to waiting for the next UI event. A power-
ful aspect of the workflow is that components, when they
receive a message, can generate their own messages.

the system was designed using a message-passing architecture that
consists of the following four components:

• Web Frontend handles the interface between the partici-
pant’s browser and the evaluation workbench and is imple-
mented using a combination of client-side and server-side
functionality.

• Message Bus handles the inter-component communication
and forms the core of the system. It is responsible for passing
messages from the Web Frontend to the IIR components
configured to be listening for those messages and also for
passing messages directly between the components.

• Session handles loading and saving the components’ current
state for a specific participant, hiding the complexities of
web-application state from the individual components.

• Logging provides a standardised logging interface that al-
lows the components to easily attach logging information
to the UI event generated by the participant.

When the researcher sets up the workbench for their experi-
ment, they can freely configure which components to use, how to
lay them out, and which components to connect to which other
components. Based on this configuration the Web Frontend gen-
erates the initial user-interface that is shown to the participants.
Then, when the participant interacts with a UI element (fig. 3), the
resulting UI event is handled by the Web Frontend, which gener-
ates a message based on the UI event. This message is passed to
the Message Bus, which uses the configuration provided by the



To Re-use is to Re-write: Experiences with Re-using IIR Experiment Software
Workshop on Barriers to Interactive IR Resources Re-use at the ACM SIGIR Conference on Human Information Interaction and Retrieval

(CHIIR 2019), 14 March 2019, Glasgow, UK

Figure 4: Example Interface built with the PyIRE workbench. The interface here consists of five separate components (task,
saved pages, search box, pagination, and search results list, which are joined together via the interface configuration.

[SearchResults]
handler = application.components.SearchResults
name = search_results
layout = grid-9 vgrid-expand
connect = search_box:query

Figure 5: Example configuration for a Standard Results List
component, showing how the component’s layout (9 grid-
cells wide and vertically expanding) and connections to
other components (to the “search_box” component via the
query message) are specified.

researcher to determine which components to deliver the message
to. The components that are listening for that message update their
own Session state based on the message and then mark themselves
as changed. After message processing has been completed for all
components, the Web Frontend then updates the UI for each of
the changed components.

An example of the configuration used to set-up the experiment
is shown in Figure 5 (from the experiment in figure 4), specifying
the configuration of the “search_results” component. It specifies
that the component should be displayed 9 grid-cells wide (the ap-
plication layout uses a 12-by-12 cell grid layout) and should expand
vertically to use as much space as is available. The component is
configured to be connected to the “search_box” component via the
“query” message. It is this ability to freely plug components together
that, we believe, makes the framework sufficiently flexible to sup-
port the wide range of IIR experiments, while remaining simple to
set-up and use.

The message-passing architecture should allow arbitrary com-
ponents to work together. This should allow the researcher to take
components from other experiments, for example a novel search
result visualisation component, and combine it with other compo-
nents from their own research, such as a specific search backend.

2.2 Experiments
The two software components were developed and then further
re-used in a series of shared evaluation tasks and stand-alone IIR
studies.

2.2.1 Session TREC. The Session TREC shared task [2] ran from
2011 - 2014 as part of the Text REtrieval Conference’s series of
tracks. The aim was to provide participating teams with multi-
query search sessions in order to develop and evaluate improved
ranking algorithms that took previous queries and results into
account. In order to provide participating teams with the necessary
multi-query session data, for the 2012 iteration, the decision was
made to acquire this session data through a custom IIR experiment.

The initial run (2012) used custom software, from which re-
usable aspects were identified. The ESS and PyIRE software pack-
ages were developed in the following year to support both the
Session TREC data acquisition and the iCHiC shared task described
below.

