
Modified Harmony Search Algorithm for
Scheduling Applications in Cloud Environment

Abderrahim BOUCHAIR, Sid Ahmed MAKHLOUF, and Belabbas YAGOUBI

Department of Computer Science, University of Oran1 Ahmed Ben Bella,
Oran, Algeria. E-mail:

{bouchair.abderrahim,sidahmed.makhlouf,byagoubi}@gmail.com

Abstract. Cloud computing is encountering a fast development in in-
dustrial and academical fields, providing on-demand services such as in-
frastructures and applications whether the resource type is physical or
virtual. Data Center Networks (DCNs) architecture reflects directly on
its scalability, fault-tolerance and more importantly on the Cloud work-
flow. For that matter, server-centric data centers are facing a main issue
regarding applications scheduling due to traffic forwarding that relies on
servers imitating switches. The challenge is to choose an optimization
method so that Cloud users constraints are satisfied. If the problem is
of small size and reduced complexity, the implementation of an exact
method may be sufficient to determine an optimal solution. In the case
of massive size problems, the approximate methods are the most efficient
way to get as close as possible to the optimal solution. In this paper, we
focused on the job-shop scheduling type problem, with Makespan mini-
mization as a criterion. The problem is known NP-hard, we propose for
its resolution the meta-heuristic ”Harmony Search.” After a phase of ex-
perimental determinations of the approach parameter values using the
CloudSim which is a framework for simulation and modeling of cloud
computing, a set of validation tests was carried out on the most known
benchmarks. Overall, the results remain encouraging.

Keywords: Cloud computing, Cloud Scheduling, Meta-heuristic, Har-
mony Search Algorithm (HSA), NetCloudSim.

1 INTRODUCTION

Since its first launch, Cloud computing is proving an evolving resistance and
a scalability development over various fields in our practical life. This growth
made user access experience similar to any daily life needs like electricity or wa-
ter. Hence, numerous requests are continuously received. Therefore several re-
source management policies were adopted to maintain an efficient performance
across application scheduling in DCNs. Cloud scheduling can be divided into
two categories. When all tasks are independent, it can be assigned to the pro-
cessors independently without any predefined order of execution. In the case of
dependent scheduling (workflows), scheduling is very complicated [1].



Abderrahim BOUCHAIR et al.

A proper task scheduling creates a clear vision about resource availability and
helps define the objectives associated. Researchers still face complicated opti-
mization problems that are very difficult to solve. Over the past few years, Cloud
computing has adopted many operational research methods like meta-heuristics
methods, which are usually iterative stochastic algorithms that progress towards
a global optimum. Our work presents an adaptation of a recent meta-heuristic
called Harmony Search (HS) for the resolution of the job-shop scheduling in a
Cloud-based server-centric architecture. Indeed, this method, which was recently
developed by Geem [2] and inspired by the musical improvisation process, in-
tended to solve optimization problems. This paper is organized as follows: In
section two, a list of previous related works was provided. Next, section three
and four present a brief summary of server-centric architectures in the Cloud
and Scheduling problem definition respectively. In the fifth section, a job-shop
problem and HSA basics were presented. Our contribution including a repre-
sentation of implementation and the result of experimentations are described in
section six — finally, a conclusion with a recommended future works.

2 Related Works

Many previous studies inspected the consolidation of Cloud-based environment
issues with industrial manufacturing problems. However, just a few works were
dedicated to solve local tasks scheduling problems. Fathi and khanli [3], em-
ployed HSA for virtual machine (VM) consolidation to allow the reduction in
energy consumption respecting Service Layer Agreement (SLA) violation and
live migrations quantity In [1], a merged HS algorithm was proposed with Group
technology aiming to reduce makespan for Cloud environment. Al- maamari and
Omara [4] has considered an amalgamation of the Particle Swarm Optimization
algorithm and the Cuckoo search (CS) algorithm to resolve the task scheduling
problems, using the CloudSim [5] simulator to evaluate the proposed algorithm.
A Polyrhythmic HS was suggested by Melnik and Trofimenko [7], which is a new
conception of HS for scientific workflow scheduling to find an optimal solution
in terms of scheduling execution time. Haoqian and Lianglun [8], has presented
a model (ACO-HS) mixing the ant colony optimization algorithm and harmony
search algorithm. ACO-HS can effectively retain the high accuracy and paral-
lelism of the ACO algorithm, and combine with the capabilities of fast global
search from HSA, evaluated by a simulation using the CloudSim software.

