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Abstract. This paper presents a suite of software code metrics, developed 

specifically for service-oriented systems with a well-defined methodology, 

which can be used as indicators of runtime efficiency. Existing literature on 

software metrics is mainly focused on centralized systems, while work in the 

area of distributed systems, particularly in service-oriented systems, is scarce. 

Firstly, a critical analysis of the problem domain identifies a number of 

software attributes which are likely to have an impact on efficiency. Secondly, 

concrete metrics are defined and evaluated (theoretically and empirically) for 

all identified attributes, with results showing that these software metrics are 

strongly correlated to typical efficiency metrics. Finally, a simple algorithm, 

which facilitates the runtime adaptation of service-oriented systems via service 

re-deployment, illustrates a practical application of the metrics. 

1. Introduction 

Existing literature on software metrics is mainly focused on centralized systems (e.g. 

[1]), while work in the area of distributed systems, particularly in service-oriented 

systems, is scarce. Systems with distributed components differ from traditional non-

distributed systems along a number of dimensions including communication type, 

latency, concurrency, partial versus total failure, and referencing/parameter-passing 

strategies [2]. Distributed systems with service-oriented components are even more 

complex, since efficiency and other quality attributes must be achieved in a typically 

more heterogeneous networking and execution environments. Given these 

differences, this paper argues that it is necessary to extend established software 

measurement and related techniques before applying them to the emerging domain of 

service-oriented systems (SOS). Note that it has been argued before, in the domain of 

web systems, that traditional techniques and metrics should be re-assessed before 

being applied to a new domain [3]. 

This work is part of a project whose aim is to design an efficient middleware 

infrastructure to support highly adaptable mobile services. This infrastructure will 

provide robust and efficient management of business processes across different 

enterprises. In this context, adaptation refers to the ability of the software, or the 

underlying middleware, to modify its behaviour in response to changes in the 

environment. In this project, adaptation can be achieved, among others, via service 

mobility, where individual services can migrate through the system nodes. The 



decision of when and how service migration should be performed is dependent on 

factors such as available resources and the nature of the interaction between services. 

As such, this provides a practical application for the metrics proposed in this paper. 

This paper presents a suite of software code metrics that can be used as indicators 

of runtime efficiency of service-oriented systems. These metrics were developed 

taking into account the particular characteristics of service–oriented systems (SOS) 

and following a well-defined methodology. The availability of well-defined metrics is 

crucial for middleware infrastructures to make dynamic decisions at run-time that are 

objective and robust. 

The rest of this paper is organized as follows: Section 2 begins with a review of 

related work, with an emphasis on prior studies involving the specification of metrics 

for distributed systems. Section 3, through a critical analysis of the problem domain 

which provides face validity [4], identifies a number of specific software attributes 

that are likely to have an impact on efficiency, with a concrete metric defined for 

each. Since theoretical validation of software measures provides supporting evidence 

as to whether a measure really captures the internal attributes they purport to measure, 

metrics are theoretically validated in section 4. Section 5 evaluates empirically the 

relationships between software and efficiency metrics in the context of SOS. To 

illustrate the potential practical applications of the metrics, a simple strategy is 

presented in section 6, with the intention of facilitating runtime decisions concerning 

the adaptation of SOS via service mobility. Finally, section 7 closes with a summary, 

conclusions and discussion of future work. 

2. Related Work 

Although many software metrics have been defined for traditional systems [5], a 

much smaller number relate to distributed systems in general, and few, if any, 

consider the unique characteristics of SOS as is the subject of this paper. This section 

provides a review of related work in terms of the measurement of software attributes 

of distributed systems. 

Shatz [6] proposed a metric for measuring communication complexity in 

distributed Ada programs, describing total complexity as the weighted sum of two 

components. Firstly, local complexity, which reflects the complexity of the individual 

tasks (disregarding their interactions with other tasks), was measured using traditional 

metrics such as lines of code or cyclomatic complexity. Secondly, communication 

complexity, which reflects the complexity of interactions among tasks, was derived 

by representing the programs as Petri nets and measuring the number of rendezvous 

which can be executed concurrently at a given point in time. Neither 

theoretical/empirical evaluation nor discussion about the practical utility was 

presented. 

Cheng [7] also proposed a set of complexity metrics for distributed programs. Like 

Shatz [6], the metrics were defined based on graph representations for 1) multiple 

control flows (non-deterministic parallel control-flow net), 2) multiple data flows 

(non-deterministic parallel definition-use net) and 3) various program dependencies 



       

(process dependency net). As above, no empirical support was provided, nor was a 

discussion of how the metrics could be used within the software engineering process. 

