
Drilling Knowledge Bases for Hidden
Frames

João GONÇALVES 1 and Pedro MARTINS and Amı́lcar CARDOSO
CISUC, Department of Informatics Engineering, University of Coimbra

Abstract. Sometimes we may wonder where we can obtain semantic frames to be
used in a computational model of Conceptual Blending. The frames can be hand-
made, adapted from existing frame libraries or, as we suggest in this document,
discovered by mining conceptual graphs. The idea we summarise here depicts our
proposed computational mechanism to explore the knowledge base containing the
conceptual graphs for recurring semantic patterns representing potential frames.

Keywords. frames, conceptual graphs, data mining, conceptual blending

1. Introduction

A general issue in Computational Creativity (CC) arises from the need of having data
crucial to build models. With the ambition of going beyond simple toy problems we are
currently looking forward for the CC prototype system we have been developing to be
capable of handling larger amounts of data. That system is comprised of various modules:
a fast mapping module [1] and a blending module [2] (the Blender) based on Conceptual
Blending (CB) theory [3].

The mapping module is implemented as a Genetic Algorithm (GA) that extracts
mappings from large-scale conceptual graphs such as ConceptNet [4] or from the NELL
[5]. These conceptual graphs are represented as semantic graphs where vertices are con-
cepts and the edges correspond to relations between concepts, that is, a graph struc-
ture representing Subject-Verb-Object (or equivalent) triples. The same data functions
as representations of the input spaces in the blending module. This module also re-
quires a set of one-to-one mappings between concepts (representing analogies) and
frames to guide the blend towards having specific aspects [6]. The source code for
all the above modules (and new ones to be researched in the future) is available at
https://github.com/jcfgonc/phd.

2. Conceptual Blending

Fauconnier and Turner [3] proposed CB as a cognitive theory to explain cognitive-
linguistic phenomena such as analogy, metaphor, metonymy or counterfactual reasoning
[7]. In CB, the generation of new ideas is done through the integration of existing ones.

1Corresponding author: jcgonc,pjmm,amilcar}@dei.uc.pt

https://github.com/jcfgonc/phd


bird

wing

leg

horse

partOf

partOf

ability ability
fly run

purposepurpose

horse-bird

wing
partOf

ability

fly

purpose

input space 1 input space 2

blend space

mapping

projection

frame

bird

wing

leg

horse

partOf

partOf

ability ability
fly run

purposepurpose

input space 1 input space 2

Figure 1. The idea behind Conceptual Blending (CB). In the left an example of a mapping of concepts between
two domains, based on the same structure of edges (relations) connecting the concepts - a graph isomorphism.
In the right an example of a CB process using the same mapping to create a new blend space containing the
frame shown in cyan. Best seen in colour.

Various forces act to connect and blend different parts of knowledge present in two or
more input spaces, including a generic space containing elements common to both the
input spaces and representing a shared conceptual structure between them [8]. These
spaces serve the purpose of being initial sources of information. Many works in CC are
focused on computational models which explore CB as a way of creating new knowledge
[9, 10].

A CB framework as the one shown in Fig. 1 requires at least two input mental spaces
containing the source of information to be processed. These input spaces could corre-
spond to semantic networks comprised of relations between concepts, i.e. Knowledge
Bases (KBs). One of the steps CB does - named composition - is using an alignment of
concepts of each input mental space as a guide of which concepts are to be used in the
blend space. In the end, a new mental space emerges from the CB process containing its
“output”.

For the guiding alignment stated above, some CB implementations, including our
Blender, use a graph isomorphism between the input spaces to align concepts with a
similar structure (Left Fig. 1). Thanks to that alignment, part (or all) of the structure
present in the input spaces is also present in the blend space (shown in the right Fig.
1). The structures describing the alignment of concepts are termed mappings and are
comprised of sets of concepts. Many tools have been developed for that purpose, such
as the Structure Mapping Engine [11], Sapper [12] and a fast stochastic algorithm [1]
capable of handling semantic networks in the order of millions of relations.

In addition to the composition step, additional steps are executed to complete and
elaborate the blend, namely, completion and elaboration [3]. The latter involves execut-
ing additional logic (such as rules) present in the input spaces or in the generic space,
hence elaborating (inferring) into the blend space new knowledge. In the completion step
the structures stored in the blend space are completed with background knowledge such
as frames to generate consistent and meaningful structures [8, 7].

