
Employing Intelligent Agents to Automate SLA Creation

Halina Kaminski, Mark Perry
Department of Computer Science, University of Western Ontario, Canada

{hkaminsk | markp@csd.uwo.ca}

Abstract. Service Level Agreements (SLAs) are commonly prepared and signed
agreements that form the contracts between a service provider and its customers,
defining the obligations and liabilities of the parties. Naturally, SLAs should reflect
the business needs of both customer and supplier. SLAs are usually formed through
either the adoption of a boilerplate agreement from the provider, or through a
mediation/negotiation process between the parties. With the increasing adoption of
software supply being implemented as a network service, such schemes are rigid or
slow and costly, This paper proposes a system that the parties can use to facilitate
both fast and flexible agreements. It proposes automation of SLA creation from a set
of Service Level Objectives (SLOs), making use of software agents and adopting a
social order function by incorporating it into the decision process.
Keywords: Service Level Agreements, Service Level Objectives, Web Service,
Negotiation Manager, Software Agents, Software Service Provision

1. Introduction
One of the many benefits offered by high speed and reliable large scale network

services has been the opportunity for software vendors to move rapidly into providing
web services, and treating software delivery as a service. This movement away from
traditional packaged software requires a different type of agreement between the providers
of such software and their customers, which was previously managed by simple licensing
agreements, shrink wrap licenses and the like, or, for larger systems, by negotiated
licenses. In the service provision environment, the relationship between the provider and
customer is typically embodied in Service Level Agreements (SLAs). These are
commonly prepared and signed contracts between a service provider and its customers,
defining the obligations and liabilities of the parties. Depending on the nature of the
agreement, it may take the form of adopting a boilerplate contract from the provider, or
for larger scale agreements, a fully negotiated contract. Although the former may satisfy
many aspects desired by the customer, it is likely that there are many issues that do not
fully meet the customer’s needs. Fully negotiated agreements will avoid the inclusion of
such non-satisfactory terms, but will require the intervention of personnel who can bring
technical, business needs and legal perspectives to the negotiations [1]. It is crucial for
both parties to ensure that the terms of the agreement are realistic and meet their
requirements, as the financial consequences of failure can be fatal to the business. For
example, many service recipients do not require service availability to be guaranteed for
99.99% of the time, as this would be very expensive, and a provider guaranteeing a
service that it cannot support may find itself subject to penalties.

This paper proposes the automation of SLA creation from a set of Service Level
Objectives (SLOs), employing software agents and adopting a social order function by
incorporating it into the decision process. By adopting this system, the service provider
can form SLAs and satisfy the need for fast and flexible agreements. Earlier work in SLA
management has focused on a bottom up approach, looking to capture managed SLA data
[2]. However, the present study concentrates on automatic SLA creation that integrates an
effective negotiation process, removing the need for the service provider to engage highly
qualified personnel at the time of SLA adoption by the customer. One area in which
companies are seeing increased cost is support personnel for their system offerings.
Where a company’s business is primarily (software) service provision, such costs are

critical to contain. In such an environment there is a need to automate with the result of
reducing support and management costs [3]. This environment make it very desirable to
automate the monitoring, selection, and decision making processes, leaving the service
provider more resources to focus on the provision of better services. Generally, most of
the business decisions are based on resource prioritization. In this paper by a resource we
mean any service that is quantifiable, such as application, server, CPU usage, disk space,
license etc. Such automation can be achieved by building a software system that embodies
high level decisions and which possesses the properties of autonomy, social ability,
reactivity and pro-activeness. Intelligent agents can provide this type of functionality, and
an SLA real-time negotiation system that utilizes these features will prove to be a great
asset to service provision enterprises.