Based on the smallest event communication group (SECG) concept, Tsuar and 

Horng [8] suggested a metric to quantify the complexity of distributed programs, 

which was defined in terms of the number of events of a SECG. Although, the metric 

was experimentally evaluated with a moderately complex example, they were not 

evaluated theoretically, and it was not made clear how it could be used by 

practitioners. 

Morasca [9] put forward a set of measures for capturing a number of internal 

attributes (namely size, length, complexity, and coupling) of software specifications 

written with Petri nets for concurrent systems. These measures were theoretically 

evaluated, but empirical evaluation was not provided. 

A measurement suite to quantify design attributes of distributed systems was 

presented by Rossi and Fernandez [10]. The proposed measures were obtained from 

formal models derived from an analysis of the problem domain. Although these 

measures were theoretically evaluated, only a small subset was subject to empirical 

evaluation [11]. 

Arguably the closest study to our work are the metrics proposed by Ryan and Rossi 

[12], since they were defined and empirically evaluated for distributed systems with 

mobile components. However, this work focuses on the specific characteristics of 

software objects and, as such, may not be directly applicable to services. 

In summary, existing studies suffer at least one of the following shortcomings: 

• metrics are not theoretically or empirically evaluated  

• metrics have no clear practical applicability 

• metrics do not capture the particular nature of SOS 

Therefore, given these shortcomings, it seems appropriate to develop and evaluate 

a new suite of software metrics to support the unique aspects of SOS. 

3. Analysis of the Problem Domain 

Here we are concerned with the impact of software attributes on the efficient 

execution of services in a mobile computing context. For the purpose of this paper, in 

line with ISO 9126-1 [13], efficiency is considered to be a high-level quality attribute 

comprising the attributes performance (or time behaviour) and resource utilization. 

Software is considered to be more efficient as performance increases and resource 

utilisation decreases. These attributes are quite broad and, as such, were decomposed 

into particular sub-attributes of interest: 

 

P1. Service Migration Cost: the cost of moving a service between hosts. 

P2. Operation Execution Cost: the processing cost of an operation, ignoring any 

overhead associated with its call. 

P3. Operation Call Cost: the cost of calling a service operation, independent of its 

actual execution. 

 

R1. Memory Utilisation: the current memory usage on a host. 



R2. Network  Utilisation: the current unavailable network bandwidth of a host 

R3. Processor Utilisation: the current processing load of a host 

 

It should be noted that other resources such as mass-storage capacity and power 

consumption are also considered important but due to space constraints will be 

studied in future work. 

From a critical analysis of the problem domain a number of software attributes 

were identified that were likely to have an impact on the efficiency of SOS in a 

mobile environment. In this context, the size and coupling of a service were identified 

as the key software attributes that represent most of the impact on efficiency. As size 

and coupling are also generic attributes, they were refined to capture more precisely 

the specific characteristics of services as software components: 

 

S1. Service Implementation Dimension: the size of the service executable code; the 

larger the Service Implementation Dimension, the longer the Service Migration 

Time and the higher the Network Utilisation. 

S2. Service State Dimension: the size of a service execution state; the larger the 

Service State Dimension, the higher the Memory Utilisation. 

S3. Operation Interface Dimension: the aggregated size of the parameters of a 

service operation interface; the larger the Operation Interface Dimension, the 

higher the Operation Call Cost and the higher the Network Utilisation. 

S4. Operation Execution Length: the length of a service operation implementation; 

the larger the Operation Execution Length, the higher the Operation Execution 

Cost and the higher the Processor Utilisation. 

 

C1. Service Collaboration Coupling: a service degree of connection to other 

services; the higher the Service Collaboration Coupling, the higher the 

Operation Execution Cost, and the higher the Network Utilisation. 

C2. Operation Call Occurrence: the call frequency of a service operation; the higher 

the Operation Call Occurrence, the higher the Network Utilisation and Processor 

Utilisation. 

 

The model depicted in Figure 1 summarises the studied relationships between 

software and efficiency attributes — additional attributes such as probability of 

service execution were identified but considered beyond the scope of this paper. 

Furthermore, the authors identified other potential relationships that are not expressed 

explicitly. For example as memory utilisation increases, paging could affect 

performance; as processor utilisation increases there will inevitably be an effect on 

attributes such as Operation Call Cost. However since these factors were not expected 

to have a primary effect, and in the interests of studying a manageable set of metrics 

in this paper, the analysis of such attributes and relationships is left to future work.  