2.2.2 iCHiC. The CHiC interactive (iCHiC) task was added to
the longer-running Cultural Heritage in CLEF lab in 2013 [7]. The
interactive task focused on acquiring and analysing interactive
information retrieval data-set describing undirected exploration
and browsing in a collection of approximately 1.1 million English-
language Cultural Heritage items. The task included both an online
and an in-lab part. The task UI provided three methods for the par-
ticipants to explore the collection. On the left there was a category
browser, that showed a hierarchical structure into which a sub-set
of the items in the collection (approximately 250,000) had been
mapped automatically [3]. The second option was to use the search
box to type in and run a query. The third method was to click on an
item’s meta-data, which would run a search for other items with
the same meta-data. In all three cases, the items for the selected
category, user-provided query, or meta-data query would be shown
in the central grid.

As stated above the exploration/browsing interface was built
using the PyIRE software.

2.2.3 iSBS. Th interactive Social Book Search task in the CLEF
Social Book Search lab ran for three years from 2014 - 2016 [6] and
combined ideas from the iCHiC task with research questions from
the longer-running Social Book Search (SBS) lab. Users looking
for books online are confronted with both professional meta-data
and user-generated content. The goal of the Interactive Social Book
Search Track was to investigate how users used these two sources
of information, when looking for books in a leisure context.



Workshop on Barriers to Interactive IR Resources Re-use at the ACM SIGIR Conference on Human Information Interaction and Retrieval
(CHIIR 2019), 14 March 2019, Glasgow, UK Mark M Hall

In the first year, the PyIRE workbench was used to construct
two UIs, one a traditional faceted search interface and one a novel
three-stage interface, based on the Vakkari search stages [8]. In the
second year, the three-stage interface was modified, while in the
third year only an unchanged three-stage interface was tested, but
using a wider range of tasks.

2.2.4 WorldCat. TheWorldCat experiment [unpublished] looked
at known-item search tasks within a large bibliographic data-set.
The PyIRE workbench was used to construct a replica of the World-
Cat interface, but used the SBS book data-set to provide a controlled
data-set. The ESS was used to manage the experiment workflow.

2.2.5 Spatial Language & Jokes Transcription. The Spatial Lan-
guage and Jokes Transcription experiments only used the ESS to
handle the experiment workflow aspects. Neither of these experi-
ments was a traditional IIR study, but both re-used major parts of
the workflow developed in [5]. However, the experiment-specific
UIs were custom built for both of the experiments.

3 EXPERIENCE
The primary take-away message from the experience of develp-
ing, re-using, and maintaining the two software packages over the
course of five years is that the more generic the software, the easier
it is to re-use that component. That is not particularly surprising,
as it is in line with the re-use of other software components in IIR.
For example, few IIR experiments build a new search backend from
scratch for their IIR studies, as the generic search engines that are
available, are easily adaptable to the specific data requirements.

3.1 ESS
The experience of re-using and evolving the ESS has mostly been a
positive experience, with the majority of issues encountered primar-
ily common software development issues, rather than IIR specific
issues.

As the ESS was re-used throughout the years, the main change
was the addition of increasingly complex and powerful features. The
initial version was designed to allow the combination of standard
survey-style questions with data-driven, task-specific crowdsourc-
ing questions (where the question is wholy or in part driven by a
data-set stored in the system). As the complexity of the experiment
workflows increased, the ESS’ functionality was increased, adding
latin-square and conditional branching support for the iSBS task.
This in some cases required re-writing parts of the ESS implemen-
tation, but it was always a matter of software evolution, rather
than having to make major conceptual or structural changes to the
system.

The generic nature of the ESS has also enabled re-use in studies
that lie outside the IIR context. This was basically easily possible
because of the initial decision to host the experiment-specific func-
tionality outside the ESS and include it via the use of HTML frames.
Thus the map-based and transcription experiment interfaces devel-
oped for the Spatial Language and Jokes Transcription experiments
could easily be integrated into the ESS experiment workflow.

However, there have also been some issues with re-use with
the ESS. These fall into two categories: issues with embedding the
task-specific UI into the ESS and issues with documentation.