2. Service Level Agreements
Most SLAs are formed by the provider of services, although it is possible that a

customer may come up with a totally original SLA in extraordinary circumstance. Here,
we focus on the provision of SLAs from the provider side, but this does not preclude the
development of customer originating agreements. Naturally, the provider’s perspective is
for the SLA to reflect the business goals of the company. It is likely that this will also
include the maximization of the customer satisfaction in addition to the limitation of
provider liability for problems such as non-performance or failure to meet the quality
goals. Rather than simply an end issue, the development of SLAs must be considered a
vital step in the business process. Although static, preformed SLAs, which are basically
monolithic agreements, may continue to have a role to play in the future, it is desirable to
enable clients to select elements of an SLA, or the overall type of SLA, that can meet the
requirements of their own situation. Our aim is to provide methods for dynamic,
automated SLA creation. As well as benefiting the service provider with automation, such
a flexible, dynamic system will allow customers to choose the type of SLA scheme that
they want and, consequently, exercise control over the policies for which they have the
most concern.

An SLA is not created in isolation, simply to meet the technical needs of the parties,
although these need to be considered. The total business strategy of the service provider
must be integral to the process. Generally, every SLA should include:
a) the specification and availability of the service to the customer,
b) the performance goals of various components of the customer’s workloads,
c) the bounds of guaranteed performance and availability,
d) the measurement and reporting mechanisms,
e) the cost of the service,
f) priorities if service can not be delivered,
g) penalties if the customer exceeds the load,
h) penalties if the provider does not provide service as agreed,
i) schedules for follow-up meetings and interface [3].

SLAs become more complex when the provider offers multiple services such as
networking, online databases and end user direct support [4]. Usually, the services
provided by such businesses vary both in diversity and intricacy. Many organizations are
now utilizing service level objectives (SLOs) as a means of expressing the aims of the
company, and to establish parameters for the tracking of the effectiveness of their service
infrastructure.

3. Service Level Objectives
A business in the highly competitive and growing online, on demand, service

environment must have a clear business plan and define service levels that can be attained.
Every resource that is offered to a customer should have an indication what its business
levels are and what performance is acceptable to the end-user. These will include
performance requirements for applications offered as services, and, in addition, more
general business objectives that need to be attained by the system. It has been suggested
[5] that SLOs must be realistic, quantifiable (measurable), clear and meaningful,
manageable, cost effective and mutually acceptable. The target goals of SLOs have to
reflect reality and should be attainable. They also should include the metric definition
which contain how the values are measured and reported to the managing authority. Each
SLO has to have a meaningful description of the service level such that it can be easily
understood by a customer. For example, expressing service performance in packets
dropped or server congestion may not be of significance to the end-user. Most
importantly, SLOs have to be cost effective. There is a belief that the best SLOs are
impractical because they are too expensive to be measured. Simply having the objectives
by themselves is not sufficient to provide a high quality service.

A wide variety of service offerings poses another difficulty: to create the best possible
SLA from a selection of SLOs from an option pool requires careful consideration and
quantification of resource dependencies and the connections between resources wherever
possible. As an example, by having two servers that are each capable of handling ten
thousand transactions per second does not necessarily mean that we can provide a service
of twenty thousand transactions per second to a customer. Both servers could be using a
secondary resource that is limited to a lower capacity (a common router for example).
Thus the overall performance of the entire business system is unlikely to be a simple
summation of the resources available. Many objectives can be embodied in a single SLA,
and within the parts of the SLA; for example, with a network service provision agreement
there may be ones dealing with availability, network latency, packet delivery and even
reporting. This will clearly differ between clients and so there will be a different, though
similar, set of objectives associated with each client.

As an example, a partial SLO set for a resource (SellSolution application) is shown in
Table 1.

Application
name =
SellSolution

..

