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Abstract. Due to complex structure and a huge scale, cloud systems
design and development requires a preliminary workload estimation. A
typical solution for this design step is a workload upper-boundary esti-
mation based on a sum of maximal intensities per cloud application. This
solution is not well suitable for nonstationary functioning cloud comput-
ing systems, due to such an estimation would result in lots of hardware
resources mostly unused during the worktime. Any workload can be rep-
resented as a combination of a probability density function and certain
parameters for modeling purposes. For any stationary processes, a shape
of the probability density function and the parameters would have con-
stant values. On the contrary, nonstationary processes are characterized
by changes of the values in time. The objective of the work is to de-
velop an analytical method for the nonstationary processes modeling and
representation. Completing the objective, the authors proposed a linear-
equation nonstationary processes representation form. Which allowed to
carry out the estimation using standard mathematical transformations
and operations. The proposed numerical method makes it possible to ap-
proximate periodic non-stationary distributions whose change in time is
sinusoidal. The method is tested with different types of synthetic signals
and in all cases demonstrates a high degree of compliance of the results
with the original data.

Keywords: Nonstationarity · Mathematical modeling · Simulation ·
Cloud computing · Computational resources scaling.

1 Introduction

Currently, computing is widespread in cloud systems that solve a wide range
of tasks with small user requests processing time [1]. Examples of such systems
include various Internet services for converting image formats and media files,
services for performing mathematical calculations and services for collaborative
work with office documents. Due to the fact that cloud systems, as a rule, have
a web interface, there is no need in specialized software to work with them,
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therefore the number of their users is constantly increasing as well as the to-
tal workload. Therefore, these systems require continuous operation and high
performance to ensure the high quality of the services provided.

A cloud system is a set of computing systems, as a rule, located in one
data center, serviced by one staff and under the jurisdiction of one managing
organization [2]. The management organization provides the services of renting
a part of the cloud system computing power using virtualization technologies
automatically or in a manual manner. For instance, there could be a special
software for company administrators whis is capable of provisioning new com-
puting resources for any software. Thus, the tenant receives a certain number of
virtual nodes with the same configuration on which the cloud application can
be launched. The cloud application has a single entry point for user requests
and it is horizontally scalable, so the structure of the cloud application is hidden
from users [3]. Cloud applications in contradiction to desktop apllications are
characterized with a high level of horizontal scalability. Therefore, if a tenant
has insufficient computing capacity at some point in time, he can rent additional
virtual nodes and launch additional instances of it’s cloud application, increasing
the overall performance of his cloud application.

2 Problem formulation

Due to complex structure and a huge scale, cloud systems design and devel-
opment requires a preliminary workload estimation. A typical solution for this
design step is a workload upper-boundary estimation based on a sum of max-
imal intensities per cloud application [4]. This solution is not well suitable for
nonstationary functioning cloud computing systems, due to such an estimation
would result in lots of hardware resources mostly unused during the worktime.
Consider a cloud system with many cloud applications. An average workload
of the applications in queries per second could be either constant or experience
changes over the measurement time.

Any workload can be represented as a combination of a probability density
function and certain parameters for modeling purposes [5]. For any stationary
processes, a shape of the probability density function and the parameters would
have constant values. On the contrary, nonstationary processes are characterized
by changes of the values in time. Thus nonstationarity in any systems could be
delimited in three classes: with constant probability distribution, with constant
parameters (mean, variation, etc.), and total non-constant [6]. Each of those
nonstationarity classes is typical for specific environmental conditions. Mostly,
nonstationarity may occur due to natural workload behavior. There are number
of nonstationarity reasons that could be converged in three classes: periodic,
aperiodic (e.g. damped oscillations) and chaotic – without any visible structure
or reproducibility. Figure 1 represents a workload of the biggest Internet data
exchange point of the Russian Federation – MSK-IX. It’s shown that a network
traffic tends to be a periodic nonstationary process, due to number of Internet
users at a specific point: much more active users during an evening.
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Fig. 1. MSK-IX weekly traffic

Absolutely the same workload class – periodic nonstationary process – was dis-
covered in a course of numerous cloud systems studies. In spite this fact, typi-
cal approach of cloud systems design and real-time management consists of an
estimation on maximum intensity values [7]. Such an approach leads to non-
optimal workload distribution due to big amount of unused hardware resources.
Therefore, the objective of the work is to develop an analytical method for the
nonstationary processes modeling and representation.