The documentation issues affected the re-use of the ESS in two
ways. Missing user-focused documentation on how to use the more
advanced functionalities (primarily in the area of latin-squares,
data-driven questions, conditional branching) meant that re-use by
other academics has been limited to those who have easy access
to the ESS developer in order to get support in how to set up such
experiments. In theory these could have been addressed relatively
easily, all that was needed were small tutorials to illustrate in which
order to execute the individual steps. For example, for a data-driven
crowdsourcing experiment, it is necessary to first create the data-
set that has all the different items which are sampled, then create
the page to display them on, and finally use text markup to embed
the data in the page that is displayed to the participant. However,
none of this is particularly apparent from the interface itself.

The other documentation issue is related to the documentation
of the code itself, which is very patchy. The result of this is that the
ESS has reached a point where it is highly functional, but essentially
cannot be maintained or developed any further, as any change risks
breaking existing functionality in unexpected ways.

Both of these issues are primarily caused by the ESS being a side-
project, where what time was available was focused on improving
the functionality and not documentation. While not a particularly
novel conclusion, it does re-iterate the point that without adequate
documentation, re-use is essentially highly unlikely.

The second major issue that was encountered was with em-
bedding the task-specific UI in the ESS. The first is caused by a
limitation of the use of frames for embedding the task-specific UI.
In order to produce an embedding that mostly hid the fact that
the task-specific UI was embedded, the researcher had to manually
use a large amount of CSS and some JavaScript to correctly adapt
the size of the frame in which the UI is embedded. This created
an instant barrier to re-use, as it required some very specialised
technical skills.

The other issue with the task UI embedding arose from the need
to link the responses in the ESS with those in the task UI. This
is necessary as the ESS and the task UI are completely separate
systems, thus no automatic linking is possible. To create a link, the
unique ID of the ESS participant can be embedded in the URL that
loads the task UI. When the task UI loads, the software generating
the UI can access this ID and store it together with the other data
collected by the task UI. Then, when the data is extracted, the ID
can be used to merge together the two survey responses collected
by the ESS and the data logged by the task UI.

For the 2013 Session TREC experiment, a configuration error
caused the same static identififer to be sent for all participants.
While the error occured due to a mistake made by the researcher
when setting up the experiment, the brittleness of the linkage be-
tween the two systems and the difficulty with seeing whether the
linking ID data was being transferred correctly, allowed the mis-
take to go unnoticed. As a result, in that year the Session TREC
data-set consisted only of the session query logs, but without any
information on the participants themselves, significantly limiting
the value of the data-set as a whole.

Partly this issue is due to the ESS trying to be both a system
that requires minimal technical skills, but also a system that is very
powerful and flexible, allowing the researcher to adapt the system
to a large degree. Based on the experience, I would suggest that



To Re-use is to Re-write: Experiences with Re-using IIR Experiment Software
Workshop on Barriers to Interactive IR Resources Re-use at the ACM SIGIR Conference on Human Information Interaction and Retrieval

(CHIIR 2019), 14 March 2019, Glasgow, UK

future systems of this kind either focus on the pure ease-of-use or
the technical flexibility, but not both, and that from the beginning
documentation is a core step.

3.2 PyIRE
While re-use of the ESS was fundamenally possible, re-use of the
PyIRE workbench was not as successful. While the PyIRE was used
across all three shared tasks and in the WorldCat experiment, each
re-use of the workbench essentially involved a major re-write of
the software.

The re-writes revealed the difficulty of developing truly re-usable
UI components and also the difficulty in designing an architecture
that allows for minimally connected components that at the same
time provide the user with a cohesive use experience. As the PyIRE
system was re-written to support more complex interface struc-
tures, more and more data had to be explicitly passed between
components, functionality that had to be added to each component,
countering the core idea of plug-and-play reusability.

Another issue was that while the architecture decoupled the com-
ponents, particularly around rendering the architecture there were
some highly coupled interactions between the components and the
underlying PyIRE functionality. These coupling points meant that
in some cases, components had to have complex internal structures,
simply because they had to handle the case where the functionality
was needed to update the component’s display and in other cases
just to provide service functionality to other components.