Service Level
Platinum

Gold

Silver

…

Number of
transactions

unlimited

1000

500

…

Initial
Response

Time

10 sec

12 sec

15 sec

…

Transaction
Processing

Time

2 μs

3 μs

5 μs

…

Monthly
Availability

98%

97%

95%

…

Validity Time
Start/End

To be filled
at the SLA
creation

time

To be filled
at the SLA
creation

time

To be filled at
the SLA

creation time

…

Cost

$500.-

$ 150.00

$ 80.00

…

Table 1. SLOs for a specified resource

It is our goal to be able to set service levels for the resource (service) in such a way that

they are not custom made, but predefined and reusable. Ideally there should be many
levels for the same resource and the levels would differ in QoS and the cost for flexible
offerings. Levels of service can be predefined for the resources of the same type, and the
same level of service can be used by many customers. SLOs also express a commitment
to maintain a particular state of the service in a predefined period of time. For example,
(SLO) gold in Table 1 indicates that the SellSolution will start within 12 seconds from the
initial request and every transaction will be processed in less than 3 μs. The customer is
limited to perform 1000 transactions. In this service level the application will be available
to the user 97% of time and the cost for this type of service is $150.00. The validation
time period has to be specified during the negotiation phase i.e. when the customer and
the service provider agree to the specific service terms. We will return to this example in
section 6.4.

The flexibility of having a pool of SLOs available will result in the existence of a range
of service levels and performance metrics for each resource: for each service there will be
multiple SLOs on the basis of which SLAs will be offered.

4. Intelligent Agents
A negotiation model is an abstract representation of the structure, activities, processes,

information, resources, people, behaviour, goals, rules and the constraints of a computing
service environment. From the operational perspective, the negotiation model supplies the
information and knowledge necessary to support the SLA creation process. There is a
wide variety of information systems that participate in business processes and they are
aimed at fulfilling different business requirements. Consequently in business, there are
widely varying viewpoints and assumptions regarding what is essentially the same
subject. A negotiation framework should have a very carefully “engineered” translation of
such different reasoning. To deal with the complex representation issue the system should
support the appropriate ontology. The purpose is to provide a shared and common
understanding of a domain that can be communicated to people, application systems, and
businesses giving some specification of the meaning of semantics of the terminology
within the vocabulary [6]. The basic concepts of ontology have also been established in
works on intelligent agents and knowledge sharing, such as Knowledge Interchange
Format (KIF) and Ontolingua languages [7, 8].

The automation of a negotiation process can advantageously adopt the intelligent agent
paradigm. The system can contain one super agent that gets its knowledge from other
agents: there can be an agent assigned to each sub-domain, such as a business rules agent,
a price agent, an obligations agent, and a resource discovery agent. All of the secondary
agents would be reporting to the super agent and only the super agent will engage in the
decision making and outer interactions. Figure 1 depicts a Negotiation Model Agent
assignment.

Figure 1. Intelligent Agent Assignments
The Negotiation Manager system is based on a multiple agent framework. There

should be one agent per every issue that needs an agreement such as resources, price and
business policies. Our model is based on a sequential decision making (i.e. as each party
presents an offer, a counteroffer or a decision to accept or decline is made in sequence).

 Super Agent

Business
 Rules
Agent

Resource
Agent

SLO/SLA
Agent

Client

5. Negotiations
To date, most research in service provision has concentrated on how to manage SLA

compliance as well as tracking performance for planning purposes. The existence of a
variety of measuring tools allows the service managers to measure and track performance
of service levels based on the actual service usage. At the same time the results obtained
from such metrics can be used in planning corrective actions.

Automated contract creation enables service providers and their clients to make use of
technology to create SLAs within pre-planned and pre-approved parameters. Our goal is
to use intelligent agents to provide automation of SLA development and creation, (i.e. the
creation of the electronic contracts for computing services), which in addition to giving
flexibility to the contracting system will optimize the provider’s profits. At the same time
it will maximize the customer’s satisfaction and the ability to be flexible. We are
developing a negotiating tool (SLA Negotiation Manager) described hereafter along with
the process of negotiation and creation of a SLA from existing business objectives. The
Negotiation Manager is a truth based system and it has a system-wide objective of
computing an efficient cost-gain relation. Our goal is to provide an interactive negotiation
system that would help a service provider to formulate and evaluate an offer, and then
send that offer to the client.

The main module of our system will be dedicated to automate processes on behalf of
service provider. The overall negotiation process will be modeled as exchanging
proposals and counter-proposals between the provider and the customer. Figure 2 presents
a state diagram for a negotiation process.