3 Period estimation

For the non-stationary processes investigation during measurements on a real
system, it is necessary to take not only the numerical characteristics of the
distribution into account, which affect the absolute values of the measurands,
but also the periodic component describing distribution characteristics changing
with time. There is a need to automatically estimate the period length based
on a sample of measured values in order to present the observed process in an
analytical form. Below we propose a method for such processes period length
estimating to ensure their analytical description and research.

Existing methods for such problems solving are usually associated with the
sound signals analysis or have a different, narrow field of application, which
makes it difficult to use them in network computing systems [8]. In addition,
currently used methods are not suitable for the investigation of non-stationary
processes occurring in cloud computing systems, since the function describing
changes in such processes does not always have a sinusoidal form. Methods such
as, for example, the fast Fourier transform (FFT) are not suitable for the pe-
riod estimation of signals with a missing fundamental [9]. In particular, the fast
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Fourier transform has a fairly good algorithmic complexity, but it requires a large
number of floating point operations, including the results post-processing, which
eliminates the algorithmic complexity advantage over the method described be-
low. Also, despite the fact that the fast Fourier transform works well on signals
having a natural nature, its applicability is not always relevant for the “artificial”
signals observed in computer science [10]. In particular, the number of terms re-
quired for the FFT calculating in gap functions processing rushes to infinity,
which makes the calculation impossible [11]. Therefore, it became necessary to
develop a method for the period T length estimating, satisfying the following
requirements.

1. The method should evaluate the period on an incomplete set of input data.
Since the load created by users changes over time [12], to manage the cloud
system, it is necessary to estimate the length of the requests arrival process
period in ”real time”.

2. The method must have a polynomial or constant algorithmic complexity. It
is clear that during long-term high frequency measurements, a sufficiently
large number of measured values will be obtained, which will lead to a large
processing time using existing algorithms with the exponential complexity
[13].

3. The main memory usage should linearly dependent on the amount of input
data, since it is assumed to use the developed method to manage the cloud
system with a limited memory capacity [14].

4. The method should be resistant to measurement errors and obtain reliable
results (in real environment as well) characterized by a non-ideal input signal
form [15].

5. Calculation results should not depend on the quality of a periodic input
data, due to real systems discreteness and therefore function holes presence.

Let there be some periodic value Y , depending on time Y = y(t). Obviously,
there exists a moment of time ti for which the interval (0; ti) is an integer number
of the y(t) function periods. However, in practice, measurements of the Y values
can be made with a variable time step, often skipping i-th samples. This makes
it impossible to iteratively pass through all points in time at an equal step to
analyze the y(t) function behavior, so it becomes necessary to obtain the missing
values of Y , that is, to move from the Y values to the Y ′ values pending at regular
time intervals.

A linear interpolation could be used for y′(t) missing values estimation. Hav-
ing computational complexity of O(1), it provides more precise period estimation
[16].

Since the period T includes an integer number of intervals ∆t (provided that
T > ∆t and T mod∆t = 0), at time ti the y′(ti) = y′(ti − T ) equality is true.
Thus, two arbitrary adjacent equal intervals in which the y′(t) function will have
the same behavior can be found to search for a period in the sample.

In the proposed method, an iterative passage through the normalized sample
of a given value is used, starting from the moment of t0, that is, the moment of
its first measurement. At every second moment of time ti the interval t = ti− t0
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is divided into two equal segments t0 . . . ti/2 and ti/2 . . . ti respectively. If the
y′(t) behaves identically on the obtained segments, then the segment ti/2 is the
desired y′(t) function period.

Considered many ways to assess the functions characters similarity. In the
proposed method, as a measure of the y′(t) function behavior similarity degree
on time intervals t0 . . . ti/2 and ti/2 . . . ti Pearson correlation coefficient r is used,
which is calculated according to the formula (1).

r =
cov(t0 . . . ti/2, ti/2 . . . ti)

σ[t0 . . . ti/2] ∗ σ[ti/2 . . . ti]
(1)

Here, the correlation moment cov(t0 . . . ti/2, ti/2 . . . ti) is defined as cov(X,Y ) =
M [(X −M [X]) ∗ (Y −M [Y ])], where M is the mean value defined for the series
of values analyzing task as the arithmetic average. The standard deviation σ is
defined as σ =

√
M [X2]−M [X]2.

