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Abstract

Although there is an emerging trend towards generating em-
beddings for primarily unstructured data and, recently, for
structured data, no systematic suite for measuring the qual-
ity of embeddings has been proposed yet. This deficiency
is further sensed with respect to embeddings generated for
structured data because there are no concrete evaluation met-
rics measuring the quality of the encoded structure as well
as semantic patterns in the embedding space. In this paper,
we introduce a framework containing three distinct tasks con-
cerned with the individual aspects of ontological concepts: (i)
the categorization aspect, (ii) the hierarchical aspect, and (iii)
the relational aspect. Then, in the scope of each task, a number
of intrinsic metrics are proposed for evaluating the quality of
the embeddings. Furthermore, w.r.t. this framework, multiple
experimental studies were run to compare the quality of the
available embedding models. Employing this framework in
future research can reduce misjudgment and provide greater
insight about quality comparisons of embeddings for onto-
logical concepts. We positioned our sampled data and code
at https://github.com/alshargi/Concept2vec
under GNU General Public License v3.0.

Introduction
Although the Web of Data is growing enormously1, tak-
ing advantage of these big interlinked knowledge graphs
is challenging. It is necessary to dispose this valuable knowl-
edge for extrinsic tasks such as natural language process-
ing or data mining. To do that, the knowledge (i.e. schema
level and instance level) has to be injected into current
NLP and data mining tools; by a required transforma-
tion from discrete representations to numerical representa-
tions (called embeddings). Hence, the current research trend
pays substantial attention to exploring ways of either gen-
erating or employing high-quality embeddings in various
AI applications such as data mining and natural language
processing (Mikolov et al. 2013b; Mikolov et al. 2013a;

Copyright held by the author(s). In A. Martin, K. Hinkelmann, A.
Gerber, D. Lenat, F. van Harmelen, P. Clark (Eds.), Proceedings of
the AAAI 2019 Spring Symposium on Combining Machine Learn-
ing with Knowledge Engineering (AAAI-MAKE 2019). Stanford
University, Palo Alto, California, USA, March 25-27, 2019.

1Currently, there are more than 149 billion triples collected from
9,960 data sets of diverse domains, observed on 14 August 2017 at
http://stats.lod2.eu/

Pennington, Socher, and Manning 2014; Ristoski and Paul-
heim 2016). However, the recent generation of embedding
models on linguistic entities demonstrates higher quality in
terms of the proper encoding of structure as well as seman-
tic patterns. For example, Mikolov (Mikolov et al. 2013b;
Mikolov et al. 2013a) indicated that the vector which sep-
arates the embeddings of Man and Woman is very similar
to the vector which separates the embeddings of King and
Queen; this geometry disposition is consistent with the se-
mantic relationship. In other words, embeddings with high
quality hold the semantic and linguistic regularities, thus,
arithmetic operations on them result in semantically consis-
tent results. Nonetheless, there is still no systematic approach
for evaluating the quality of embeddings; therefore, the ma-
jority of the state-of-the-art evaluations rely on extrinsic tasks.
An extrinsic evaluation measures the contribution of a given
embedding model for a downstream task. That is, embed-
dings computed by a model are injected as input features to a
downstream task (e.g. sentiment analysis, classification, link
prediction tasks). Then, changes on performance are com-
pared, whereas an intrinsic evaluation directly investigates
syntactic or semantic relationships of linguistic entities in
embedding space. An intrinsic task is typically involved in
the use of human judges and requires a query inventory.

Ontological concepts play a crucial role in (i) capturing the
semantics of a particular domain, (ii) typing entities which
bridge a schema level and an instance level, and (iii) deter-
mining valid types of sources and destinations for relations
in a knowledge graph. Thus, the embeddings of the concepts
are expected to truly reflect characteristics of ontological
concepts in the embedding space. For example, the hierarchi-
cal structure of concepts is required to be represented in an
embedding space. With this respect, an existing deficiency is
the lack of an evaluation framework for comprehensive and
fair judgment on the quality of the embeddings of concepts.
This paper is particularly concerned with evaluating the qual-
ity of embeddings for concepts. It extends the state of the
art by providing several intrinsic metrics for evaluating the
quality of the embedding of concepts on three aspects: (i) the
categorization aspect, (ii) the hierarchical aspect, and (iii) the
relational aspect. Furthermore, we randomly sampled entities
from DBpedia and ran a comparison study on the quality of
generated embeddings from Wikipedia versus DBpedia using
recent embedding models (those which are scalable in the
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size of DBpedia).
This paper is organized as follows: the next section re-

views the state-of-the-art research about evaluating the qual-
ity of embeddings followed by the section presenting the
preliminaries and problem statement. Then, next, we shortly
represent popular embedding models. Section “evaluation
scenarios" proposes three evaluation tasks for measuring the
quality of embeddings for ontological concepts. Each task is
equipped with several intrinsic metrics which qualitatively
and quantitatively assess quality. Moreover, each task ex-
hibits an experimental study on various embedding models.
Last, we discuss the general conclusive observations from
our experimental study.