Each negotiation starts with the customer choosing one service offer from a pool of
predefined service packs. Usually such offer depends on service price, delivery, quality
etc. The initial offers can be pre-defined and stored in a repository or they can be
automatically generated by using existing SLOs and current system’s state.

 Client
 request

 timeout

 deny/timeout

no service available

de
ny

/ti
m

eo
ut

 accept accept

counteroffer

offer

 1 2

43

FAIL SUCCESS

Figure 2. Negotiation Process State Diagram

The provider takes all factors into account and calculates the expected pay-off value

function associated with possible offers, and selects the offer that maximizes its payoff.
When satisfied with an offer, the customer (client) just sends an acceptance message to
the provider and a SLA is finalized. In Figure 2, the transition:

1 −> 2 −> 3 −> SUCCESS
presents such process. If not accepting the first offer, then the client can either abort the
negotiations:

1 −> 2 −> 3 −> FAIL
or can send a counter - proposal:

1 −> 2 −> 3 −> {4 −>3}
At this point the service provider evaluates an offer and updates its knowledge about the
customer. If the offer is acceptable the Negotiation Manager creates an SLA, otherwise
provider sends counter-proposal. Exchange of counter-proposals continues until one of the
parties decides to accept an offer or quit. The state SUCCESS or FAIL has to be reached.
The essential work in creating SLOs takes place in the business/marketing department.
SLOs should aim at achieving the best performance possible, but representing true and
real values at all times.

6. Implementation
 In our system resource specific knowledge inclusion should eliminate many of the
inefficiencies in SLA creation. By using templates and SLO libraries SLA Negotiation
Manager will ease the contract creation. Our system makes the use of the widely approved
contract language Web Service Level Agreement (WSLA). It also provides a user friendly
interface for the client to see and choose requested services as well as enabling the
exchange of counter-offers. It is anticipated that the contract creation time will be reduced
significantly as a result of the usage of templates and pre-approved clauses. By using our
system the service provider will be able to ensure consistency and compliance with
company’s standards. Storing all SLAs in a single repository will provide an additional
benefit to the service planning and management tools, so that it is required to search for a
contract in only one place. In the SLA creation process, a client is presented with the
services that are offered by the provider. Based on the customer’s choice the Negotiation
Manager aggregates and combines these choices into various SLA parameters, chooses
service levels (SLO) for every SLA parameter. Every SLA has to be checked for the
resource availability because it defines the agreed level of performance for a particular
service. This process is also known as compliance monitoring. It has been our attempt to
teach the SLA Negotiation Manager the business knowledge, goals, and policies of the
party it belongs to. Such knowledge enables the system to choose and combine the set of
SLOs that should be specified in the SLA in order to ensure compliance with the business
goals.

In [7] it is shown that there are five main components of an enterprise Contract
Lifecycle Management strategy:

• automated contract creation,
• secure contract negotiation,
• electronic contract repository,
• automatic upload of relevant contract data to back-end systems,
• generation of proactive management reports and alerts to encourage compliance to

committed contract terms and conditions.
It is our goal to provide first four out of the above five directives in the SLA

Negotiation Manager. Our system will automate contract creation through a secure
negotiation with the customer, then newly created SLA will be stored in a central
repository and the back-end system logs will be updated for the usage of resources that are
specified in the contract. As for the last component, we leave the generation of relevant
reports to the service management tools.

6.1 System dependencies
 Every SLA consists of at least two signatory parties: the service provider and the

customer (client). Both service provider and a client can have multiple SLAs in their
internal company’s repository. Each SLA can consist of multiple SLOs. There is at least
one SLO for each service offered.

As an illustration of these type of situations, hereafter is a typical scenario of a retail
store that needs a front end billing transactions handled.
A customer finds a service description and relative URL in the business directory (e.g.
UDDI). Then it connects to the company that offers the service. Upon such connection an
SLA Negotiation Manager is started. The customer wants to subscribe to a particular
service (for example: store customers’ billing system). The customer knows that to be
successful it needs to have an access to software that can handle 10,000 transactions per
day, with an initial transaction response time lower than 5 seconds and the average
transaction time not longer than 60 seconds.