Due to the limitation on the method computational complexity, for calculat-
ing M and σ values, required for the r coefficient determination, it is proposed
to also store

∑N
j=0 y

′(tj) and
∑N
j=0 y

′(tj)
2 sums for each value of the y′(ti) func-

tion. This makes it possible to reduce the mean value determination time of the
sample to the time of calculating the difference between two values and the quo-
tient, and the operation computational complexity is O(1), while the r coefficient
calculating computational complexity decreases to O(N).

Thus, for each second sample of the y′(t) function, the similarity degree of
the two functions describing both halves of a known values series is calculated,
respectively. If the correlation r exceeds a certain threshold value R, the t′ = ti/2
value is assumed to be a multiple of the function period T . In this case, the t′

value s placed in the table of the y′(t) function expected periods. This table is a
correspondence of a supposed period T ′i and the number of times n, which this
period was recorded among the y′(t) function values y′(t) with a high degree of
similarity. Therefore, it is necessary not only to estimate the y′(t) function half-
segments similarity degree of the half-segments of the function when processing
the next incoming samples of the y′(t) function, but also to evaluate the added
samples similarity of the function with all multiple expected periods.

To increase the accuracy of the obtained results, the n value can be considered
not the number of periods occurrences in the set of the function known values,
but the calculated correlation coefficients sum. In this case, for r > R the n
value will increase by the ∆n = R 6 ∆n 6 1 value. Such an approach does not
decrease the proposed method algorithmic complexity, however, it will require
slightly more floating-point calculations, which may be undesirable, for example,
in embedded systems.

In the course of numerous experiments it was found that for ideal functions
(sinusoidal, meander, sawtooth and triangular) the suitable value of R is 0, 999.
On data received from Russia’s largest traffic exchange point [17], high estima-
tion accuracy is achieved at R = 0, 9. In the general case, it is proposed to
estimate R using preparatory simulation experiments or use R = 0, 8.
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4 Composition

To solve the problem of designing cloud systems [18] with non-stationary pro-
cesses it is important to identify the properties of the nonstationary distributions
composition. Let two non-stationary processes are given by non-stationary dis-
tributions (2) and (4).{

f(x, t) = a(λf (t), x)

λf (t) = c(t)
(2)


sum(x, t) = a(λf (t), x)⊗
⊗ b(λg(t), x)

λh(t) = c(t) + d(t)

(3)

{
g(x, t) = b(λg(t), x)

λg(t) = d(t)
(4)


comp(x, t) = (a(λf (t), x)+

+ b(λg(t), x))/2

λh = c(t) + d(t)

(5)

To calculate the sum of these processes (3), it is assumed that the probability
density function can be represented as a convolution of the original probabilty
density functions [19], and to calculate their composition (5), the probability
density function can be calculated as the half-sum.

To estimate an average and maximum queries intensity one can just sum the
relevant values: λ(t) = c(t) + d(t) and λmax(t) = cmax(t) + dmax(t). All of those
hypothesis have been successfully tested with a following model in AnyLogic
Professional 7.0.1 simulation environment:

y
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Fig. 2. AnyLogic model

The model (Figure 2) has the following parameters: λi(t) – input streams inten-
sity; b – application processing time; A1(τ) and A2(τ) – input stream probability
density functions; B(τ) – application processing time probability distribution
function; characteristic of the model: ρ – load average.

As a result of modeling the following property was identified: if the sum of
average values of intensity does not exceed intensity of service [20], then, regard-
less of the sum of maximum values of intensities, the system will not pass to
constantly overloaded state [21]. Thus, with sufficient storage capacities in such
systems, mass losses do not occur. The revealed property allows to draw con-
clusions about the expediency of redistribution of non-stationary load in cloud
systems to solve the problem of automatic scaling of the cloud [22]. However,
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the question of choosing suitable storage capacities remains open, so that the
system functions correctly, without mass loss of applications [23].

Taking into account the confidence intervals with a confidence probability
of 95% and the generally accepted error of simulation modeling of 5% [24], it
can be concluded that at constant average intensities of incoming flows the total
intensity is their sum.

5 Approximation

Let there be a series of non-stationary distributed data X = (x0, x1, ..., xN ), the
distribution intensity of which λ varies according to some time depinding periodic
law: λ(t), meanwhile the probability distribution function does not change.

Let λ(t) be a periodic function, having the form of a sinusoid with a period
T . Then the following function can be found (6), where A – the sin amplitude,
φ0 – the initial phase, C – the shift on the y-axis, which will most closely match
the original λ(t).