The main effect of the re-writes and the coupling issues was that
it is very hard to actually replicate the past experiments, as each one
requires a very specific version of the PyIRE system to run. While
the code is available, this means that for each experiment, a new
instance of the PyIRE server would have to be run, undermining the
point of having a workbench that allows implementing multiple
experiments in an easy-to-manage environment.

The big question, which I cannot answer, is whether the prob-
lem with the PyIRE are due to specific mistakes made in how the
decoupled architecture was implemented, or generic issues with
the architecture itself.

In particular, the question is related to the ESS issue with the
target user groups. The way the PyIRE can be used was designed
to support both researchers wishing to develop their own compo-
nents, but also researchers who lacked the technical skills to build
their own and simply wanted to re-use existing components with
other tasks or data. Attempting to support both scenarios created
significant additional complexity, essentially making the system
hard to use for both groups.

4 CONCLUSION
The main conclusion from this analysis is that the core issue for
long-term re-use and maintainability of software for IIR experi-
ments is the availability of adequate documentation and in this
respect IIR experiment software is no different to any other soft-
ware.

The second conclusion is that the development of a system that
supports researchers in the development, deployment, and re-use
of IIR experiment workflows is possible, as evidenced by the ESS
system. Ideally this might take the form of multiple systems that

are targeted at different levels of technical expertise, but which use
a standardised format for describing questions and answer options,
page structures, and overall experiment workflows. This would
then allow importing and exporting these and moving experiments
between the different systems.

The third conclusion is that how to achieve the re-usability of
software that helps with building IIR interfaces, is still an open
question. Considering that there have been different approaches,
including the one documented here, none of which have caught
on in the slightest, it is also unclear whether there is actually any
value in attempting this.

From the experience I would suggest that future work should
really focus on defining re-usable formats to define questions, an-
swer options, page structures, and experiment workflows. These
could then be moved between systems, enabling re-usability while
allowing for flexibility in what systems people want to use. Re-
usability of task UIs is an area where I am currently unconvinced
that re-usability is worth pursuing.

REFERENCES
[1] T. Bogers, M. Gäde, L. Freund, M. Hall, M. Koolen, V. Petras, andM. Skov. Workshop

on barriers to interactive ir resources re-use. In Proceedings of the 2018 Conference
on Human Information Interaction & Retrieval, CHIIR ’18, pages 382–385, New
York, NY, USA, 2018. ACM.

[2] B. Carterette, P. Clough, M. Hall, E. Kanoulas, and M. Sanderson. Evaluating
retrieval over sessions: The trec session track 2011-2014. In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’16, pages 685–688, New York, NY, USA, 2016. ACM.

[3] M. M. Hall, S. Fernando, P. Clough, A. Soroa, E. Agirre, and M. Stevenson. Evalu-
ating hierarchical organisation structures for exploring digital libraries. 17(4):351–
379, 2014.

[4] M. M. Hall, S. Katsaris, and E. Toms. A Pluggable Interactive IR Evaluation Work-
bench. In European Workshop on Human-Computer Interaction and Information
Retrieval, pages 35–38, 2013.

[5] M. M. Hall and E. Toms. Building a Common Framework for IIR Evaluation. In
CLEF 2013 - Information Access Evaluation. Multilinguality, Multimodality, and
Visualization, pages 17–28, 2013.

[6] M. Koolen, T. Bogers, M. Gäde, M. M. Hall, I. Hendrickx, J. Kamps, M. Skov,
S. Verberne, and D. Walsh. Overview of the CLEF 2016 Social Book Search Lab.
2016.

[7] E. Toms and M. M. Hall. The CHiC Interactive Task (CHiCi) at
CLEF2013. http://www.clef-initiative.eu/documents/71612/1713e643-27c3-4d76-
9a6f-926cdb1db0f4, 2013.

[8] P. Vakkari. A theory of the task-based information retrieval process: a summary
and generalisation of a longitudinal study. 57(1):44–60, 2001.


	Abstract
	1 Introduction
	2 Background
	2.1 Software
	2.2 Experiments

	3 Experience
	3.1 ESS
	3.2 PyIRE

	4 Conclusion
	References