The customer is willing to pay $800/month for such service. The SLA Negotiation
Manager by examining existing SLOs and existing SLAs checks if such service is
available (checking of the existing SLAs is done in order to avoid over-commitment). If
the provider’s company can provide a service required then a SLA is created accordingly
and presented to the customer for an acceptation.

Upon customer’s acceptance, the SLA is stored into the repository and the service is
made available to the client. It is anticipated that at this point a SLO defining a service of
renting a hardware capable of performing 10,000 transactions per day would have to be
removed from a resource pool to avoid over-commitment.

This is the best case scenario. Often, the service provider can not commit to the
requested service and then the SLA Negotiation Manager would come up with the next
best offer. Such decision making might be based on asking customer how much money it
is willing to spend or how many transactions its store must absolutely have and based on
that and on knowledge of the system the Negotiation Manager can propose a number of
options to choose from. The offer can also depend on other parameters as well. Maybe the
provider can commit to 10,000 transactions, but the upper limit on the average transaction
time will be 90 seconds. One option might be an offer of 8,000 transactions per day with
the initial response time lower than 10 seconds and an average transaction time of less
than 60 seconds for $650.00/month and/or another offer could be 12,000 transactions per
day with the initial response time lower than 5 seconds and the average transaction time of
3 minutes for $1,000.00/month. Ideally the customer chooses one of the offers and a SLA
is created. If the customer does not agree to the proposed service then negotiation
continues.

Figure 3: Use case diagram for negotiation scenario

Scan business policies

 Provider

prepare offer Check SLAs

check SLOs

Negotiation

present offer

counteroffer

present SLA

Client

6.2 Negotiation Manager Model
An Automated Negotiation Manager model is a 7-tuple: {R, K, Z, P, Q, F, M} where:

R is a set of participants,
K is a set of all possible agreements (SLAs),
Z is a set of business rules,
P is a set of all SLOs,
Q is a set of all negotiation sequences,
F is a utility function,
M is a set of all possible offers.

1. R is a set of participants. This set contains all parties that can be involved in the
contract. The customer, service provider and all supporting parties belong to this set. At
least two elements of this set (service provider and customer) must participate in any SLA
negotiation process qn Q.
2. K is a set of all possible agreements (SLAs). Every existing SLA agreement that is
stored in a data base belongs to the set K. It also contains all the possible agreements that
can be created as a result of any successful negotiation process.
3. Z is a set of business rules (also called business knowledge). A business rule that a
service can not cost less than $0.07 per transaction might be an example of zi Z. Set Z
represents corporate preferences and aligns business strategies of a service provider.
4. P is a set of all SLOs. Every SLA contains at least one SLO for the agreed service.
5. Q is a set of all sequences s, such that every s =q1,q2,q3 … qn where qi is an action (an
offer, a counteroffer, accept or decline). Each s illustrates a negotiation process and every
successful negotiation is a finite sequence s. Here, by successful negotiation we mean any
negotiation process that resulted in either accept or decline. Sequence s can also serve as a
history log when stored in a repository. The past negotiation procedure can be recreated
from such sequence.
6. F is a utility function. This function is customized according to the negotiating party
needs and business preferences. For example it might be widely known that the customer
offers 10% less for the service than it is really willing to pay. Function f might be used to
calculate next offer: f = current offer - 10%.
7. M is a set of all possible offers. Every permutation of elements of P belongs to M. In
addition M contains any combination of an offer that has been modified according to one
or more business rules from set Z.
 There have been many mathematical models developed for negotiations, typically on
direct e-commerce negotiations, and often employing game theory algorithms [8,9].
Although these are not directly applicable to the SLA environment where there are a great
deal more factors to consider above the product and price, they are useful for further
development of the negotiation system.