The final stage of the analysis process was to derive concrete metrics for each of 

the attributes in a form that could be measured at runtime within a middleware 

infrastructure. The complete set of metrics and their units of measurement are listed in 

Table 1. A formal definition of the metrics is presented in the next section, while 

details of how each metrics can be measured in practice can be found in the appendix. 

 



       

 

Fig. 1. Summary of the relationships between software and efficiency attributes for SOS 

Table 1. Attributes of interest and associated metrics  

Attribute Metric Unit 

Operation Interface Dimension Operation Interface Size (OIS) byte 

Service Implementation Dimension Service Code Size (SCS) byte 

Service State Dimension Service State Size (SSS) byte 

S 

Operation Execution Length Operation Number of  Statements (ONS) int 

Operation Call Occurrence Operation Call Number (OCN) int C 

Service Collaboration Coupling Collaborator Service Number (CSN)  Int 

Operation Execution Cost Operation Execution Time (OET) ms 

Operation Call Cost Operation Call Time (OCT) ms 

P 

Service Migration Cost Service Migration Time (SMT) ms 

Memory  Utilisation Memory Availability (MA) byte 

Network  Utilisation Network Availability (NA) byte/s 

RU 

Processor Utilisation Processor Availability (PA) int/s 

4. Theoretical Evaluation 

Since theoretical validation of software measures provides supporting evidence as to 

whether a measure really captures the internal attributes they purport to measure, we 

consider this validation as a necessary step before empirical validation takes place. 

The distance framework [14] is briefly introduced in sub-section 4.1 and it is then 

used to define the proposed metrics formally in the following sub-sections. This 

framework has been employed to theoretically validate software measures previously 

(e.g. [15], [16]). 

Operation Interface Dimension 

Service Collaboration Coupling 

Service Impl. Dimension 

Service State Dimension 

Operation Execution Length 

Operation Call Occurrence 

Operation Call Cost 

Network  Availability Coupling 

Size 

Resource 
Utilisation 

Operation Exec. Cost 

Service Migration Cost 

Memory  Availability 

Processor Availability 

Performance 



4.1. Distance Framework 

The distance-based approach presents a set of measure axioms whose sufficiency is 

assured by measurement theory, and a constructive procedure that defines software 

measures satisfying these axioms. These axioms are the metric axioms, used in 

Mathematics to define measures, an extension of the notion of distance. This section 

summarizes the basic concepts used here to make the paper self-contained. (For more 

details refer to the original work [14]). The distance-based measure construction 

process consists of five steps: 

 

1. For the set of software entities E and for the internal attribute a, select a set of 

software entities M that can be used as measurement abstractions to emphasise a, 

and define a function α: E → M. 

2. Define a set T of elementary transformation types on M that is constructively and 

inverse constructively complete to model the conceptual distances between 

measurement abstractions. 

3. Quantify distances between measurement abstractions defining a metric δ: M × M 

→ ℜ such that (M, δ) is a metric space. 

4. Select a reference model τ ∈ M that is the software entity abstraction for which it 

holds that for all e ∈ E with α(e) = τ, e has the lowest value of a. 

5. Define a function µ: E → ℜ such that for all e ∈ E, µ (e) = δ(α(e), τ) which is a 

measure of distance from α(e) to τ. 

4.2. Coupling Metrics 

Here we provide the formal definition of CSN that demonstrates its theoretical 

validity. OCN was formally defined and validated following an analogous process 

Step 1: The set of software entities E is the universe of services (US) that is relevant 

for some system domain and S is a service (viz. S ∈ US). The attribute of interest a is 

the number of services that collaborate with S via operation calls. The set of services 

that collaborate with service S is then a subset of US. All the sets of services with 

collaboration coupling within US are elements of the power set of US, denoted by 

P(US). Consequently we can associate the set of measurement abstractions M to 

P(US) and define the abstraction function αCSN: US → P(US) as: 

∀S ∈ US: αCSN(S) = {R ∈ US | R collaborates with S via an operation call} (1) 

This function maps a service S onto the set of collaborator services that are called 

by S. 

Step 2: The next step is to model the distance between elements of M. It is necessary 

to find a set of elementary transformation types for P(US) such that any set of services 

can be transformed into any other set of services by way of a finite sequence of 

transformations. Since the elements of P(US) are sets of components, T must only 

contain two types of elementary transformation.  T = {θCSN1, θCSN2} where 



       

∀s ∈ P(US): θCSN1(s) = s ∪ {m}, with m ∈ US, 

∀s ∈ P(US): θCSN2(s) = s − {m}, with m ∈ US. 