It is in this step that we observe the importance of frames - to give the blend a
recognisable meaning such as an event or an entity, e.g., the journey of someone in the
Buddhist Monk example [13]. In Fig. 1 the blend space contains a frame drawn in cyan.
That frame has specific meaning - giving an entity (horse-bird) an ability (flying) because
the entity has a part with that purpose (wing). Although the input spaces also contain the



given frame, through composition the relations can be brought from the input spaces and
assembled into the frame structure that emerges in the blend space.

3. Motivation

In this work we discuss our approach for solving some of the issues reported on [2],
mainly regarding obtaining the semantic frames. These structures represent a pattern of
relations between entities (concepts) and are rooted on previous lived experiences [14, 3].
They are required by CB to guide the blending process in order to exhibit recognisable
wholes, possibly multiple ones [7]. Frames can be seen as shaping the emerging blend
with one or more mental images and given the probabilistic nature of the blending pro-
cess, it is highly likely that the resulting blend will contain multiple frames.

We have been using a large subset of ConceptNet V5 processed by us and repre-
senting the conceptual spaces described above. We added various new facts and removed
what we found as irrelevant or controversial information including biased relations as
purposeOf(woman,cook). Some of these were also noted by [15], including incomplete or
erroneous relations such as isa(prion,prokaryote). Our latest processed version of Con-
ceptNet has 1229508 concepts, 1791604 relations and an improved version will be made
available publicly in the future. Although there are KBs with frames such as FrameNet
[16], MetaNet [17] and Framester [18], we speculated whether ConceptNet or any other
KB could be mined for hidden patterns representing possible frames. For the moment we
have focused on the mining topic and that is the purpose of this paper.

4. Approach

The idea makes use of a GA to find repeating structures in the KB resembling frames.
Currently, these structures ignore specific concepts (such as bird or plant) and are only
based on the type of relation. They can be seen as depicting geometric structures in the
semantic graph. Based on our previous experience with handling large-scale semantic
graphs and the complexity of this problem, we think that the best strategy to find accept-
able solutions in a useful time is to use stochastic algorithms such as GAs. Additionally,
our GA is mostly concurrent, makes use of multi-core processors and is able to search
the KB for patterns almost in real-time.

Frames are stated as Prolog queries and are applied to the relations stored in the KB.
An example of a frame used by the CB module is the idea of some entity A containing a
part B whose purpose is to C, hence A gains the C ability. If variable C = ’fly’ this frame
could represent the idea of an entity with a part granting it the ability to fly. This frame
can be stated as the rule:

ability(A,C), purpose(B,C), partOf(B,A).

This is equivalent to a three edge, three concept semantic graph in the form of a
closed triangle. With a querying engine (i.e., Prolog or Datalog based), the KB can be
searched for solutions for the above frame and thus if it is a prevalent pattern or not.
Solutions are counted as different instantiations of variables. An example of the depicted
pattern and of a small semantic graph containing six occurrences of the same pattern is
shown in Fig. 2.



cat

catch

claw

bite

snake fang

entity

computer

enter_text

keyboard

eumetazoa

think

brain

display_video

monitor

electronic_device

kill

ability

partOf

purpose

ability purpose

partOf

ability

partOf

purpose

isa

isa

isa

ability

partOf

purpose

ability

partOf

purpose

isa

isa

purposeability

A

C

B

ability purpose

partOf

Figure 2. An example of a three relation pattern (bottom-left) as well as a small conceptual space containing
six occurrences of the same pattern (top). Best seen in colour.

4.1. Genetic Algorithm details

As with all GAs, ours evolves a population of chromosomes during multiple epochs.
The idea is to examine, traverse and scale different regions of the KB by distributing
this process amongst multiple individuals. In each epoch, a chromosome is mutated, has
its fitness evaluated and possibly selected for inclusion in the next epoch. The selection
procedure is a simple binary tournament between two members of the population of the
same epoch.

A potential pattern (i.e. frame) is stored in an individual chromosome of the popu-
lation as a directed semantic graph. This graph is mapped to the corresponding query by
replacing each concept present in the chromosome’s semantic graph by a unique variable
(e.g. bird→ B). It is important to note that the graph stored in the chromosome contains
concepts and not variables, as concepts are required to match the chromosome’s graph
to a region of the KB when applying the mutation operator.