λ
′
(t) = A ∗ sin(ω(t) + φ0) + C (6)

At the same time, the Pearson correlation coefficient r can be chosen as a measure
of compliance [24].

That is, the task of the X set approximation is reduced to the selection of
such values A, φ0, ω and C, for which λ(t) and λ

′
(t) have the highest correlation

coefficient r value.
At the first stage of the method, it is proposed to obtain a set of aver-

aged values λi (i ∈ (0..mT ),m ∈ N) with a length of one or several λ(t)
function periods by averaging the measured X values at i + kT points, where
k = (0, 1, 2, ..., N

mT − 1).

Since
∫ 2kπ

0
(A ∗ sin(t) + C)dt = 2kπC, C is the λ(t) function’s average [25].

Thus, C can be obtained as C =
∑N

i=0 λi

N , given number of λ values N is multiple
of the period [26].

The sine amplitude A can be calculated using the mean square of λi values:

A =

√
2∗

∑N
i=0 λ

2
i

N . Or, given the value of C, A =

√
2∗

∑N
i=0(λi−C)2

N .
Having A and C values, the initial phase φ0 could be estimated as follows,

resulting in λ
′
(t) estimation. Consider φ0 at point t = 0: λ(0) = λ0 = A ∗

sin(φ0) + C. There are only two potential values of φ0: φ0(1) = arcsin(λ0−C
A )

and φ0(2) = π − arcsin(λ0−C
A ). To choose the correct one, Pearson correlation

coefficient [27] could be used again, and the function with proper φ0 value would
have higher coefficient value.

The proposed numerical method makes it possible to approximate periodic
non-stationary distributions whose change in time is sinusoidal [28] and represent
it in a form of (6). The method is tested with different types of synthetic signals
and in all cases demonstrates a high degree of compliance of the results with the
original data. The results of experiments with confidence intervals are presented
in the table below.
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Table 1. Experiment results

Signal type
Correlation coefficient

with exponential distribution

Correlation coefficient
with Erlang distribution,

k=5

Sine 0.890 ± 0.002 0.973 ± 0.002
Triangle 0.671 ± 0.006 0.915 ± 0.001
Saw 0.712 ± 0.002 0.765 ± 0.001
Meander (duty cycle 2) 0.68 ± 0.02 0.75 ± 0.02
Meander (duty cycle 7/10) 0.58 ± 0.03 0.71 ± 0.04

We can conclude that for the case of low coefficient of variation [28] (ν = 1√
5
,

the Erlang distribution with k = 5), the method as a result sets the function
λ

′
(t), strongly correlating with the initial λ(t) for the sine and triangular wave

and, in general, acceptable results in all other cases.
This fact confirms the possibility of using the method in practice for systems

having a similar workload.

6 Putting results into practice

The results obtained in the work can be applied in algorithms for automatic
scaling of cloud computing systems. For example, let the cloud system have two
nodes that run instances of the cloud application, shown on Figure 3.

Fig. 3. Cloud system components and deployment
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A workload from two users (User 1 and User 2) is distributed between the nodes,
which is shown by solid and intermittent lines, respectively. Suppose each user
creates a sinusoidal antiphase workload on the compute nodes. If we sum up the
maximum values of the users workload intensities, we can make the erroneous
conclusion that at least two nodes are needed to work simultaneously to ensure
the required performance. At the same time, if we take into account the informa-
tion about the nonstationarity of the load created by users and take advantage
of the results obtained in the work, there will be no overload state with just one
computing node. In this situation, the load balancer can send all user requests to
one node, and the second node can be turned off to increase the energy efficiency
of the cloud system.

Such an approach can significantly decrease energy consumption of large dat-
acenters, in which cloud systems could use thousands and thousands of physical
servers. Which is resulting in a huge economic cost reduce for the datacenter
owners, who can farther reduce rent costs for end-users and increase their com-
merce income.

7 Conclusion

In this paper we proposed an analytical method for the nonstationary processes
modeling and representation. This method includes the following: numerical pa-
rameterized method that allows to estimate a period length of non-stationary
processes; a linear-equation nonstationary processes representation form, which
allowed to carry out the estimation using standard mathematical transforma-
tions and operations; a numerical approximation method of periodic nonstation-
ary distributions whose change in time is sinusoidal. This method helps to solve
the problem of designing cloud systems with non-stationary processes.
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