Job-shop scheduling provides multiple advantages such as getting real-time
feedback notifications; it can operate different types of resource simultaneously
and more importantly, it grants regrouping secondary objectives in one single
objective, unlike the previously mentioned works which focus on developing a
mechanism to solve one specific constraint. All this has motivated us to imple-
ment HSA to reduce the makespan of Cloud application as our primary goal and
eventually lowering processing requirements, energy consumption and resource
utilization in DCNs by examining several job-shop benchmark problems in the
literature.



Harmony Search Algorithm for Cloud Applications

3 Server-centric Data Center

Today’s data centers (DCs) enters span widely in the field of Cloud computing. In
server-centric architectures, servers are responsible for networking and routing,
whereas commodity switches without modification are used only for forwarding
packets [9]. There are three typical server-centric such as Bcube [10], Dcell [11],
and Ficonn [12].

3.1 Bcube.

A BCube topology relies on servers to take part in the traffic network, requiring
a high bandwidth to support intensive computing application. As shown in figure
1, the benefits of BCube design is that it can provide fault tolerance and load
balancing and while requiring lower cooling and manufacturing cost [14].

Fig. 1: The BCube topology.

3.2 DCell.

A Dcell is a typical server-centric topology where we can find a direct point to
point connectivity between servers as shown in figure 3, which requires a lot of
ports. This topology has Dcell0 as an essential element that includes a mini-
switch connected to n servers and provide excellent results in fault-tolerance
using its routing protocol [15].



Abderrahim BOUCHAIR et al.

Fig. 2: The DCell topology.

3.3 Ficonn

Similar to DCell, every server uses the network interface card (NIC) with two
types of ports, active port to connect to a mini-switch and a backup port for
expansion. As shown in figure 3, a 0-level FiConn0 contains an n-port switch and
n servers. A FiConnS consists of (p

2 + 1) FiConnS−1’s, where p is the number of

backup ports in a FiConnS−1, and the number of servers is NS=NS−1 (NS−1
2p +1),

S≥1 [9].

Fig. 3: The Ficonn topology.

4 Scheduling Problem

The scheduling problem is to determine plans for the operation of an industrial
production system. In other words, it is about managing the allocation of re-
sources to tasks over time, while satisfying at best a set of criteria and respecting



Harmony Search Algorithm for Cloud Applications

certain constraints. The result of the process of solving a scheduling problem is
a precise schedule of tasks to be performed which has three essential charac-
teristics. Firstly, allocating the necessary resources to the tasks. Secondly, task
sequencing and thirdly the date-marking that point out the start and end times
of the tasks on the resources.

4.1 HSA Basics

Just like the optimization process to find an optimal overall solution of an ob-
jective function, the harmonization process relies on an orchestra playing a com-
bination of harmonies to find the pleasant harmony determined by an aesthetic
standard. To achieve this, a set of musicians proceeds by successive improvisa-
tions based on their experience. Each player sounds any pitch in the possible
range, following one of these three rules firstly, play a tone of his memory, af-
ter that he plays a tone adjacent to the tone of his mind and finally, perform
a random tone in the set of possible sounds[2]. HSA uses these three rules for
generating a new solution. Here, the memory is a set of solutions generated ran-
domly at the beginning. So the process produces at each iteration a new solution
using either memory values, or modified values of the memory, or random values
according to these parameters. Harmony Memory Considering Rate (HMCR),
refers to control the choice of any value from Harmony Memory (HM). Pitch Ad-
justing Rate (PAR), which means a selection of a value adjacent to the amount
of HM.

Standard HSA proceeds with the following steps: Start by initializing a set of
parameters. Next step, improvise the HM to get a new harmony and then update
it until some criteria are satisfied. We have added a randomization parameter to
allow the selection of a random value in the range of possible values, to use it
in a replacement that is applied in the evaluation step presented in Section 5,
which allows the update of the memory to keep the best solutions and use them
later.

4.2 Analogy Context

The job-shop scheduling type is known in the literature as a very complicated
combinatorial problem and very difficult to solve. On account of its industrial
origins, Table 1 gives a projection of necessary elements from an industrial work-
shop to a Cloud environment. A piece takes the place of an application process
running inside a virtual machine (VM) which is software running within a server
to imitate the behavior of a physical machine and have multiple Cloudlets that
use the VM capacity and store its id to run a file on it.



Abderrahim BOUCHAIR et al.

Table 1: A workshop projection on Cloud environment.
Workshop Cloud Computing

Piece Application
Machine Server(VM)
Operation (Task) Cloudlet

From the analogy mentioned above, we used HSA to solve that context due
to its ability to deal with the immensity of data that can be found in JSP,
in addition to that, HSA provides a simple concept regarding its model and a
smooth implementation besides, it relies on few adjustable parameters to speed
up the convergence process.