(2) 

Given two sets s and s’ of P(US), s can always be transformed into s’ by first 

removing all services from s that are not in s’ (through θCSN2) and then adding all 

services to s that are in s’ − s (through θCSN1).  

Step 3: The distance between two sets of services s and s’ can be measured by the 

length of the shortest sequence of elementary transformations taking s to s’. As 

exactly one elementary transformation will be needed for each service of US that is 

contained in either s or s’, but not in both sets, the distance value is equal to the 

cardinality of the symmetric difference between s and s’:  

∀s, s’∈ P(US): δCSN(s, s’) =  |s − s’| + |s’ − s| (3) 

Step 4: The reference abstraction is the empty set of services. It is desirable that a 

service S without service collaborations will have the lowest possible value for the 

CSN measurement. Hence we define the following function: τCSN: US → P(US): S → 

∅. 

Step 5: The number of services called by service S ∈ US, can be formally defined as 

the distance between its set of collaborator services and the empty set. Therefore, 

formally CSN can be defined as µCSN: P(US) → ℜ: 

∀S ∈ US: µCSN(S) = δCSN(αCSN(S), τCSN) = |αCSN(S)∆∅| = |αCSN(S)| (4) 

4.3. Size Metrics 

Here we theoretically validate ONS by presenting its formal definition. SCS, SSS and 

OIS were formally defined and validated following an analogous process. 

Step 1: The set of software entities E is the universe of Operations (UO) that is 

relevant for some Service domain and O is an Operation (viz. O ∈ UO). Let UES be 

the Universe of Executable Statements relevant to O. The attribute of interest a is the 

number of Executable Statements that are part of Operation O. The set of Executable 

Statements ES that are part of Operation O is then a subset of UES. All the sets of 

Executable Statements that are part of Operations within UO are elements of the 

power set of UES, denoted by P(UES). Consequently we can associate the set of 

measurement abstractions M to P(UES) and define the abstraction function αONS: UO 

→ P(UES) as: 

∀O ∈ UO: αONS(O) = {ES ∈ UES | ES is part of O} (5) 

 

This function maps an Operation O onto its set of Executable Statements. 



Step 2: The next step is to model the distance between elements of M. It is necessary 

to find a set of elementary transformation types for P(UES) such that any set of 

Executable Statements can be transformed into any other set of Executable Statements 

by way of a finite sequence of transformations. Since the elements of P(UES) are sets 

of Executable Statements, T must only contain two types of elementary 

transformation.  T = {θONS1, θONS2} where 

∀es ∈ P(UES): θONS1(es) = es ∪ {m}, with m ∈ UES, 

∀es ∈ P(UES): θONS2(es) = es − {m}, with m ∈ UES. 

(6) 

Given two sets es and es’ of P(UES), es can always be transformed into es’ by first 

removing all Executable Statements from es that are not in es’ (through θONS2) and 

then adding all Executable Statements to es that are in es’ − es (through θONS1).  

Step 3: The distance between two sets of Executable Statements es and es’ can be 

measured by the length of the shortest sequence of elementary transformations taking 

es to es’. As exactly one elementary transformation will be needed for each statement 

of UES that is contained in either es or es’, but not in both sets, the distance value is 

equal to the cardinality of the symmetric difference between es and es’: 

∀es, es’∈ P(UES): δONS(es, es’) = |es ∆ es’| (7) 

Step 4: The empty set of statements is the reference abstraction τ. It is desirable that 

an Operation O without Executables Statements will have the lowest possible value 

for the ONS measurement. Hence we define the following function: τONS: UO → 

P(UES): O → ∅. 

Step 5: The number of Executable Statements that are part of Operation O ∈ UO, can 

be formally defined as the distance between its set of Executable Statements and the 

empty set. Therefore, formally ONS can be defined as µONS: P(UO) → ℜ: 

∀O ∈ UO: µONS(O) = δONS(αONS(O), τONS) =  

|αONS(O) –∅| + |∅ – αONS(O) | = |αONS(O)| 

(8) 

5. Empirical Evaluation 

This section provides experimental results to support the relationships between 

software and efficiency metrics described in section 3. We have followed some of the 

guidelines provided in the literature [17] on how to perform and report controlled 

experiments. (Please note that not all available information has been included in this 

paper due to space constraints.) 



       

5.1. Definition 

Following the GQM template [18], our experiment goal can be summarised as 

follows: 

 

Analyse SOS software measures, 

for the purpose of evaluating, 

with respect to their capability of being used as indicators of runtime efficiency, 

from the point of view of  SOS engineers, 

in the context of  wireless and mobile environments. 