Related Work
Recent movement in the research community is more
weighted towards learning high quality embeddings or em-
ploying embeddings in various applications, and the area
of evaluating or benchmarking quality of embeddings in
a systematic manner is less studied. However, there are a
few papers about studying evaluation methods for the un-
supervised learning of embeddings, but they are limited to
unstructured corpora (Baroni, Dinu, and Kruszewski 2014;
Baroni and Lenci 2010; Schnabel et al. 2015). Thus, there
is a tangible research gap regarding evaluation methods for
embeddings learned from a knowledge graph. To the best
of our knowledge, this is the first paper which explores and
discusses intrinsic metrics for measuring quality from various
dimensions over the embeddings learned out of a knowledge
graph. Baroni’s work (Baroni, Dinu, and Kruszewski 2014),
extending his previous research (Baroni and Lenci 2010), is
pioneering state-of-the-art literature which provides a system-
atic comparison by extensive evaluation on a wide range of
lexical semantics tasks and the application of diverse param-
eter settings. The evaluation metrics which it utilizes are the
following. Semantic relatedness: Asking human subjects to
measure the semantic relatedness of two given words on a nu-
merical scale. The query inventory contained both taxonomic
relations (e.g. cohyponymy relation king/queen) and broader
relationships (e.g. syntagmatic relations amily/planning). Syn-
onym detection: In this task, multiple choices are displayed
for a given target word and the most similar word is detected
by comparing the cosine similarity of the target word and
all the choices. Concept categorization: In this task, a set of
concepts are given, then the task is to group them into a taxo-
nomic order (e.g., helicopters and motorcycles belong to the
vehicle class while dogs and elephants belong to the mammal
class). Selectional preference: Provides a list of noun-verb
pairs, then it evaluates the relevance of a noun as a subject or
as the object of the verb (e.g., for the given pair people/eat,
people receives a high relevance score as the subject of eat
and a low score as object). Another relevant work (Schnabel
et al. 2015) published in 2015 extends Baroni’s research by
employing new metrics: (i) analogy: This task aims at finding
a term x for a given term y so that x : y best resembles a
sample relationship a : b (e.g. king:queen, man:woman), (ii)
coherence: This task expands the relatedness task to a group
evaluation. It assesses the mutual relatedness of a groups of
words in a small neighborhood.

Problem and Preliminaries
In this section, we present crucial notions utilized throughout
the paper and discuss the main challenge of concern in this
paper.

Preliminaries. An unstructured corpus (i.e. textual data)
encompasses a set of words. This set of words is denoted
by W and a given word contained in this set is denoted as
wi ∈ W. An embedding model V t on unstructured data
generates a continuous vector representation of m dimen-
sions for each word in set W, formally V t : W → Rm,
where m is the length of the latent vector space. Thus,
the word wi in the space Rm is represented by the vector
V t
wi

= [xi
1, x

i
2, ..., x

i
m].

Knowledge Graph. A knowledge graph2, which is a la-
beled graph-structured model, empowers data by structure as
well as semantics. An RDF knowledge graph K is regarded
as a set of triples (s, p, o) ∈ R × P × (R ∪ L), where the
set of resource R = C ∪ E is the union of all RDF entities
E and concepts C (from schema or ontology). Furthermore,
P is the set of relations starting from a resource and ending
at either a resource or a literal value. L is the set of literals
(L ∩ R = ∅). We introduce the enhanced set of resources
denoted by R+, which is a union of R+ = R ∪ P . Thus, in
this context, a given resource ri can refer to an entity ri ∈ E,
a concept ri ∈ C or a property ri ∈ P . An embedding model
V t on a knowledge graph generates a continuous vector rep-
resentation of m dimensions for each resource (i.e., entity,
concept, property) of the set C ∪E ∪P , formally denoted as
V t : R+ = C ∪E ∪ P → Rm, where m is the length of the
latent vector space. Thus, the given resource ri in the space
Rm is represented by the vector V t

ri = [xi
1, x

i
2, ..., x

i
m].

Problem Statement. Figure 1 schematically shows the vec-
torization process of a knowledge graph to a low dimensional
space V t : R+ → Rm. A knowledge graph is divided into
two levels, (i) an ontology level and (ii) an instance level.
All the resources from either level (i.e. classes, properties,
and entities) are assigned a vector representation in the em-
bedding space. The embedding models vary in the quality
of the generated embeddings. The quality of embeddings
is attributed to the true reflection of semantics and struc-
tural patterns of the knowledge graph in an embedding space.
For example, entities having the same background concept
(i.e. common rdf:type) are expected to be clustered close
to each other in the embedding space. More importantly,
their embedding is expected to be proximate to the embed-
ding of the background concepts (represented in Figure 1).
For example, the embeddings of the entities dbr:Berlin,
dbr:Paris, dbr:London are expected to be close to the
respective concept dbo:City and far from entities such as
dbr:Barack_Obama, dbr:Bill_Clinton with the
respective concept dbo:President.

This paper is particularly concerned with evaluating the
quality of embeddings for concepts (i.e. ontological classes)

2In this work, we reference an RDF knowledge graph.



Figure 1: Schematic representation of the vectorization process of a knowledge graph to a low-dimensional space.

V t : C → Rm. Generating high quality embeddings for
concepts is extremely important since concepts hold the se-
mantics of knowledge graphs. It is expected that these se-
mantics are properly reflected in the embedding space. For
example, the hierarchical semantics (i.e. taxonomic) of con-
cepts is required to be represented in an embedding space.
With this respect, an existing deficiency is the lack of an
evaluation framework for comprehensive and fair judgment
on the quality of the embeddings of concepts. While there
has recently been a trend for either generating embeddings or
employing existing embeddings in various applications, there
is not yet a clear framework for intrinsically measuring the
quality of embeddings. This paper contributes in providing
several metrics for evaluating the quality of the embedding of
concepts from three perspectives: (i) how the embedding of
concepts behaves for categorizing their instantiated entities;
(ii) how the embedding of concepts behaves with respect to
hierarchical semantics described in the underlying ontology;
and (iii) how the embedding of concepts behaves with respect
to relations.