In the first epoch, the chromosomes are small regions extracted from the KB with
two-three connected relations (on average). The reason for this is that, in our opinion,
frames with one relation do not seem to be useful for the blending process of the blender
module. For a similar reason, there is no need to use such a tool as this one to check for
the most present relation in the KB if single relation frames are allowed en masse.

The stochastic search of the GA is implemented with a mutation operator, which
adds or removes relations to the semantic graph stored in the chromosome. New relations



are copied from the KB according to common concepts between the chromosome’s graph
and the KB. Hence, an addition chooses a random concept in the pattern, checks its
relations in the KB and adds one of these at random to the pattern. Relation removal is
simpler, they are randomly removed from the pattern with no specific criteria and in the
case the pattern gets fragmented, only a single random component of the pattern’s graph
is maintained.

Given the stochastic nature of the mutation operator, each evolving pattern may de-
generate into multiple graph components, that is, it may transform into various discon-
nected sets of relations. The mutation is always followed by a repairing operation which
guarantees that the pattern is composed of at most one graph component. The repairing
algorithm is simple, it remove all except one of the graph components. This remaining
component is randomly chosen in order to maximise the randomness of the GA.

We use a fast querying tool named querykb provided by Aaron Bembenek which at
this moment is temporarily unavailable. It was developed to strictly count all possible
solutions to a given query and does not instantiate variables. However, for its purpose
of counting solutions, it is exceptionally fast and efficient. It is invoked whenever the
GA evaluates a chromosome’s fitness function. The number of pattern matches can reach
extremely high numbers and therefore are returned by the tool as Java BigIntegers.

4.2. Fitness function

The score of each evolved pattern is calculated with the fitness function, applied to every
chromosome in the current GA population and thus, every pattern has an individual score.
As the GA is (currently) implemented as a single objective optimisation task, we had
to combine k multiple objectives in a single fitness function f using a weighted sum of
individual components fi (a linear aggregation). The weights are scalars and are manually
chosen to fine-tune the GA and its results towards showing aspects we want the patterns
to exhibit. At the moment, we have the following four objectives (k = 4):

1. f1 is the logarithm to the base 10 of the number of matches of the pattern in the
KB;

2. f2 is the number of relations (edges) the pattern has;
3. f3 is the number of different (unique) relation labels the pattern has;
4. f4 is the standard deviation of the histogram of relations the pattern has.

The first objective, f1, drives the optimisation towards finding the most recurring
pattern within the KB, without any regard to the pattern’s structure. Because of the colos-
sal amount of matches for many patterns, to include this objective in the fitness function
(stored as a double floating number) the code returns the logarithm to the base 10 of the
total matches (a BigInteger number) returned by the querykb tool. We decided on base
10 to be easier to deduce from the logarithm the number of digits the pattern match count
has.

In addition, we include structural information regarding the pattern as three more
objectives. Within those, objectives f2 and f3 guide the optimisation towards finding
larger patterns. Objective f2 has more impact on that purpose compared to f3 but does
not guarantee that the pattern has a diverse amount of relations, an aspect controlled by
the latter objective.

Objective f4 reflects the count of relations of each type (label) contained in the
pattern, i.e., four relations with the label partof, two relations with the causes label, etc.



X2

X1X4

X3

X6X5

X0
b

aa

a

a
a

X1 X0 X2
a b

X2

X1X4

X3

X6X5

X0
b

ba

a

a
b

Figure 3. Example of pattern generalisation. The first two have six relations of two types: a and b. The third
pattern has the minimum amount (2) of relations with the same two types. Best seen in colour.

Relations not existing in the pattern are not included in the histogram calculation. The
purpose of this objective is to force the pattern to have a balanced amount of relations
of different labels (Fig. 3). Adjusting this weight in the opposite sense will compel the
pattern to have a majority of relations of the same label. Hence, this objective controls
the generalisation of patterns: generic patterns are easily or more commonly instantiated.
Using Fig. 3 as a reference, structures matched by the pattern on the left are also matched
by the pattern on the right. The opposite is not true, as the left pattern requires six distinct
relations and seven distinct concepts when compared to two relations and three concepts
in the right pattern. Therefore, the leftmost pattern is a specialisation of the rightmost
pattern. Although objective f4 helps in this regard, it will only drive the GA towards
generic frames given a constant f3, that is, they must have the same relation types (i.e.
two in Fig. 3).