5.2. Planning 

In order to evaluate software measurement hypothesis empirically, it is possible to 

adopt two main strategies [19]: (a) small-scale controlled experiments, and/or (b) real-

scale industrial case studies. In this case we chose the first alternative, since it is more 

suitable to study the phenomena of interest in isolation, without having to deal with 

other sources of variation, such as co-existing systems, security mechanisms, etc. 

However, we envisage that after several experiments the suite of measures will be 

shown to be robust, and we intend to test the measures following the second strategy. 

The hypotheses to be tested were derived from the attribute relationships discussed 

in section 3 as part of the analysis of the problem domain. The dependent (efficiency) 

and independent (software) variables are quantified by the metrics shown in Table 1. 

Details of how each measure was quantified can be found in the Appendix.  

For each hypothesis, experimental data was collected using a synthetic Java 

system, with the measurement of metrics obtained either through internal 

instrumentation of the code, or from the operating system via a native interface. All 

tests were executed in an isolated network using two identical laptops in a client 

server configuration via wireless link. 

5.3. Operation 

Before the actual experiment, several pilot experiments were run to make sure that 

there were no apparent anomalies, and the system behaved in the same way as before 

the measurement code was introduced. 

The experiment was conducted in the Distributed Computing Research Laboratory 

of our University. The system was executed on an isolated (54 Mbps) wireless 

network of laptops (Pentium M 1.6, GHz, 512MB RAM) and running under a 

Windows operating system. All computers had the same hardware and software, and 

were configured in the same way. Every service was run on a separate laptop as the 

only user process, all other processes running were a few system processes started by 

default. The execution of the system was initiated and terminated by the experiment 

team, which also controlled that in the meantime nobody else had access to the 

facilities.  



Despite the data being collected reliably and objectively by electronic means, it 

was thoroughly inspected to assert that it was consistent. For this purpose we run the 

experiment three different times and compared the three data sets obtained. However, 

it should be noted that only the first data set was subject to analysis. Finally, there was 

no need to discard any data, hence all data collected was used.  

5.4. Analysis and Interpretation of the Results 

After the execution of the experiment, all the measures were computed electronically 

from the recorded data. The empirical data was analysed with the assistance of the 

statistical software package SPSS  [20], and the obtained results are presented in the 

remainder of this section. 

Correlation Analysis. Table 2 presents the Pearson correlation coefficients 

(significant at the 0.01 level) between the software measures and efficiency measures.  

Table 2. Pearson correlation coefficients (N = 100) 

 OET OCT SMT MA PA NA 

SCS   0.927   0.928 

SSS    0.959   

CSN 0.932     0.938 

OIS  0.955    0.965 

ONS 0.990    0.967  

OCN     0.931 0.984 

Discussion. The results show that all the associations are statistically significant. The 

correlation coefficients are significant, indicating a nontrivial association of the 

software measures with the efficiency measures. This suggests that these variables are 

candidates for a base regression model to estimate efficiency. Examination of the 

coefficients indicates that all software measures are positively correlated to the 

efficiency measures — it should be noted that a higher value of OET, OCT or SMT 

indicates worse performance.  

Univariate Regression Analysis. Here we present the results obtained when 

analysing the individual impact of the software measures on efficiency using Ordinary 

Least Squares (OLS) Regression [21]. In general, a multivariate linear regression 

equation has the following form: 

Y = B0 + B1X1 + ... + BnXn (9) 

where Y is the response variable, and Xi are the explanatory variables. A univariate 

regression model is a special case of this, where only one explanatory variable 

appears. Table 3 presents the unstandardised regression coefficients (Bi), the statistical 



       

significance of Bi (pi), and the goodness-of-fit (R
2
) of models. Each row contains the 

statistics of a different univariate regression model.  

Discussion. The results obtained are remarkably consistent. They indicate that all 

software measures that we considered in this paper indeed strongly correlate with 

efficiency. In the best case, in our context, ONS accounted for 98 percent of the 

variation in performance (measured by OET)—each increase of one unit of ONS 

increased OET by 16.88 units. In addition, by analysing the trends indicated by the 

coefficients, we see that the hypotheses underlying the measures are empirically 

supported. 

It should be noted the fact that p0 > 0.01 for some models only means that we 

cannot really conclude that B0 ≠ 0, but this does not affect the fact that we can 

realistically conclude that it is very unlikely that B1 ≠ 0, i.e., it is very likely the 

software attribute is correlated to the efficiency attribute. 