State-of-the-art Embedding Models
Matrix factorization methods (Levy and Goldberg 2014;
Pennington, Socher, and Manning 2014) and neural net-
works (Mikolov et al. 2013a; Mikolov et al. 2013b) are
two common approaches for learning dense embeddings
for words. Using neural networks is a recently popularized
approach. A neural network model starts the learning pro-
cess with a random embedding for each word, then it itera-
tively enhances the quality of the embeddings with the cri-
teria that words sharing a common context are more similar

and vice versa. Thus, adjacent words acquire similar embed-
dings. This approach was popularized after the introduction
of word2vec methods by Mikolov (Mikolov et al. 2013a;
Mikolov et al. 2013b), where it was shown that the semantic
patterns and regularities are well captured by the generated
embeddings. The word2vec methods feature two models for
generating embeddings: (i) a skip-gram model and (ii) a
continuous bag of words (CBOW) model. Shortly after, an
outperformed model called GloVe (Pennington, Socher, and
Manning 2014) was introduced. However, all of these models
learn embeddings out of the unstructured data. RDF2Vec
(Ristoski and Paulheim 2016) is a recent state-of-the-art em-
bedding model which learns embeddings out of the knowl-
edge graph. In the following, we briefly describe each model.

Skip-Gram Model. The skip-gram model (Mikolov et al.
2013a; Mikolov et al. 2013b) learns two separate embeddings
for each target word wi, (i) the word embedding and (ii) the
context embedding. These embeddings are used to compute
the probability of the word wk (i.e. context word) appearing
in the neighborhood of word wi (i.e. target word), P (wk|wi).
The skip-gram algorithm (with negative sampling) starts
traversing the corpus for any given target word wi. For any
occurrence of the target word, it collects the neighboring
words as positive samples and chooses n noise samples as
negative sampling (i.e., non-neighbor words). Eventually, the
objective of the shallow neural network of the skip-gram
model is to learn a word embedding maximizing its dot prod-
uct with context words and minimizing its dot products with
non-context words.



Continuous Bag of Words (CBOW) Model. The CBOW
model is roughly similar to the skip-gram model as it is
also a predictive model and learns two embeddings for each
word (a word embedding and a context embedding). The
difference is that CBOW predicts the target word wi from the
context words as P (wi|wk, wj). Thus, the input of the neural
network is composed by the context words (e.g. [wi−1, wi+1]
for the context with length 1); then, the algorithm learns the
probability of wi appearing in the given context. Although
the difference between these two algorithms is slight, they
showed different performance in various tasks. State-of-the-
art evaluations suggest that these algorithms are individually
suited to particular tasks.

GloVe Model. The GloVe model (Pennington, Socher, and
Manning 2014) is a global log-bilinear regression model for
the unsupervised learning of word embeddings. It captures
global statistics of words in a corpus and benefits the advan-
tages of the other two models: (i) global matrix factorization
and (ii) local context window methods. Differently from the
skip-gram model, GloVe utilizes the statistics of the corpus,
as it relies on global co-occurrence counts. The GloVe model
outperforms the models above for word similarity, word anal-
ogy, and named entity recognition tasks.

RDF2Vec Model. RDF2Vec (Ristoski and Paulheim 2016)
is an approach for learning embeddings of entities in RDF
graphs. It initially converts the RDF graphs into a set of se-
quences using two strategies: (i) Weisfeiler-Lehman Subtree
RDF Graph Kernels, and (ii) graph random walks. Then,
word2vec is employed for learning embeddings over these
produced sequences. This approach is evaluated against mul-
tiple machine-learning tasks such as instance classification.
Global RDF vector space embeddings (Cochez et al. 2017)
applies GloVe model on RDF graph and reports the competi-
tive results.

Translation-based Models. The TransE (Bordes et al.
2013) and TransH (Wang et al. 2014) models assume that the
embeddings of both the entities and relations of a knowledge
graph are represented in the same semantic space, whereas
the TransR (Lin et al. 2015) considers two separate embed-
ding spaces for entities and relations. All three approaches
share the same principle, for which new relationships can
be discovered by translating on hyperplanes. In other words,
summing the vectors of the subject and the predicate, one
can obtain an approximation of the vectors of the objects.
An experimental study shows the superiority of the TransR
approach (Lin et al. 2015).

Other Knowledge Graph Embedding (KGE) Models.
Recently, several other approaches have been proposed to em-
bed knowledge graphs. HolE (Holographic Embeddings) is
related to holographic models of associative memory in that
it employs circular correlation to create compositional rep-
resentations (Nickel et al. 2016). The idea behind DistMult
is to consider entities as low-dimensional vectors learned
from a neural network and relations as bilinear and/or linear

mapping functions (Yang et al. 2014). ComplEx is based
on latent factorization and, with the use of complex-valued
embeddings, it facilitates composition and handles a large
variety of binary relations (Trouillon et al. 2016). Neural
Logic Programming combines the parameter and structure
learning of first-order logical rules in an end-to-end differen-
tiable model (Yang, Yang, and Cohen 2017). All approaches
above have shown to reach state-of-the-art performances on
link prediction and triplet classification.

Excluding of non-scalable KGE Approaches. We se-
lected the knowledge graph embedding approaches for the
evaluation of our metrics among RDF2Vec, TransE and three
of the methods described in the previous subsection (i.e.,
HolE, DistMult, and ComplEx). Differently from RDF2Vec,
we could not find DBpedia embeddings pre-trained using
any of the other approaches online, thus we conducted a
scalability test on them to verify their ability to handle the
size of DBpedia. We extracted three nested subsets from DB-
pedia with a size of 104, 105 and 106 triples, respectively.
The subsets contained instances along with their full Concise
Bounded Description3, to avoid having incomplete subgraphs.
We launched the algorithms with their default settings on the
three subsets on a 64-core Ubuntu server with 256 GB of
RAM. When a run did not terminate converging after 24
hours, we interrupted it. Surprisingly, while all approaches
managed to finish on the 104 and 105 subsets, only ComplEx
and DistMult were able to complete the embedding task on
the largest one. However, utilizing a polynomial interpola-
tion of the runtime values, we predicted that none of the
approaches would have successfully completed the task on
the full DBpedia English dataset – which has approximately
108 triples – in reasonable time. Hence, we decided to select
only the more scalable RDF2Vec approach in our evaluation.

