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Abstract  Detecting and monitoring radiation level is one 
of the critical duties for governments and researchers because 
of the high threats it oppose to humans. It was challenging in 
the past century to have a centralized radiation monitoring 
system until the rise of IoT (Internet of Things). Radiation level 
is measured using wireless sensors that outputs data which are 
transferred to a back-end server that monitors radiation and 
alerts when high radiation levels are detected, the server also 
stores the data for further analysis. The traditional data 
warehousing systems cannot handle this type of data any more 
due to (1) data collection speed, (2) rapid data growth, and (3) 
data diversity. With the rise of Big Data notion, new 
technologies are developed to handle data with similar 
characteristics. In this paper, we proposed RaDEn a scalable 
and fault-tolerant radiation data engineering system that relies 
on Big Data technologies such as Hadoop, Kafka, Spark, and 
Hive. The system is responsible of (1) reading data from 
sensors and other sources, (2) monitor the radiation level in 
real-time, (3) storing the data, and (4) providing on-demand 
data retrieval to users. In addition, we have implemented our 
system and conducted experiments in a real case scenario in 
collaboration with the department of environmental radiation 
control at the Lebanese Atomic Energy Commission (LAEC-
CNRS). 

Keywords Radiation, data engineering, Big Data, radiation 
monitoring, real-time processing 

I. INTRODUCTION 

Radiation pollution is a critical concern due to its 
detrimental impact on living beings and environment. There 
are different types of radiation stemming from various 
radioactive materials and natural resources [1]. The higher 
level of these radiations specifically the gamma radiation 
causes severe damage to human health [2]. Therefore, 
controlling radiation level is critically important. In order to 
do so, monitoring radiation sources is an indispensable task. 

The advent IoT (Internet of Things) specifically, sensors 
have paved the foundation of building smart ecosystems that 
enable collecting radiation data, processing, and analyzing 
radiation level in real-time [3]. Radiation sensors collect and 
transmit data via communication network such as 
telecommunication network, Wi-Fi, and Internet to the 
computational engine for measuring radiation levels. 
Radiation monitoring sensors records data continuously; in 
consequence, massive volume data can be generated in a 

high speed. Conventional data engineering technologies 
such as data warehouse are not adequate to handle this type 
of data.  
 Several data engineering technologies have been 
proposed in literature such as [5],[6],[7],[8],[9],[10],[11], 
[12],[13],[14],[15],[16] and many others. These solutions 
aims engineering radiation pollution data. However, existing 
solutions have several limitations that we summarized as 
follows: (1) Existing technologies rely mainly on traditional 
data technologies. (2) Most of them are focused on the data 
collection only. (3) Real-time data collection and processing 
is outside of the scope of existing technologies. (4) 
Scalability and fault-tolerance have not been dealt with by 
the technologies discussed in the previous sections. A 
solution that can address these limitations is an 
indispensable need. 
 In this paper, we have proposed a solution called RaDEn, 
which is a scalable and fault-tolerant system for radiation 
data engineering that relies mainly on new data technologies 
that are able to handle massive volume of data generated in 
high speed. RaDEn has the ability to read data from 
different sources, monitor radiation level in real-time, 
storing data in a scalable repository that provides on-
demand data retrieval to users for further analysis. 
 The remainder of this paper is organized as follows. In 
Section 2, we briefly introduce our solution called RaDEn. 
The development of RaDEn will be detailed in Section 3. 
Section 4 demonstrates RaDEn. We conclude our work in 
Section 5. 

 

II. AN OVERVIEW OF RADEN 

RaDEn is a scalable platform developed for radiation 
data engineering. It allows fetching massive volume of data 
from different sources. RaDEn enables user collection 
different types of data including such as structured databases, 
data streams and flat files. RaDEn has a radiation data lake 
which stores data a scalable cluster, process then with 
advanced techniques and visualize data using the best fit 
methods. 

RaDEn adopted both realtime and batch style 
philosophies for collecting and processing data. The hybrid 
enables users to perform both realtime and batch style 
operations. The data streaming from sensors can be collected 
by the users in realtime and files can be ingested in storage 
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as batch style. The processing and can be done the same 
ways. Besides these major operations it somewhat performs 
pre-processing tasks such data transformation and loading 
data into scalable data lake. Visualization is real-time 
meaning that the streams can be visualized with minimal 
latency and the can be done by files data. 

RaDEn is built on cluster computing and parallel 
computing paradigm. In addition, it adopts the notion of Big 
Data. The cluster computing guides the solution adopt 
technologies that foster scalability whereas the parallel 
computing provides computation models for designing 
parallel operations using suitable programming model such 
as functional programming model.  

RaDEn is built-on multi-layered architecture. Figure 1 
shows the architecture of RaDEn. The figure shows that the 
RaDEn system can collect data from any number of sources. 
RaDEn consist of six layers which are explained in the 
following: 

 Data Sources: Data sources layer consists of data 
streams sent from sensors installed in cities and mountains, 
relational databases where archive data are stored and flat 
files that can be exported from any old echo system 

 

Figure 1 - RaDEn architecture 

Data ingestion layer: This layer is responsible of 
reading data from different sources and delivering them to 
data processing or data storage layer. This layer must ensure 
scalability and fault tolerance and must read a huge amount 
of data from different sources in real-time and batch mode. 
Data can be stored into Data storage layer directly or it can 
be sent to Data processing layer to be processed in real-time. 