Table 3. Univariate Regression Models 

X Y B0 B1 p0 p1 R
2
 N 

SCS SMT 22983 3.701 0.000 0.000 0.859 100 

SCS NA 74065 2.809 0.000 0.000 0.860 100 

SSS MA 0.000 1.044 0.000 0.000 0.920 100 

CSN OET 7.214 2.345 0.206 0.000 0.868 100 

CSN NA 32516 5311.7 0.159 0.000 0.879 100 

OIS OCT 5059 0.436 0.000 0.000 0.912 100 

OIS NA -2463.3 2.839 0.764 0.000 0.931 100 

ONS OET -44002 16.884 0.081 0.000 0.981 100 

ONS PA 10920 65.249 0.530 0.000 0.936 100 

OCN NA -288.2 168.239 0.462 0.000 0.968 100 

OCN PA 342.1 16.042 0.000 0.000 0.867 100 

Validity. Four different threats to the validity of the study were addressed [17]:   

− Conclusion validity. An issue that could affect the statistical validity of this study is 

the size of the sample data, which may not be large enough for a conclusive 

statistical analysis. We are aware of this, so we do not consider these results to be 

final. 

− Construct validity. The study was carefully designed, and the design was piloted 

several times before actually being run. The efficiency metrics are obtained from 

the OS, thus it is assumed they are reliable. The software metrics used in this study 

were shown to adequately quantify the attribute they purport to measure in section 

4.  

− Internal validity. The study was highly controlled and monitored, so it is very 

unlikely that undetected influences have occurred without our knowledge. The 

instrumentation was trustworthy since the data was collected, and the measures 

computed, electronically.  



− External validity. Although the study is based on a representative case, more 

studies are needed using real systems. We are also aware that more experiments 

with different platforms (e.g. computer and network hardware, operating systems, 

etc.) and infrastructure (e.g. middleware type, programming language) must also be 

carried out to further generalize these results. 

6. Practical Applicability 

Software measurement is not merely about defining new metrics, but about building 

new theories that can help solve practical problems [22]. As stated previously, one of 

the main goals of this research is to provide middleware support enabling SOS to 

maintain specified levels of quality, particularly efficiency, in mobile environments. 

Consequently, this section defines, and provides initial testing for, an adaptation 

approach based on the metrics introduced in section 3. In general, the practical 

application of these metrics is within an middleware infrastructure, which will collect 

software metrics describing the services that constitute the system, as well as 

information about the hosts in which the services are running, and will make 

decisions in terms of service (re) location.  

The approach to adaptation developed is decentralized and reactive, involving an 

individual node making a decision to move one or more services to another host when 

either a performance or resource utilisation threshold is met. Other approaches to 

adaptation are possible but are outside the scope of this paper — for example an 

alternative approach to adaptation could be centralised and proactive involving the 

solution of an optimization model. 

A reactive/adaptive decision is typically triggered by the utilisation of a resource 

that at some point in time exceeds a predetermined threshold. The objective of this 

adaptation approach is to distribute the utilisation of resources whilst maintaining (or 

improving) performance. However, performance and resource utilisation are attributes 

that generally conflict with each other and since compromises may have to be 

reached; this decision is not trivial even for the simplest scenario of two services and 

two machines. A more typical case may involve numerous services and many nodes, 

and thus achieving an effective decision requires an appropriate process. 

Therefore, in order to test the ability of the metrics to support such decision 

making, whilst yielding a tangible benefit in terms of efficiency, a preliminary 

empirical study was conducted by implementing a prototype SOS which consists of 

five main services executing over Sun System Application Server Platform Edition 9. 

For the experiment, software and performance metrics were collected directly via 

instrumentation in the system code and resource utilisation metrics from the Windows 

Performance Monitor via the Java Native Interface (JNI). The experiment was 

conducted under the same laboratory conditions, using three nodes of the same 

specification as described in the previous section. 

The adaptation decisions (which determine if and when a given service should 

migrate to another host) were calculated and executed offline. Therefore, the intention 

of this experiment is not to evaluate the efficiency of the metric collection and 

adaptation process itself, although this is the subject of ongoing work. Rather, this 



       

experiment aims to demonstrate that the metrics presented herein can support the 

effective placement of services to hosts in a SOS, in order to improve efficiency 

compared with the baseline case of no adaptation.  