5. Current Results

We removed from ConceptNet V5 four relations that in our opinion will not be very
fruitful in the Conceptual Blending process: isa, derivedfrom, synonym and similarto.
These relations are very generic and the remaining 35 relations contain more specific
information regarding the concepts they are related to.

Problematic concepts with non-ASCII characters were also removed because of in-
compatibilities with some Java libraries and the handling of Unicode characters. Con-
sequently, the complexity of the mining problem was reduced and the working KB had
377719 relations and 278921 concepts.

The querykb tool allows the user to set a time limit to the query/pattern match count-
ing process, something we had to set at 30 minutes per pattern to have results within an
acceptable time limit. The tool by itself is concurrent and forces our GA to be sequential
when calculating the fitness function for all the chromosomes. This sets a limit that in
the worst case only one chromosome would be evaluated per 30 minutes and hence, a
maximum number of epochs to be processed by the GA in a given time. Unless otherwise
specified, the weights used in balancing the four objectives were the following:

weights w1 w2 w3 w4

values 0.1 0.1 1 1

We ran 10 experiments with an execution time of 48±24 hours and 70±30 epochs
per experiment. The population size (number of chromosomes/patterns) was constant



X8

X0

X1

X2

X3 X4

X5

X6

X7

atlocation

partof

hasproperty

hasprerequisite

usedfor

hassubevent

receivesaction

causes

X8X9

X0

X1

X2

X3

X4

X5

X6

X7
antonym

atlocation

usedfor

hasproperty

hasprerequisite

definedas

capableof

motivatedbygoal

receivesaction

X8

X0

X1

X2

X3

X4

X5

X6

X7

atlocation

hasproperty

hasprerequisite

capableof

usedfor

hassubevent

receivesaction

causes

X8

X9X10

X0

X1

X2

X3

X4

X6
antonym

receivesactioncapableof

atlocation

usedfor

hasprerequisite

hasproperty

definedas

X8

X9

X10

X0X11

X1 X2

X3X4

X5

X6

antonym

receivesaction

capableof

capableof

atlocation

hasproperty

usedfor

hasprerequisite

hasproperty

definedas

X8

X0

X1

X2

X3

X4

X5

X6

X7

atlocation

hasproperty

hasprerequisite

capableof

usedfor

hassubevent

receivesaction

causes

X0

X1X2 X3

motivatedbygoal

hasprerequisite
causes

X3 X4 X5
atlocation capableof

X0

X2

X4X5

capableof

receivesaction

usedfor

X8 X9

X0

X3

X5

X7
antonym

capableof

atlocation

definedas

receivesaction

X0 X1X3

X4

X5

hassubevent

hasprerequisite

motivatedbygoal

causes

usedfor

X1X2 X4
atlocation knownfor

Figure 4. Examples of patterns we found most interesting during the various executions of the algorithm. They
are ordered top to bottom according to their number of relations.

per epoch at 64 elements. The GA used a binary selection tournament with the winning
probability of the strongest candidate being 75%. The machine used in the experiments
had two eight-core Xeon E5-2667 v2 processors (total 16 cores) working at 3.6 GHz, 64
GB of RAM and the Microsoft Windows 7 SP1 operating system. The querykb tool used
a block size of 256 and 32 threads.



Fig. 4 contains twelve of the patterns we found interesting. Changing the weight of
objective f2 had an influence on the number of relations in the patterns, which can be
seen by watching the top to bottom ordering of the patterns in Fig. 4. Objective f4 had the
effect of lowering the presence of multiple relations of the same type, although it does
not guarantee the lowest amount as seen in the last pattern containing two hasproperty
relations.

We were not able to extract graph structures with cycles similar to the triangle pat-
tern shown in Fig. 2. The search algorithm does not have any reason to find those types
of structures and therefore they do not emerge during the GA’s execution. It is our opin-
ion that this may be solved with some changes in the mutation and with one or more
additional objective function(s).

As we are currently lacking semantic quality measures to evaluate the patterns, ex-
cept for the four objectives stated before we can not firmly conclude if any one of the
patterns is better or worse than the others either in the CB process either for any other
purpose.