 Data Storage: This layer is responsible of storing data. 
It relies heavily on HDFS, which is a distributed file system 
that ensures high scalability and fault-tolerance. On the Top 
of HDFS we have to use warehousing technology to define 
and configure the metadata of the data stored in HDFS and 
let the users be able to perform easy data retrieval operations. 

 Data Processing Layer: This layer is responsible of 
processing data and notifying the end-user when a high level 
radiation is detected. The nature of the data sources requires 
a distributed data processing platform that ensures a high 
scalability and fault tolerance.  

 Data visualization: This layer is to visualize the results 
of data processing and is responsible of bringing the end-user 
in action by drawing real-time graphs that show radiation 
level timeline. 

 Coordination layer: This layer is responsible of making 

It is a service that runs in background and has the ability to 
connect with any technology used. 

III. DEVELOPMENT OF RADEN 

RaDEn is developed in two phases. In the first phase, we 
developed the RaDEn system and in the second phase we 
developed an alarm system integrated within RaDEn. 

A. RaDEn Core System 

We have built a 4-node Hadoop cluster. To build this 
system we have first deployed four virtual machines where 
we have installed Ubuntu1 16.04 LTS as operating system 
and Hadoop 3.1.0 for data storage. We have configured the 
first virtual machine to act as the master node (name node) 
and the others to act as slaves (only stores data). 

On the master node, we have also installed the data 
ingestion, processing and visualization tools. As a 
programming language, We have used python2 because it is 
more powerful than other languages in data science domain 
due to the presence of many specialized libraries. 

For data ingestion, we have installed Apache Kafka3 , 
Apache Flume4, and Apache Sqoop5. We used Apache Kafka 
as the main data ingestion tools, because: (1) it has the ability 
to read data from sensors directly. (2) It guarantees 
scalability and fault tolerance. (3) It can read data in real-
time and at rest. (4) It can send the data to processing engine  
and to the data storage layer. (5) It is easy to implement 
using python programming language. To use Apache Kafka, 
first we have installed the Apache Zookeeper6 which acts as 
a coordinator that lets Apache Kafka communicate with 
other technologies. Then, we created two topics: (1) 

 to insert data to 
HDFS (Hadoop Distributed File System) without any 

used for real-time processing and will insert data to HDFS 
Note that the first topic will be used for archive data only. 

 We have configured Apache Flume agents to read from 
Kafka topics consumers. The Flume agent is responsible of 
storing data from Kafka to HDFS. In addition, we used 
Apache Sqoop to read data from relational databases and 
store it into HDFS. Reading archive data from relational 
databases is not one of the main goals of the system, but it is 
an added value to allow user to migrate their old data from 
traditional warehousing system. In addition, we have used 
Apache Hive7 to define the metadata of the file stored in 
HDFS to make the data retrieval process more easily using 
SQL-Like languages such as HiveQL and Spark-SQL. 

                                                           
1 https://ubuntu.com 
2 https://python.org 
3 https://kafka.apache.org 
4 http://fume.apache.org 
5 http://sqoop.apache.org 
6 https://zookeeper.apache.org 
7 https://hive.apache.org 
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For Data processing, our solution relies heavily on 
Apache Spark8 for these main reasons: (1) it uses micro 
batching processing instead of stream processing, which 
more guarantee fault-tolerance, and in this solution fault 
tolerance is critical even if it may cause a few milliseconds 
latency [4]. (2) It can process data at rest and in real-time. (3)  
Spark has a wrapper library called PySpark that allows 
creating and running Apache Spark jobs in python. (4)  It is 
scalable so we can add more nodes when it is required. 

We have created a single node Apache Spark cluster as 
the first phase of deployment and we can add other slave 
nodes when it is required. In addition, we have use pandas9 
python library because it provides many classes and 
functions that makes handling data easier. 

For Data visualization, we used matplotlib 10   library 
which is a Python 2D plotting library which produces 
publication quality figures in a variety of hardcopy formats 
and interactive environments across platforms. It also allows 
drawing real-time graphs. 

B. RaDEn Alarm System 

The data processing and visualization is done by a python 
script, where we have implemented the radiation alert 
system (designed based on the Lebanese Atomic Energy 
Commission requirements) that work as the following: (1) 
First, the user must define a threshold value. (2) The 
radiation average is calculated based on the last 30 day from 
the current date. (3) Then, when the current radiation value 
is higher than the sum of the radiation average and the 

ause the rain 
increase the radiation level. (5) If an alert was raised (any 
level) and the radiation level is still high after 5 hours then a 

technician to visit the sensor location to do a checkup. 

IV. DEMONSTRATION OF RADEN 

In this section, we demonstrate RaDEn. For our 
demonstration we used a radiation dataset supplied by the 
department of environmental radiation control at the 
Lebanese Atomic Energy Commission (LAEC-CNRS). 