Evaluation Scenarios
In this section, we introduce three tasks which individually
measure the quality of the concept embeddings from three
distinct dimensions: (i) the categorization aspect, (ii) the hi-
erarchical aspect, and (iii) the relational aspect. Furthermore,
each task is equipped with multiple metrics for evaluating a
given quality dimension from various angles (i.e. quantita-
tively, qualitatively, subjectively, and objectively).

Task 1: Evaluating the Categorization Aspect of
Concepts in Embeddings
Ontological concepts C categorize entities by typing them,
mainly using rdf:type4. In other words, all the entities
with a common type share specific characteristics. For ex-
ample, all the entities with the type dbo:Country5 have
common characteristics distinguishing them from the enti-
ties with the type dbo:Person. In this task, our research

3See https://www.w3.org/Submission/CBD/ for a
definition.

4Full URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#type
5dbo: is the prefix for http://dbpedia.org/

ontology/.

https://www.w3.org/Submission/CBD/
http://dbpedia.org/ontology/
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question is: How far is the categorization aspect of concepts
captured (i.e., encoded) by an embedding model? In other
words, we aim to measure the quality of the embeddings
for concepts via observing their behaviour in categorization
tasks. To do that, we introduce two metrics which evaluate
the categorization aspect in an intrinsic manner.

Dataset Preparation: From the DBpedia ontology, we se-
lected 12 concepts, which are positioned in various levels of
the hierarchy. Furthermore, for each concept, we retrieved
10,000 entities typed by it (in case of unavailability, all ex-
isting entities were retrieved). For each concept class, we
retrieved 10,000 instances and their respective labels; in case
of unavailability, all existing instances were retrieved. Then,
the embeddings of these concepts as well as their associ-
ated instances were computed from the embedding models:
(i) skip-gram, and (ii) CBOW and (iii) GloVe trained on
Wikipedia and DBpedia6. We created the Wikipedia text cor-
pus by extracting words from the pages of English Wikipedia7

version 2017/03/01. We filtered out punctuation, tags, and
hyperlink links (textual part of links was remained), then the
corpus was turned to lowercase. Furthermore, the DBpedia
English 2015 dataset8 was used to construct our DBpedia
corpus; here, we only filtered out datatype properties. As
hyperparameters for the word2Vec-based approaches, we
adopted a window size of 5 and a vector size of 400 for
the Wikipedia embeddings, whereas DBpedia embeddings
were learned using a window size of 5 and a vector size of
500. RDF-GloVe was instead set up with a biased random
walk based on PageRank, as (Cochez et al. 2017) showed to
be the best-performing ranking method, with 20 iterations
and a vector size of 200. We used the GloVe word embed-
dings9 pre-trained on 840 billion tokens from a common
crawl and a vector size of 300. The length of walks for the
RDF2Vec training was set to 8. Since in Wikipedia, a given
entity might be represented by several tokens, its embed-
ding is calculated as the average of the embeddings of all
tokens in one setting and the sum of the embeddings of all
tokens in another setting. For instance, the embedding of
dbr:George_Washington in the sum setting was com-
puted as v(‘george’) + v(‘washington’)10.

Categorization metric: In the context of unstructured
data, this metric aligns a clustering of words into different
categories (Schnabel et al. 2015). We redefine this metric in
the context of structured data as how well the embedding

6Using the RDF2Vec package source code available at
http://data.dws.informatik.uni-mannheim.de/
rdf2vec/ and Glove-RDF2Vec available at https://github.
com/miselico/globalRDFEmbeddingsISWC

7Available at https://dumps.wikimedia.org/
enwiki/.

8Available at http://downloads.dbpedia.org/
2015-10/core-i18n/en/.

9Available at https://nlp.stanford.edu/
projects/glove/.

10The benchmarking datasets are available at: https://
github.com/alshargi/Concept2vec

of a concept ck performs as the background concept of the
entities typed by it (∀ei ∈ ck). To quantify this metric, we
compute the averaged vector of the embeddings of all the
entities having type ck (represented in Equation 5) and then
compute the cosine similarity of this averaged vector and the
embedding of the concept Vck (formulated in Equation 2).
Please note that throughout the paper s(V1, V2) represents the
cosine similarity between the two vectors V1 and V2, which
is computed as V1.V2

|V1||V2| .

∀ei ∈ ck, V
t

ck
=

1

n

i=n∑
i=1

V t
ei (1)

Categorization(Vck) = s(V
t

ck
, V t

ck
) (2)

Experimental Study: For each given concept, we measure
its categorization score by computing the cosine similarity
of its embedding (from a particular model) with the aver-
aged embeddings of its instances. Figures 2a and 2b present
the results achieved for categorization scores on our under-
lying data set. Overall, the skip-gram model outperforms
the CBOW model (except in two cases) and GloVe. Fur-
thermore, the embeddings learned from Wikipedia outper-
form the embeddings from DBpedia (again except in two
cases). The other interesting observation of the embedding
models is that the categorization score of the concepts posi-
tioned in the lower part of the hierarchy (specific concepts) is
higher than super concepts (generic concepts). E.g., the cate-
gorization score of dbo:Place is lower than its sub-classes
dbo:City and dbo:Country.

Coherence metric: This metric which was introduced in
(Schnabel et al. 2015) measures whether or not a group of
words adjacent in the embedding space are mutually related.
Commonly, this relatedness task has been evaluated in a
subjective manner (i.e. using a human judge). However, in
the context of structured data we define the concept of re-
latedness as the related entities which share a background
concept, a background concept is the concept from which a
given entity is typed (i.e. inherited). For example, the entities
dbr:Berlin and dbr:Sana’a are related because both
are typed by the concept dbo:City. We utilize qualitative
as well as quantitative approaches to evaluate the coherence
metric. In the following, we elaborate on each approach.