5 Proposed Work

DCNs are at the heart of almost every private facility in Cloud computing, with
a specific architecture pre-installed. This work takes into consideration the issue
of application scheduling in the Cloud and adopting a JSP as a study case, that
is suitable with the server-centric architecture, focusing on the DCell topology,
to optimize the Makespan using HS process illustrated in figure 4.

Fig. 4: HS optimization procedure.

Improvisation is the most critical phase in the meta-heuristic HS because it
allows the generation of a new harmony. It is based on the adjustment operator



Harmony Search Algorithm for Cloud Applications

efficiency which we designed differently compared to the basic algorithm in order
to avoid the risk of having unrealistic harmonies, this second part from the
HS procedure is based on three dependent parts. Firstly, we run through the
benchmark file to create a random harmony of Cloudlets in a no-discount draw
which will be in the end a vector of Cloudlets (i.e., an OS vector), then add this
vector to vector of vectors, all this inside a loop. Part two consists of adjusting
this last vector by using an adjustment method that randomly arranges the
index of the first Cloudlet in the vector OS, so that its new position takes the
one of the first box containing a null value. The last part of the improvisation
will receive an adjusted vector of vectors as an input to collect the cloudlets
in a specific position from all the vectors and add it to a new final OS vector.
This vector will be considered as the ultimate scheduling harmony and to be
evaluated for the best fitness in afterward.

5.1 Implementation

The current work has been implemented using the toolkit NetworkCloudSim [6],
which is an extension from CloudSim. It gives the possibility to create different
types of DCNs, especially the hierarchical topologies with three separate switches
level which are an edge switch, aggregate switch, and root switch. Initially, Net-
CloudSim has a test example class implemented that represent a small DCN
to test the communication between the servers and the edge switches. For the
solutions coding, we followed a model of coding very used in the literature which
is based on the component Operation Sequence (OS), it can be represented by a
vector of integers of equivalent size to the number of Cloudlets and allows to give
an order of execution of all the Cloudlets to execute in the Cloud. For example in
Table 2, the second box containing the value five means that the second Cloudlet
to be performed will be the fifth Cloudlet of the sixth application.

Table 2: Proposed OS vector.
Cl54 Cl56 Cl46 Cl71 Cl66 Cl64 Cl55 Cl45 Cl44 Cl65

5 5 4 7 6 6 5 4 4 6

In our contribution, dealing with job-shop scheduling problem which is mono-
objective, the objective function respects a single criterion which is the Makespan.
The evaluation step from the HS procedure (fig.4) appends an extra data pro-
cessing to the basic procedure and therefore a fitness function presented in Al-
gorithm 1 was developed. It proceeds by reading some VMs (N VMs) from the
benchmark file and then for each Cloudlet in the OS vector orderly, retrieve the
affected machine and the corresponding duration from the problem data file,
after that assign the cloudlet at the end of the current VM respecting the prece-
dence constraints. After completing the scheduling, calculate the fitness of the
solution and for that recovering the value of the Makespan.



Abderrahim BOUCHAIR et al.

5.2 Experimentation and Results

In our study, we used benchmark samples ABZ, LA, FT, and ORB [13]. The file
presented in figure 5a represent the Cloud user exigencies and can be read as
follows: The fifth line represents the number of applications and the number of
VMs in the Cloud (e.g., 10 applications and 10 VMs) respectively. The pair [4
88]) represents a single Cloudlet, such that the first digit (4) designates the id
of the VM assigned to this Cloudlet and the second (88) indicates the execution
time of the Cloudlet on this VM.

(a) ABZ5 benchmark(10x10) (b) ABZ benchmark

Fig. 5: ABZ5 sample instance and ABZ comparison result



Harmony Search Algorithm for Cloud Applications

In order to determine the best set of parameters, several series of tests were
performed on five instances of the ABZ class (ABZ5, ABZ6, ABZ7, ABZ8,
ABZ59), five times each by combining different parameter values of HMCR and
PAR with 300000 iterations. In what follows an explanation in detail on the set
of tests carried out. The experiments were performed on an Intel i5-6200U CPU
up to 2.8GHz with 4gb of Ram. Initially, a size of 100 of HM is more than enough
according to the calculated fitness. The best combination of HMCR and PAR
parameters is decided after fixing the PAR each time to a given value belonging
to the following set of values: (0.1; 0.2; 0.01) and by varying the HMCR between
(0.7; 0.8; 0.9). The best combination obtained is PAR = 0.01 and HMCR = 0.9.
Final tests are required to validate our implementation results, by comparing
our best-obtained fitness from ABZ, LA, ORB instances to the knowing best
solution (KBS) in the literature and also to Genetic Algorithm (GA).