A. Dataset 

The dataset was provided by the LAEC-CNRS, is in 
form of flat files, because accessing the sensors or the web 
server (relational database) was not made due to 
confidentiality issues. The dataset contains the data 
collected from 2015-08-01 to 2016-08-01 from a testing 
sensor that was installed in Beirut. It contains information 
related to radiation such as: radiation level, temperature, rain 
level, Sensor battery power, data collection time and 
external battery power. 

B. Starting RaDEn 

Before starting the process, the user must start the 
following services: (1) Hadoop cluster (Figure 2), (2) 
Apache Kafka service (Figure 3), (3) Apache Spark cluster 

                                                           
8 https://spark.apache.org 
9 https://pandas.pydata.org 
10 https://matplotlib.org 

(Figure 4), (4) Apache Flume agent (Figure 5), (5) Python 
data processing script (if the user want to insert data to 
HDFS without visualizing data on a real-time graph, 
running this script is not needed). 

 
Figure 2 - Starting Hadoop services 

 

 
Figure 3 -Starting Kafka services 

 

 
Figure 4 - Starting Spark services 

 

 
Figure 5 - Starting Flume agent 

C. Data Ingestion 

To simulate data ingestion we have create a directory 
where we must copy all flat files, and we created a terminal 
script that creates a listener on this folder. When any file is 
inserted, the script loops over the lines and send them one 
by one to the Apache Kafka producer. Once the data is sent 
to the Kafka producer, the Apache Flume agent sent it 
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directly to HDFS to a specific directory and the data is 
replicated on the three Hadoop data nodes. Figure 6 shows 
the data ingested into HDFS via Hadoop web interface. 
Also, figure 7 shows that the file stored in HDFS is 
replicated on 3 data nodes. 

 
Figure 6 - Files ingested into HDFS 

 

 
Figure 7 - Stored file availability 

D. Radiation Monitoring 

At the same time, the python script read the data from 
Kafka consumer using the PySpark library, the alarm script 
is applied, and the radiation level is visualized on a real-time 
graph using matplotlib library. In figure 8, we have shown 
sequential snapshots of the real-time graph that was 
visualized during the experiments and it shows the radiation 
level changes in function of date and time. 

 
Figure 8 - Real-time graph screenshots 

In addition, when an alert is raised it is shown in a 
message box where the alarm level is written in the title and 
the description is written in the body. In figure 9, we have 
showed the level 1 alert message box. 

 
Figure 9 - Alarm Level 1 Messagebox 

E. Data Retrieval 

Based on the Flat files structure and for data retrieval 
purposes, we created an External Table using Apache Hive 
on the Directory location in HDFS. Then we created a view 
from this table to remove messy data such as duplicates 
rows and rows where dose rate is null. 

After created external table on HDFS directory, we can 
search among the data imported to HDFS using Spark-SQL 
or HiveQL console. We have to write a query based on our 
requirements. As example, we need to retrieve all the data 
where the radiation level is higher than 50. First, we need to 
run the Spark SQL console using the spark-sql command or 
hive command to start Hive console, and we can use the 
following query:  

SELECT * FROM vw_radiation WHERE dose_rate > 50; 

In this example, it shows that the number of rows 
returned is 10459 rows in 13.99 seconds as illustrated in 
Figure 10. 

 
Figure 10  Apache Hive query results. 

V. CONCLUSION 

In this paper, we designed a solution called RaDEn that 
is able to handle a massive scale of data in real-time and 
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batch style. It allow user to process the radiation data 
coming from different sources, predict any possible 
radiation problems and visualize the data in real-time. In 
addition, it gives the user the ability to query and retrieve 
the data using a simple SQL-Like language. In addition, we 
explained how we implemented this solution and we showed 
a real case scenario. 

We tried to cover all the challenges we identified at the 
beginning of our work but unfortunately, the 
implementation we have made have some limitations due to 
the following issues: (1) we received a very small dataset 
that cannot be considered as Big Data while our system is 
designed to handle Big Data. (2) We did not get permissions 
to access the sensors or the databases. (3) There is a lack of 
documentation for Big Data technologies. (4) The 
research time limit. 

A list of works is lined up to be done in future. More 
powerful tools such as bokeh11  and Kibana12  can be used to 
increase performance and more options to the end-user and 
are able to draw a huge number of real-time graphs at the 
same time. In addition, adding some user interface will 
make this this solution more powerful, because the current 
implementation is not user friendly; due to the lack of user 
interface, also it requires a good knowledge in SQL to be 
able to retrieve data from HDFS. In addition, the solution 
should be extended enhance the user the ability to visualize 
the results of queries on different types of graphs. 

Furthermore, we stored data as flat files in HDFS, to 
improve the performance; we could create an automate job 
that run periodically and move new data to another HDFS 
location and convert it to Optimized Row Columnar (ORC) 
files which gives faster results. Also in future extension, 
distributed search engines such as Elasticsearch  and Solr13  
can be used for data retrieval process. 
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