1. Quantitative evaluation of coherence score: Suppose we
have a pool of entities with various background concepts
and we cluster this pool using the similarity of the em-
bedding of entities. The expectation is that entities with a
common background concept are clustered together and,
more importantly, the embedding of the background con-
cepts should be the centroid of each cluster. We follow
this scenario in a reverse order. For the given concept ci
and the given radius n, we find the n-top similar entities
from the pool (having the highest cosine similarity with
Vci). Then, the coherence metric for the given concept ci
with the radius n is computed as the number of entities
having the same background concept as the given concept;
formally expressed as:

http://data.dws.informatik.uni-mannheim.de/rdf2vec/
http://data.dws.informatik.uni-mannheim.de/rdf2vec/
https://github.com/miselico/globalRDFEmbeddingsISWC
https://github.com/miselico/globalRDFEmbeddingsISWC
https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/
http://downloads.dbpedia.org/2015-10/core-i18n/en/
http://downloads.dbpedia.org/2015-10/core-i18n/en/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/alshargi/Concept2vec
https://github.com/alshargi/Concept2vec
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Figure 2: The categorization score of the twelve concepts for various embedding models trained on Wikipedia and DBpedia.

coherence(Vci , n) =
{#ei|ei ∈ ci}

n
(3)

2. Qualitative evaluation of coherence score: Commonly, the
coherence metric has been evaluated by a qualitative ap-
proach. For example, (Turian, Ratinov, and Bengio 2010)
uses a two-dimensional visualization of word embeddings
for measurement by human judges in the relatedness task.
Apart from visualization, another way of qualitative evalua-
tion is providing samples of grouped entities and a concept
to a human subject to judge their relatedness.

Experimental Study. In this experiment, we quantitatively
measure the coherence score. To do that, we initially have
to prepare a proper data set. We reuse the previous dataset
with a few modifications. E.g., for each concept, we sampled
a batch containing 20 entities. Then, all of these batches are
mixed up as a single data set. This dataset is utilized in the
whole of this experiment. To measure the coherence score for
every given concept, we computed the cosine similarity of the
given concept and the whole of the entities included in our
dataset (which is a mix of entities with various types). Then,
we list the top-n entities (i.e. n is the radius) which are the
closest entities to the given concept (using cosine similarity
over the associated embeddings). The coherence score is
computed by counting the number of entities out of the top-n
entities which are typed by the given concept. For example,
for the given concept dbo:Actor, if three entities out of the
top-10 closest entities are not of the type dbo:Actor (e.g.
dbr:Berlin), then the coherence score of dbo:Actor
is 0.7. Figure 3 shows the results achieved for the coherence
scores for the 12 concepts of our dataset. The radius value
in the experiments showed in Figures 3a and 3b is 10 and in
Figures 3c and 3d is 20. Within the longer radius (i.e. n = 20),
the coherence scores are increased (except for a few cases)
especially for the super concepts (e.g. Person, Place and
Organisation). With respect to the models trained on
Wikipedia, the GloVe model commonly outperformed while
regarding the models trained on DBpedia on average the
skip-gram model performs better. Generally, the embeddings

learned from Wikipedia have the higher coherence scores
than the embeddings trained on DBpedia.

Task 2: Evaluating Hierarchical Aspect of
Concepts in Embeddings
There is a relatively longstanding research for measuring
the similarity of two given concepts s(ci, cj) either across
ontologies or inside a common ontology (Maedche and Staab
2002; Shvaiko and Euzenat 2005; Batet et al. 2013). Typically,
the similarity of concepts is calculated at the lexical level
and at the conceptual level. However, our assumption here
is that our underlying knowledge graph has a well-defined
ontology as the background semantics. The concepts of the
given ontology are positioned in a hierarchical order and
share various levels of semantics. We present three metrics
which can be employed for evaluating the embeddings of
concepts with respect to the hierarchical structure and the
semantics.

Absolute semantic error. We introduce the metric abso-
lute semantic error which quantitatively measures the quality
of embeddings for concepts against their semantic similar-
ity. The semantic similarity between the two given concepts
ci and cj is denoted by s′(ci, cj) and can be measured by
an state-of-the-art methodology (Gan, Dou, and Jiang 2013;
Maedche and Staab 2002; Shvaiko and Euzenat 2005). Ide-
ally, this similarity score should be approximate to the similar-
ity score of embeddings corresponding to those concepts de-
noted by s(V t

ci , V
t
cj ) (please note that this score is calculated

by cosine similarity). Therefore, this expected correlation
can be formally represented as s′(ci, cj) ≈ s(V t

ci , V
t
cj ). For

example, the semantic similarity between the two concepts
c1 = dbo:President and c2 = dbo:City is almost
zero; so it is expected that their vectors reflect the similar
pattern as s(V t

c1 , V
t
c2) ≈ 0. An intuitive methodology for

measuring semantic similarity between two concepts is to
utilize the distance between them in the hierarchical structure
(Taieb, Aouicha, and Hamadou 2014). Because, intuitively,
the concepts which are placed closer in the hierarchy are
more similar. In contrast, concepts placed further from each
other are more dissimilar. Thus, by increasing the length of



0

0.2

0.4

0.6

0.8

1
Person

President

Actor

WriterPlace

Country

City

Skip-gram	(avg)

Skip-gram	(sum)

CBOW	(avg)

CBOW	(sum)

RDF2vec	(skip-gram)

RDF2vec	(CBOW)

GloVe	(avg)

GloVe(sum)

RDF(GloVe)

(a) Person (Actor,Writer,President), Place (City,Country)

0

0.2

0.4

0.6

0.8

1
Organization

Company

UniversityBook

Film

Skip-gram	(avg)

Skip-gram	(sum)

CBOW	(avg)

CBOW	(avg)

RDF2vec	(skip-gram)