6. Conclusion and Future Work

We presented a mechanism to mine for repeating patterns in a KB. The purpose is to
find potential frames in semantic graphs that are used by Conceptual Blending modules.
At the moment we have a working prototype that finds recurring patterns representing
prototypes of frames. The prototype is ready to be evaluated semantically and to see
whether it matches the creative requirements expected to arise ahead in our future work.
We will also study other objectives to guide the quality of the emerging patterns accord-
ing to whatever requirements we think the frames should have. This will require further
understanding of frames and their impact on the resulting blends of the CB module.

Acknowledgements. João Gonçalves is funded by Fundação para a Ciência e Tec-
nologia (FCT), Portugal, under the PhD grant SFRH/BD/133107/2017. We greatly ac-
knowledge Aaron Bembenek for his impressive querykb tool and his availability for
matching the tool to the needs of our project. To a truly generous person, a sincere thanks.

References

[1] João Gonçalves, Pedro Martins, and Amı́lcar Cardoso. A fast mapper as a foun-
dation for forthcoming conceptual blending experiments. Special Track Analogy -
Proceedings from The Twenty-Sixth International Conference on Case-Based Rea-
soning, 2018.

[2] João Gonçalves, Pedro Martins, and Amı́lcar Cardoso. Blend city, blendville. In
Proceedings of the Eighth International Conference on Computational Creativity,
2017.

[3] Gilles Fauconnier and Mark Turner. The Way We Think. New York: Basic Books,
2002.

[4] Robert Speer and Catherine Havasi. Representing general relational knowledge in
conceptnet 5. In LREC, pages 3679–3686, 2012.



[5] T. Mitchell et al. Never-ending learning. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI-15), 2015.

[6] Graeme Ritchie. Some empirical criteria for attributing creativity to a computer
program. Minds and Machines, 17(1):67–99, 2007.

[7] Francisco Câmara Pereira. Creativity and artificial intelligence: a conceptual
blending approach. Berlin: Mouton de Gruyter, 2007.

[8] Pedro Martins, Pereira Francisco, and Amı́lcar Cardoso. The Nuts and Bolts of
of Conceptual Blending: Multi-Domain Concept Creation with Divago. Springer,
2017.

[9] Martin Żnidaršič et al. Computational creativity infrastructure for online software
composition: A conceptual blending use case. In Proceedings of the Seventh In-
ternational Conference on Computational Creativity (ICCC 2016), Paris, France,
2016. Sony CSL, Sony CSL.

[10] Marco Schorlemmer et al. Coinvent: Towards a computational concept invention
theory. In Proceedings of the 5th Int. Conference on Computational Creativity,
ICCC-14, Ljubljana, Slovenia, 2014.

[11] Brian Falkenhainer, Kenneth D. Forbus, and Dedre Gentner. The structure mapping
engine: Algorithm and examples. Artificial Intelligence, 41:1–63, 1989.

[12] Tony Veale and Mark Keane. The competence of sub-optimal structure mapping on
hard analogies. In Proceedings of the International Joint Conference on Artificial
Intelligence. IJCAI-97, 1997.

[13] Gilles Fauconnier and Mark Turner. Conceptual integration networks. Cognitive
Science, 22(2):133–187, 1998.

[14] Charles J. Fillmore. Frames and the semantics of understanding. Quaderni di
Semantica, 6(2):222–254, 1985.

[15] Atilim Günes Baydin, Ramon López de Mántaras, and Santiago Ontañón. Auto-
mated generation of cross-domain analogies via evolutionary computation. CoRR,
2012.

[16] Josef Ruppenhofer, Michael Ellsworth, Miriam Petruck, Christopher R Johnson,
and Jan Scheffczyk. FrameNet II: Extended theory and practice. 2016.

[17] Oana David, Ellen Dodge, J Hong, ELISE Stickles, and E Sweetser. Building the
metanet metaphor repository: The natural symbiosis of metaphor analysis and con-
struction grammar. In The 8th International Conference on Construction Grammar
(ICCG 8), Osnabrück, Germany, 2014.

[18] Aldo Gangemi, Mehwish Alam, Luigi Asprino, Valentina Presutti, and Diego Re-
forgiato Recupero. Framester: a wide coverage linguistic linked data hub. In Euro-
pean Knowledge Acquisition Workshop, pages 239–254. Springer, 2016.


	Introduction
	Conceptual Blending
	Motivation
	Approach
	Genetic Algorithm details
	Fitness function

	Current Results
	Conclusion and Future Work