Table 4. High-level Adaptation Algorithm 

maxIndicator = 0, maxService = null, maxNode = null 

for each service s in local node do 

  for each remote node n do 

    i = evaluate(s, n) 

    if (i > maxIndicator) then 

      maxIndicator = i 

      maxService = s 

      maxNode = n 

    end if 

  end for 

end for 

if (maxIndicator > 0.5) move maxService to maxNode 

 

At the abstract level, the adaptation approach operates according to algorithm 

depicted in Table 4 in which individual nodes move services to other hosts when 

some criteria related to efficiency (performance versus resource utilisation) are met. 

The algorithm evaluates, based on the metric values, possible migration options based 

on the available local mobile services and remote nodes. The algorithm stops when all 

possible migrations have been evaluated. An explanation of how the function 

‘evaluate’ produces its indicators is given in Table 5. 

In the initial state all services (i.e. S1, S2, S3, S4 and S5) were residing on node 1 

(N1), where the processor was heavily loaded (PA around 10%), while N2 and N3 were 

not loaded at all (PA around 99%). Applying the adaptation algorithm to SOS resulted 

in four cases of service migration: S2, S3, S4 and S5 from N1 to N2. The standard 

deviation of the processor loads was calculated before and after adaptation. 

Additionally, response time data was collected for all business processes with each 

executed and measured 100 times.  

The standard deviation of the processor loads before adaptation was around 57% 

whereas the standard deviation after adaptation was around 48%. Moreover, the 

average process response time after adaptation was 297 ms versus 321 ms before 

adaptation. Therefore not only did the adaptation algorithm provide better processor 

load balance, which was the principal aim of this experiment, but it also provided 

superior performance and thus greater efficiency as well. The adaptation algorithm 

was initialised with the following parameters: WP = 0, WRU = 1, kRU = 1, maxRU = 100. 

Although the presented adaptation algorithm is relatively simple, it illustrates the 

benefits of applying the metrics proposed in this paper to a practical application. This 

provides a basis for further large scale studies and the development of advanced 

adaptation approaches. For example, a more sophisticated approach to adaptation 

based on these metrics and a comprehensive evaluation, can be found in a separate 

study [23]. 



Table 5. Function Evaluate Description 

There are a number of possible general approaches to decision making based on 

multiple attributes, which differ in terms of how they specify criteria for the decision 

making process. Since this is a proof-of-concept implementation of adaptation, we 

have selected a simple linear additive approach according to the following equation: 

IE = (WRU IRU + WP IP) (10) 

In order to evaluate such function, and thus produce an overall decision making 

indicator of efficiency (IE) that can be used to rank and runtime actions, the level of 

satisfaction of the individual indicators (Ii) must be calculated—this is done by 

normalising the values to the unitary interval (0 ≤ Ii ≤ 1). Furthermore, the aggregate 

decision making function include weights (Wi), to represent the relative importance 

of the individual indicators when calculating the decision making indicator IE. A 

further requirement of the function is that (W1+ W2 + ... + Wm) = 1, where Wi ≥ 0 for 

i = 1 ... m. 

Finally, the resource utilisation (IRU) and performance (IP) indicators were calculated 

as follows: 
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where: 

• maxP and mRU are maximum values of performance and resource utilisation. 

• kP and kRU are threshold parameters which specify the minimum acceptable value 

of performance and resource utilisation. 

• OS = number of operations of service S. 

• orti = OET + OCT (operation response time) 

• ruS = the resource usage of service S: nuS = SCS, muS = SSS, or puS = avg(ONS)  

• ra
C
 and ra

D
 = resource (i.e. network, memory or processor) availability of the 

current and destination nodes of the service; ra = NA, MA or PA. 

• rc
C
 and rc

D
 = resource (i.e. network, memory or processor) capacity of the current 

and destination nodes of the service 



       

7. Concluding Remarks 

Having recognized that distributed systems differ from their traditional centralised 

counterparts, and that SOS are even more complex, this paper has introduced a suite 

of metrics for such systems. These metrics aim at estimating the impact of software 

attributes upon efficiency, in terms of performance and resource utilisation, for SOS 

operating in mobile environments. 

Having defined such metrics from a critical analysis of the problem domain, a 

series of hypotheses relating the metrics were proposed, and the metrics were 

evaluated theoretically and empirically. With the results demonstrating the strong 

correlation between software attributes and efficiency of SOS, an adaptation strategy 

was developed, in order to illustrate one of the practical applications of the metrics in 

the context of middleware infrastructures for SOS. 

Although this paper has made a significant incursion into an area that is not yet 

well understood, there are a number of limitations and opportunities that remain to be 

explored in the future which include, but are not limited to: 

• Evaluation of the software attributes and their associated metrics against other 

quality attributes such as reliability. 