RDF2vec	(CBOW)

GloVe	(avg)

GloVe(sum)

RDF(GloVe)

(b) Organization(Company,University),Film,Book

0

0.2

0.4

0.6

0.8

1
Person

President

Actor

WriterPlace

Country

City

Skip-gram	(avg)

Skip-gram	(sum)

CBOW	(avg)

CBOW	(sum)

RDF2vec	(skip-gram)

RDF2vec	(CBOW)

GloVe	(avg)

GloVe(sum)

RDF(GloVe)

(c) Person (Actor,Writer,President), Place (City,Country)

0

0.2

0.4

0.6

0.8

1
Organization

Company

UniversityBook

Film

Skip-gram	(avg)

Skip-gram	(sum)

CBOW	(avg)

CBOW	(avg)

RDF2vec	(skip-gram)

RDF2vec	(CBOW)

GloVe	(avg)

GloVe(sum)

RDF(GloVe)

(d) Organization(Company,University),Film,Book

Figure 3: The coherence score of the twelve concepts with a radius of 10 for (a-b) and a radius of 20 for (c-d).

the path between two concepts in the hierarchy, their dis-
similarity is increased. However, independent of the kind of
methodology employed for computing the semantic similar-
ity score, the absolute semantic distance ∆ is computed as
the difference between the semantic similarity score s′ and
the similarity score of embeddings s, which is formally rep-
resented in Equation ??. The higher the value of ∆, the lower
the quality of the embeddings and vice versa. It is formally
calculated as :

∆(ci, cj) = |s′(ci, cj)− s(V t
ci , V

t
cj )| (4)

Semantic Relatedness metric. We tune this metric from
(Baroni, Dinu, and Kruszewski 2014; Schnabel et al. 2015)
for knowledge graphs by exchanging words for concepts.
Typically, this metric represents the relatedness score of two
given words. In the context of a knowledge graph, we give a
pair of concepts to human judges (usually domain experts)
to rate the relatedness score on a predefined scale, then, the
correlation of the cosine similarity of the embeddings for con-
cepts is measured with human judge scores using Spearman
or Pearson.

Visualization. The embeddings of all concepts of the
knowledge graph can be represented in a two-dimensional
visualization. This approach is an appropriate means for qual-
itative evaluation of the hierarchical aspect of concepts. The
visualizations are given to a human who judges them to rec-

ognize patterns revealing the hierarchical structure and the
semantics.

Experimental Study: We chose three high level concepts
from the DBpedia ontology11 with their direct children
(i.e., linked by rdfs:subClassOf). In addition, for
each of these three concepts, two more concepts placing
lower (in the hierarchy) were chosen along with their
direct children. Herein, for brevity we only name the main
concepts chosen. Respectively, the concepts chosen are (i)
dbo:Person with the two sub-concepts dbo:Athlete
and dbo:Politician, (ii) dbo:Place with
the two sub-concepts dbo:Settlement and
dbo:PopulatedPlace. To perform the visualiza-
tion task, we used t-SNE (Maaten and Hinton 2008)
package to reduce the high-dimensional embeddings to
two-dimensional embeddings. Figures 4 and 5 illustrate
the two-dimensional visualizations of the embeddings
for the chosen sections of the DBpedia hierarchy12. This
visualization facilitates comparison on the quality of the
embeddings generated by the GloVe model versus the
skip-gram and CBOW models and, furthermore, the effect
of the knowledge graph in front of the unstructured data
(DBpedia versus Wikipedia). Figures 4a,4b,4c, 4d, 4e and
4f represent the 2D visualizations of the embeddings for

11http://mappings.dbpedia.org/server/
ontology/classes/

12Please note that the scale of all the diagrams is unified.

http://mappings.dbpedia.org/server/ontology/classes/
http://mappings.dbpedia.org/server/ontology/classes/


(a) DBpedia-CBOW: dbo:Person and its subclasses. (b) DBpedia-Skip-gram: dbo:Person and its subclasses.

(c) Wikipedia-CBOW: dbo:Person and its subclasses. (d) WikiPedia-Skip-gram: dbo:Person and its subclasses.

(e) Wikipedia-GloVe: dbo:Person and its subclasses. (f) DBpedia-GloVe: dbo:Person and its subclasses.

Figure 4: Two-dimensional visualization of dbo:Person branches of the DBpedia hierarchy.



(a) DBpedia-CBOW: dbo:Place and its subclasses. (b) DBpedia-Skip-gram: dbo:Place and its subclasses.

(c) Wikipedia-CBOW: dbo:Place and its subclasses. (d) Wikipedia-Skip-gram: dbo:Place and its subclasses.

(e) Wikipedia-GloVe: dbo:Place and its subclasses. (f) DBpedia-GloVe: dbo:Place and its subclasses.

Figure 5: Two-dimensional visualization of dbo:Place branches of the DBpedia hierarchy.



the concept dbo:Person and its chosen sub-concepts.
Please note that all of these concepts have a taxonomic
relationship (i.e. either parental or sibling) with each other.
Generally, the GloVe model on DBpedia and Wikipedia,
in comparison to other settings, demonstrates regularities
such as (i) having a denser representation between the
concepts, (ii) the centrality of the super-class dbo:Person
is higher, (iii) the closeness of the embeddings such as
dbo:Monarch and dbo:royalty indicates greater
shared semantics compared with other siblings. Figures
5a, 5b, 5c, 5d, 5e and 5f display the 2D visualizations
of the embeddings for the concept dbo:Place and its
chosen sub-concepts. The observations which can be
concluded are as follows: (i) the embeddings generated
from Wikipedia are denser than the embeddings from
DBpedia, (ii) the centrality of the embedding of the concept
dbo:Place in GloVe and CBOW models is higher in both
Wikipedia and DBpedia, (iii) generally the closeness of
the embeddings in CBOW model (either on Wikipedia or
DBpedia) is compatible with the siblings sharing higher
semantics such as dbo:Community-dbo:Locality
or dbo:City-dbo:Town in Figure 5a or
dbo:Park-dbo:Garden in Figure 5c.