A key factor for a Negotiation Manager is the ability to operate in an open environment
where the preferences of a client are not known and we can only assume using a common
knowledge that client’s goal is to get more of a service for less money. This comes from

the fact that customer’s needs may go beyond specialized capabilities of any single
service offerings. Moreover, the participating parties’ legacy environments have to be
incorporated seamlessly into the system. The Negotiation Manager design will follow the
framework of a computational mechanism design which is an aggregation of a game
theory, artificial intelligence and algorithmic theory. Mechanism design problem is to
implement a system wide solution to a decentralized optimization problem with an
intelligent agent representing the service provider and a customer who has private
information about its preferences for different outcomes.

6.3 Negotiation Mechanism
A negotiation mechanism design is to define the possible strategies and a method used

to select an outcome based on client’s type and preferences. A negotiation mechanism:
M = (∑1,…∑n, g(.))

defines a set of strategies ∑i available to the negotiation agent, and an outcome rule:
g:∑1 x ∑2 … ∑n −> O, such that g(δ) is the outcome implemented by mechanism for
strategy profile δ = (δ1,…δn).

All of the SLA’s components and SLA itself has to be translated into the machine
readable format. There are several such specifications resulting from ongoing research at
the large software companies such as HP, Sun Microsystems and IBM [10,11]. For our
model we have chosen WSLA expressions. WSLA is based on Extensible Markup
Language (XML), and it has the ability to define and describe computing services along
with quality of service and service performance parameters. In addition XML is a very
flexible text format that was originally designed to meet the challenges of large-scale
electronic publishing, and it can be easily extended to meet one’s needs. WSLA is defined
as an XML schema therefore the resulting SLOs can be easily translated into system-level
configuration and stored in the machine readable format to be used by various system
services such as SLA Negotiation Manager. We do not discuss SLOs creation in this
paper as this is research topic of its own, and the scope of this paper does not allow for an
elaboration on this process. Here we assume that SLOs are developed by the
Business/Marketing department and have already been defined in WSLA.

In our scenario there are two sides of the negotiations. One side, a service provider, has
a repository of SLOs that define limits of the resources offered and the cost for each
service, and on the other side there is a customer, who also has to define thresholds for
acceptable service performance and the price that it is willing to pay.

In our automated SLA Negotiation Manager the system will provide the compliance
monitoring according to the customers choices. A base framework for SLA negotiation
model is presented in Figure 4.

6.4 Service Process Explained
It is very common that the service providers list their service offers in some business

directory such as UDDI. A potential customer can find such listing on the web and locate
the service. For the clarity of this paper we will continue with our retail store customer
who needs hardware and necessary network connections to provide a store front sale
billing functionality. Upon the client’s choice of a specific vendor (or a specific service)
the SLA negotiation manager will be executed. Figure 6 shows a sequence diagram for the
SLA creation scenario. Let the application SellSolution serve as an example here.

A financial institution, offers a Web service to private and corporate store owners to
perform a number of different types of store transactions (such as bank account transfers,
credit card payments, returns, store credit option) and generate the statements needed for
tax related and bookkeeping purposes. It is a web service on demand (also called utility
service) where the customers can be billed for services used. The computing resource is
SellSolution that allows for billing transactions on demand. A potential customer might be
a large corporation that has a variety of different types of transactions; a medium size
store that uses store credit card charges; or a single private store owner who only wants to
use bank account debit charges.

The billing rate might be based on number of transactions, transaction time and/or
availability to the customer. In our example the SellSolution has four SLOs specified for
different performance levels: platinum, gold, silver and bronze.(Shown in Table 1) Every
level depends on a number of transactions being performed. The platinum level has an
unlimited number of transactions, but instead is bounded by the response time and
transaction time.