(a) ORB benchmark (b) LA benchmark

Fig. 6: ORB and LA comparison result

From the previous figures, we notice that our method gives on the majority
of the benchmarks the same fitness values found in the literature, and manages
to exceed them, as in figure 6a with 40% of ORB instances that our HS approach
Makespan was better than what was found. Same goes in figure 6b with 32.5%
of LA instances and 40% of ABZ instances in figure 5b.

6 Conclusion

Despite the constant evolution of Cloud Computing, The optimal resolution of
Job Shop type scheduling problems is in some cases impossible, owing that to
their size and complexity of the problem are taken into account when choosing
the optimization method. In summary, we have presented an approach based
on HSA to schedule a set of applications with a DCell topology in a Cloud
environment using NetCloudSim. The results obtained are mostly satisfactory
and remain in their encouraging overall, compared to those found in the liter-
ature. In perspective, we plan to integrate meta-heuristics for local search to
improve resources utilization and services performance in the Cloud and explore
other types of scheduling issues such as flexible job-shop, flow-shop, and hybrid
flow-shop.



Abderrahim BOUCHAIR et al.

References

1. Chaudhary, N., Kalra, M.: An improved Harmony Search algorithm with Group
technology model for scheduling workflows in cloud environment. In: 4th IEEE Uttar
Pradesh Section International Conference on Electrical, Computer and Electronics
(UPCON), ISBN 978-1-5386-3004-4, IEEE, Mathura (2017).

2. Zong, W. G., Joong, H. Kim., Loganathan, G. V.: A New Heuristic Optimization
Algorithm: Harmony Search, SIMULATION: Transactions of The Society for Mod-
eling and Simulation International (SIMUL-T SOC MOD SIM),Vol. 76, pp.60-68
(2001).

3. Fathi, M.H., Khanli, L.M.: Consolidating VMs in Green Cloud Computing Using
Harmony Search Algorithm. In: Proceedings of the 2018 International Conference
on Internet and e-Business, pp. 146-151.ACM, Singapore (2018).

4. Al- maamari, A., Omara, F.A.: Task Scheduling using Hybrid Algorithm in Cloud
Computing Environments. IOSR Journal of Computer Engineering 17(3), 96-106
(2015).

5. Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: Cloudsim: a
toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms. Software-Practice and Experience, vol. 41, 23-50
(2011).

6. Saurabh, K.G., Rajkumar, B.: NetworkCloudSim: Modelling Parallel Applications
inCloud Simulations, IEEE, International Conference on Utility and Cloud comput-
ing, vol.76, pp. 105-113. Victoria (2011).

7. Melnik, M., Trofimenko, T.: Polyrhythmic Harmony Search for Workflow Schedul-
ing. In: 4th International Young Scientists Conference on Computational Science,
vol. 66, pp. 468-476. Procedia Computer Science, Athens (2015).

8. Haoqian. M, Lianglun. Ch.: ACO-HS: A Hybrid Cloud Resource Scheduling Model,
3rd International Conference on Engineering Technology and Application, ISBN
978-1-60595-383-0, Kyoto (2016).

9. Tao, C., Xiaofeng, G., Guihai, C.: The features, hardware, and architectures of data
center networks: A survey. Journal of Parallel and Distributed computing, 45-74
(2016).

10. Guo, C., Lu. G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.:
Bcube: a high performance, server-centric network architecture for modular data
centers, SIGCOMM Comput. Commun. Rev. 39 (4) 63–74, (2009).

11. Guo, C., Wu, K., Tan, L., Shi, Y., Tian, C., Zhang, Y., Lu, S.: DCell: a scalable
and fault-tolerant network structure for data centers, ACM SIGCOMM Comput.
Commun. Rev. 38 (4) 75–86, (2008).

12. Li, D., Guo, H., Tan, Y., Zhang, Y., Lu, S.: FiConn: Using backup port for server
interconnection in data centers, in: IEEE INFOCOM, pp. 2276–2285. (2009).

13. Github, https://github.com/tamy0612/JSPLIB, last accessed 2018/12/09.
14. Hammadi, A., Mhamdi , L.: A survey on architectures and energy efficiency in

Data Center Networks, Vol. 40, 1-21 (2014).
15. TING, W., ZHIYANG, S., YU X., MOUNIR, H.: Rethinking the Data Center

Networking: Architecture, Network Protocols, and Resource Sharing. IEEE Access,
Vol.2, 1481 – 1496 (2014).