Task 3: Evaluating Relational Aspect of Concepts
in Embeddings
There are various applications in information extraction, nat-
ural language understanding, and question answering in-
volved in extracting either implicit or explicit relationships
between entities (Ramakrishnan, Kochut, and Sheth 2006;
Heim, Lohmann, and Stegemann 2010; Augenstein, Padó,
and Rudolph 2012). A major part of evaluating the state-of-
the-art approaches for relation extraction is the validation task
as whether or not the inferred relation is compatible with the
type of entities engaged. For example, the relation capital
is valid if it is recognized between entities with the types
country and city. This validation process in a knowledge
graph is eased by considering the axioms rdfs:domain
and rdfs:range of the schema properties and rdf:type
of entities. The expectation from embeddings generated for
relations is to truly reflect compatibility with the embeddings
of the concepts asserted in the domain and range. With this
respect, we present two metrics for evaluating the quality of
the embeddings for concepts and relations.

Selectional preference This metric presented in (Baroni,
Dinu, and Kruszewski 2014; Baroni and Lenci 2010) assesses
the relevance of a given noun as a subject or object of a given
verb (e.g. people-eat or city-talk). We tune this metric for
knowledge graphs as pairs of concept-relation which are
represented to a human judge for the approval or disapproval
of their compatibility.

Semantic transition distance The inspiration for this met-
ric comes from (Mikolov et al. 2013b; Mikolov et al. 2013a),
where Mikolov demonstrated that capital cities and their cor-
responding countries follow the same distance. We introduce

this metric relying on an objective assessment. This met-
ric considers the relational axioms (i.e. rdfs:domain and
rdfs:range) in a knowledge graph. Assume that the con-
cept ci is asserted as the domain of the property pi and the
concept cj is asserted as its range. It is expected that the sum
of the embeddings of the ci and pi conducts to the embed-
dings of the concept cj . In other words, the transition distance
denoted by Tr measures the similarity (e.g. cosine similarity)
of the destination embedding Vcj and the conducted point
(via Vci + Vpj ), formally expressed as:

Tr(ci + pi, cj) = s(Vci + Vpj
, Vcj ) (5)

Experimental Study For this task, we selected 12 relations
(i.e., object properties) from the DBpedia ontology along
with their corresponding domain and range concepts. Then,
we measured the transition distances which are reported in
Table 1. The comparative results show that the GloVe model
trained on Wikipedia outperforms the others. Interestingly,
the transition distance is very high for the properties which
have the shared concepts in the domain and range positions.

Discussion and Conclusion
As it has been observed through various evaluation tasks,
there is no single embedding model which shows superior
performance in every scenario. For example, while the skip-
gram model performs better in the categorization task, the
GloVe and CBOW model perform better for the hierarchical
task. Thus, one conclusion is that each of these models is
suited for a specific scenario. Then, depending on the ex-
trinsic task which consumes these embeddings, the most
appropriate model should be selected. The other conclusion
is that it seems that each embedding model captures specific
features of the ontological concepts, so integrating or aligning
these embeddings can be a solution for fully capturing all of
these features. Although our initial expectation was that the
embeddings learned from the knowledge graph (i.e. DBpedia)
should have higher quality in comparison to the embeddings
learned from unstructured data (i.e. Wikipedia), in practice
we did not observe that as a constant behaviour. We attribute
this issue to two matters: (i) the weaknesses of the RDF2Vec
or RDF(GloVe) approaches for generating embeddings of a
knowledge graph, and (ii) the fact that Wikipedia is larger
than DBpedia. These two approaches provides a serialization
on the structure of the graph (i.e. the local neighborhood
of a given node is serialized) and then it runs word2vec to
generate embeddings. Here, in fact there is no discrimination
between the concepts, properties, and instances, whereas the
ontological resources (i.e. concepts and properties) may be
required to be reinforced in the embedding model, or their
embeddings have to be learned separately from the instance
level. Additionally, Wikipedia is larger than DBpedia, there-
fore it naturally provides richer context for the embedding
models, i.e. the richer context, the higher the quality of em-
beddings. Generally, we concluded that the current quality
of the embeddings for ontological concepts is not in a satis-
factory state. The evaluation results are not surprising, thus
providing high quality embeddings for ontological resources



Relation
DBpedia Wikipedia

Domain Range skip-gram CBOW GloVe Skip-gram CBOW GloVe

spouse Person Person 0.498 0.228 0.748 0.834 0.863 0.863
capital Populated P. City 0.592 0.211 -0.032 0.532 0.389 0.676
starring Work Actor 0.303 0.138 0.231 0.563 0.453 0.656
largestCountry Populated P. Populated P. 0.702 0.766 0.642 0.878 0.865 0.863
director Film Person 0.15 0.072 0.014 0.173 0.056 0.257
child Person Person 0.461 0.173 0.71 0.857 0.869 0.866
writer Work Person 0.193 0.022 -0.049 0.276 0.086 0.46
school Person Institution 0.279 0.262 0.087 0.455 0.521 0.541
translator Work Person 0.24 0.179 -0.012 0.254 0.095 0.394
producer Work Agent 0.234 0.006 0.212 0.229 0.131 0.357
operator Infrastructure Organisation 0.177 0.148 -0.082 0.336 0.332 0.448
officialLanguage Populated P. Language 0.121 -0.041 -0.067 0.691 0.606 0.721

Table 1: The transition distance scores for the properties from the DBpedia ontology.

is an open area for future work. Since ontological concepts
play a crucial role in knowledge graphs, providing high qual-
ity embeddings for them is highly important. We encourage
the research community to utilize these metrics in their fu-
ture evaluation scenarios on embedding models. This will
reduce misjudgment and provide greater insight in quality
comparisons of embeddings of ontological concepts.