Figure 4. Process of creating an SLA

store SLA in
database

request
service
negotiation

Business
Policies

present
SLA

Customer

SLA
Negotiation
Manager

SLAs

SLOs

Cost/Risk
mngmt

In our model, every customer no matter how small or how large of an enterprise will be

able to take advantage of an automatic SLA creation through our SLA Negotiation
Manager. The resulting SLA will be based on the SLOs of the business, and created
according to WSLA specifications, which in turn will make them readable for other
system utilities such as performance manager or service level manager.

7. Conclusion
Even though the software has been around for decades, with passage of time, the

complexity of it simply increases. The latest studies show that computing services in
combination with software on demand might provide solution for an enterprise level
architecture.

Our paper presents a unique approach to the creation of Service Level Agreements. In
practice constructing an SLA requires planning and care. While the process can vary
among companies, it is often a politically oriented topic. SLAs are known to be used to
find blame instead of being a driving force towards a positive change. There is a lot more
to SLA Management tools than XML schemas and standards. The combination of

check
availability()

 createSLA()

 [negative]denyRequest()

[positive]
presentSLA()

request()

:SLANegotiation
 Manager

Client

:applicati
on

:Resource/SLO
Metrics

return
result()

Figure 5. Sequence diagram for SLA
creation process

information and contract negotiation procedure plays an important role. The system
presented in this paper will provide an automated way to create and document SLAs
which in turn will increase web service provider’s profits, maximize customer
satisfaction, and it will open up the way to more flexible service provision.

References

[1] Christopher Ward, Melissa J. Buco, Rong N. Chang, Laura Z. Luan, Edward So, Chunqiang

Tang “Fresco: A Web Services based Framework for Configuring Extensible SLA
Management Systems” Proceedings of the IEEE International Conference on Web Services
(ICWS’05) 11-15 July 2005 Page(s):237 - 245 vol.1

[2] Buco M.JU., Chang R.N., Luan L.Z., Ward C., Wolf JL., Yu P.S. “Utility computing SLA
management based upon business objectives” IBM Systems Journal Vol 43 No.1 2004 p.159.

[3] Suh, Bob. “Avoiding an Austerity Trap” Outlook Journal, February 2004 Retrieved from:
http://www.accenture.com/Global/Research_and_Insights/By_Subject/High_Performance_Bus
iness/AvoidingtheAusterityTrap.htm on Dec 12, 2005

[4] Leopoldi, R. “IT Services Management, A Description of Service Level Agreements”, White
Paper, RL Consulting, 2002 Retrieved from: http://www.itsm.info/SLA%20description.pdf on
June 22, 2005

[5] Sturm, Richard. “Service Level Objectives”, Network Word Fusion, 2002 Enterprise
Management Associates, Inc. Retrieved from:
http://www.slminfo.com/articles/slobjectives.htm on Dec 12, 2005

[6] Gualtieri Andrea, Ruffolo Massimo, ”An Ontology-Based Framework for Representing
Organizational Knowledge”, Proceedings of I-KNOW ’05 Graz, Austria, June 29 - July 1,
2005

[7] Weintraub Allan, “Contract Management – A Strategic Asset” CRM Today website , Retrieved
from: http://www.crm2day.com/highlights/EEplVVVFlpFCMLrUcN.php On June 22, 2005

[8] Zeng, D., and Sycara, K. “Bayesian Learning in Negotiation” Working Notes of the AAAI 1996
Stanford Spring Symposium Series on Adaptation, Co-evolution and Learning in Multiagent
Systems

[9] Oprea M., “An Adaptive Negotiation Model for Agent-Based Electronic Commerce”,
Studies in Informatics and Control, Vol.11, No 3, September 2002

[10] Dan, A., Ludwig, H., Pacifici, G., “Web Service Differentiation With Service Level
Agreements”, White Paper, IBM Corporation, March 2003, Retrieved from: http://www-
106.ibm.com/developer works/library/ws-slafram/ on Feb 02, 2005

[11] Sun Microsystems, “Using the Sun ONE Application Server 7 to Enable Collaborative B2B
Transactions” Informit Network Website, Retrieved from:
http://www.informit.com/articles/article.asp?p=100664&seqNum=2&rl=1 on Feb 22, 2005