• Analysis of additional resources such as mass-storage and power 

• Evaluation of the overhead of the metric collection and the adaptation strategy. 

In closing, the present authors believe this paper to be one of the few reported 

studies of metrics for distributed software, and the first involving the specific case of 

SOS. The results encourage further large-scale studies and which will suggest 

modifications to the metrics suite as additional understanding is achieved. 

Acknowledgments. We would like to thank the Australian Research Council (ARC) 

for supporting this project. This work is funded under ARC Linkage Project scheme 

no. LP0455234. 

Appendix. The contents of this appendix can be obtained from the authors on request 

or can be found online at http://goanna.cs.rmit.edu.au/~pablo/wewst/appendix.pdf. 

References 

1. Purao, S. and V. Vaishnavi, Product metrics for object-oriented system. ACM 

Computing Surveys, 2003. 35(2): p. 191-221. 

2. Emmerich, W., Engineering Distributed Objects. 2000: Wiley. 

3. Ruhe, M., R. Jeffery, and I. Wieczorek. Using Web objects for estimating software 

development effort for Web applications. in Ninth International Software Metrics 

Symposium. 2003. 

4. Henderson-Sellers, B., Object-Oriented Metrics: Measures of Complexity. 1996, 

Upper Sadle River, USA: Prentice Hall. 

5. Fenton, N. and S. Pfleeger, Software Metrics: A Rigorous and Practical 

Approach. Second ed. 1996, London: International Thompson Computer Press. 



6. Shatz, S., Towards Complexity Metrics for Ada Tasking. IEEE Transactions 

Software Engineering, 1988. 14(8): p. 1122-1127. 

7. Cheng, J. Complexity metrics for distributed programs. in International 

Symposium on Software Reliability Engineering. 1993: IEEE. 

8. Tsuar, W. and S. Horng, A New Generalised Software Complexity Metric for 

Distributed Programs. Information and Software Technology, 1998. 40(5-6): p. 

259-269. 

9. Morasca, S. Measuring attributes of concurrent software specifications in Petri 

nets. in Sixth International Software Metrics Symposium. 1999. 

10. Rossi, P. and G. Fernandez. Definition and validation of design metrics for 

distributed applications. in Ninth International Software Metrics Symposium. 

2003. Sydney: IEEE. 

11. Rossi, P. and G. Fernandez. Design Measures for Distributed Information 

Systems: an Empirical Evaluation. in International Workshop on Software Audit 

and Metrics (In conjunction with ICEIS). 2004. Porto. 

12. Ryan, C. and P. Rossi. Software, Performance and Resource Utilisation Metrics 

for Context Aware Mobile Applications. in Proceedings of International Software 

Metrics Symposium IEEE Metrics 2005. 2005. Como, Italy. 

13. ISO/IEC, Information Technology - Software Product Quality - Part 1: Quality 

Model. 2003, International Standards Organisation: Geneva. 

14. Poels, G. and G. Dedene, Distance-based software measurement: necessary and 

sufficient properties for software measures”. Information and Software 

Technology, 2000. 42(1). 

15. S. Abrahao, et al. Defining and Validating Metrics for Navigational Models. in 

Ninth International Software Metrics Symposium. 2003: IEEE. 

16. Marcela, G., M. David, and P. Mario, Defining Metrics for UML Statechart 

Diagrams in a Methodological Way, in Conceptual Modeling for Novel 

Application Domains (LNCS 2814). 2003, Springer. p. 118-128. 

17. Wohlin, C., et al., Experimentation in Software Engineering. 2000: Kluwer. 

18. Basili, V. and D. Rombach, The TAME Project: towards improvement-oriented 

software environments. IEEE Transactions Software Engineering, 1988. 16(6). 

19. Briand, L., S. Morasca, and K. El Emam, Theoretical and Empirical Validation of 

Software Product Measures. 1995, International Software Engineering Research 

Network. 

20. SPSS, I., SPSS 8.0: User Guide. 1998, Chicago: SPSS Inc. 

21. Freund, R. and W. Wilson, Regression Analysis: Statistical Modeling of a 

Response Variable. 1998: Academic Press. 

22. Briand, L.C., S. Morasca, and V.R. Basili, An operational process for goal-driven 

definition of measures. Software Engineering, IEEE Transactions on, 2002. 

28(12): p. 1106-1125. 

23. Rossi, P. and Z. Tari. Software Adaptation for Service-Oriented Systems. in 

Middleware for Service Oriented Computing (MW4SOC'06). 2006. Melbourne, 

Australia: ACM Press. 

 
 