References
[Augenstein, Padó, and Rudolph 2012] Augenstein, I.; Padó,
S.; and Rudolph, S. 2012. Lodifier: Generating linked data
from unstructured text. The Semantic Web: Research and
Applications.

[Baroni and Lenci 2010] Baroni, M., and Lenci, A. 2010. Dis-
tributional memory: A general framework for corpus-based
semantics. Computational Linguistics.

[Baroni, Dinu, and Kruszewski 2014] Baroni, M.; Dinu, G.;
and Kruszewski, G. 2014. Don’t count, predict! a system-
atic comparison of context-counting vs. context-predicting
semantic vectors. In ACL (1).

[Batet et al. 2013] Batet, M.; Sánchez, D.; Valls, A.; and Gib-
ert, K. 2013. Semantic similarity estimation from multiple
ontologies. Applied intelligence 38(1).

[Bordes et al. 2013] Bordes, A.; Usunier, N.; Garcia-Duran,
A.; Weston, J.; and Yakhnenko, O. 2013. Translating embed-
dings for modeling multi-relational data. In NIPS.

[Cochez et al. 2017] Cochez, M.; Ristoski, P.; Ponzetto, S. P.;
and Paulheim, H. 2017. Global RDF vector space embed-
dings. In ISWC 2017.

[Gan, Dou, and Jiang 2013] Gan, M.; Dou, X.; and Jiang, R.
2013. From ontology to semantic similarity: calculation of
ontology-based semantic similarity. The Scientific World
Journal.

[Heim, Lohmann, and Stegemann 2010] Heim, P.; Lohmann,
S.; and Stegemann, T. 2010. Interactive relationship discov-
ery via the semantic web. The Semantic Web: Research and
Applications.

[Levy and Goldberg 2014] Levy, O., and Goldberg, Y. 2014.

Neural word embedding as implicit matrix factorization. In
Advances in neural information processing systems.

[Lin et al. 2015] Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X.
2015. Learning entity and relation embeddings for knowledge
graph completion. In AAAI.

[Maaten and Hinton 2008] Maaten, L. v. d., and Hinton, G.
2008. Visualizing data using t-sne. Journal of Machine
Learning Research.

[Maedche and Staab 2002] Maedche, A., and Staab, S. 2002.
Measuring similarity between ontologies. In International
Conference on Knowledge Engineering and Knowledge Man-
agement. Springer.

[Mikolov et al. 2013a] Mikolov, T.; Chen, K.; Corrado, G.;
and Dean, J. 2013a. Efficient estimation of word representa-
tions in vector space. CoRR.

[Mikolov et al. 2013b] Mikolov, T.; Sutskever, I.; Chen, K.;
Corrado, G. S.; and Dean, J. 2013b. Distributed represen-
tations of words and phrases and their compositionality. In
NIPS.

[Nickel et al. 2016] Nickel, M.; Rosasco, L.; Poggio, T. A.;
et al. 2016. Holographic embeddings of knowledge graphs.

[Pennington, Socher, and Manning 2014] Pennington, J.;
Socher, R.; and Manning, C. D. 2014. Glove: Global vectors
for word representation. In EMNLP.

[Ramakrishnan, Kochut, and Sheth 2006] Ramakrishnan, C.;
Kochut, K. J.; and Sheth, A. P. 2006. A framework for
schema-driven relationship discovery from unstructured text.
In ISWC. Springer.

[Ristoski and Paulheim 2016] Ristoski, P., and Paulheim, H.
2016. Rdf2vec: RDF graph embeddings for data mining. In
ISWC.

[Schnabel et al. 2015] Schnabel, T.; Labutov, I.; Mimno,
D. M.; and Joachims, T. 2015. Evaluation methods for
unsupervised word embeddings. In EMNLP.

[Shvaiko and Euzenat 2005] Shvaiko, P., and Euzenat, J.
2005. A survey of schema-based matching approaches. In
Journal on data semantics IV. Springer.

[Taieb, Aouicha, and Hamadou 2014] Taieb, M. A. H.;



Aouicha, M. B.; and Hamadou, A. B. 2014. Ontology-based
approach for measuring semantic similarity. Engineering
Applications of Artificial Intelligence.

[Trouillon et al. 2016] Trouillon, T.; Welbl, J.; Riedel, S.;
Gaussier, É.; and Bouchard, G. 2016. Complex embed-
dings for simple link prediction. In International Conference
on Machine Learning.

[Turian, Ratinov, and Bengio 2010] Turian, J. P.; Ratinov, L.;
and Bengio, Y. 2010. Word representations: A simple and
general method for semi-supervised learning. In ACL.

[Wang et al. 2014] Wang, Z.; Zhang, J.; Feng, J.; and Chen,
Z. 2014. Knowledge graph embedding by translating on
hyperplanes. In AAAI.

[Yang et al. 2014] Yang, B.; Yih, W.-t.; He, X.; Gao, J.; and
Deng, L. 2014. Embedding entities and relations for
learning and inference in knowledge bases. arXiv preprint
arXiv:1412.6575.

[Yang, Yang, and Cohen 2017] Yang, F.; Yang, Z.; and Co-
hen, W. W. 2017. Differentiable learning of logical rules for
knowledge base reasoning. In NIPS.


	Introduction
	Related Work
	Problem and Preliminaries
	State-of-the-art Embedding Models
	Evaluation Scenarios
	Task 1: Evaluating the Categorization Aspect of Concepts in Embeddings
	Task 2: Evaluating Hierarchical Aspect of Concepts in Embeddings
	Task 3: Evaluating Relational Aspect of Concepts in Embeddings

	Discussion and Conclusion

