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Abstract. Methods of inversion of dynamic systems are widely used for solving 
problems of control of mechanical and electrical systems. Solving the inversion 
problems raises a number of difficulties related to the high sensitivity of the re-
sults with respect to the accuracy of setting the parameters of a mathematical 
model of object parameters, instability in controlling non-minimum phase ob-
jects, and violation of the conditions of physical realizability. 
In this paper, an approximate method of solving the inversion problem for lin-
ear stationary dynamic systems is proposed which is largely free from those dis-
advantages. The method is based on the representation of the input and output 
signals by their approximations in the linear space of specially selected D-
functions of time. The feature of the proposed method of inversion of dynamic 
systems is the representation of multidimensional polynomials approximating 
the input and output signals as a product of rectangular matrices and a vector of 
powers of time.  
Mathematical models of linear dynamic systems in the form of differential 
equations in the state space and in the equivalent input-output form, as well as 
SISO and MIMO dynamical systems are considered in the paper. 

Keywords: dynamical systems, polynomial signals, quasi-harmonic functions, 
matrix equations. 

1 Introduction 

The inversion problem of dynamic systems has an extensive bibliography and a long 
history. The papers [1, 2] can be considered as the fundamental work in this direction, 
where the criteria and methods for constructing inverse operators are justified. A sig-
nificant contribution to the development of the theory and practice of inversion of 
dynamic systems was made in the works [3–5]. In them new criteria for the inversibil-
ity of linear dynamic systems are proposed and specific ways to solve the inversion 
problem are given. A number of practical results of solving inversion problems with 
regard to electrical and mechanical systems are given in [6, 7]. 



The inversion problem become of particular importance due to the solution of the 
problem of the synthesis of combined automatic control systems. Various aspects of 
the inversion problem for combined control systems in the most general statement are 
presented in [4]. Despite significant progress in solving the inversion problem of dy-
namic systems, in practice there are a number of difficulties associated with the high 
sensitivity of the results to the accuracy of the parameters of the mathematical model 
of a controlled object, the instability in controlling non-minimally phase objects, and 
violation of conditions of physical realizability of inverse operators. Generally, the 
listed problems do not allow us to find a practically realizable solution of the problem 
of finding the inverse operator in the control problem. Nevertheless, for solving a 
number of practical problems, it seems natural to consider approximate mathematical 
models of a controlled object and signals at its inputs and outputs, for which the in-
version problem has the correct solution. In combined control systems, these assump-
tions are compensated for by the deviation control loop. 

Thus, the purpose of this work is to develop an approximate, practically realizable 
numerical method for solving the inversion problem for linear dynamic systems. 

2 Statement of the research problem 

We will consider linear stationary dynamical systems whose mathematical models are 
presented either in the form of equations of state 
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where nRx  is the state vector, mRu  is the control vector; sRy  the output vec-

tor; CBA ,,  are matrices of the corresponding dimensions, or  in the equivalent form 
“input-output”: 
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where pAAA ,...,, 10  are  ss  matrices, qBBB ,...,, 10  are  ms  matrices. In the 

following, we will assume that the controlled system under consideration is asymp-
totically stable, and the dimensions of the control vector and the output vector 
coincide, i.e. ms  .  

Consider the linear space of continuous   of continuous differentiable vector 
functions  t , which satisfy the condition 
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These D -functions include the class of functions of the form 
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where k , k  are some constants, but  tRk  and  tQk  are vector polynomials of the 

degree not higher than l . It is not difficult to verify that a function of the form (4) 
satisfies condition (3). For different values of the parameters k , k ,  tRk ,  tQk  

different classes of D -functions can be obtained: polynomials, trigonometric poly-
nomials, quasi-harmonic functions. 

Prove the following statement: if the input action  tu  is a D -function of the   

class, then the forced response of the dynamic system (1) is also a function of the   
class. 

To prove the statement, we will seek a solution of equation (1) in the form of an in-
finite series 
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where kC  are some nm  matrices to be determined. 

After substitution (5) in (1) we get 
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By equating matrix coefficients of derivatives  ku  of the same order in the left and 
right sides of (6), we obtain a system of recurrence relations for calculating matrices 

kC : 

 01  BAC , kk CAC 1 ,  ,1k   

of which directly follows 

 ,...,...,  , 2
2

1
1 BACBACBAC k

k
   (7) 

Thus, the output response of the dynamic system (1) at zero initial conditions will 
take the form 
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Since all   tu k 1  in (8) belong to the class  , their linear transformation  ty  is 

also an element of  , i.e. the statement is proved. 
Within these assumptions about the structures of the dynamic system and the sig-

nals at the inputs and outputs, the statement of the inversion problem can be formu-
lated as follows: find an input action  tu  on an interval  10 , tt  belonging to a certain 



class   of D -functions, under which the output  ty  of the system (1), (2) will be a 

specified D -function of the same class   at zero initial conditions. 

3 Inverting dynamic systems in a class of polynomials 

Let the set   of input and output signals be a set of vector polynomials of degree not 
higher than l  
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where laaa ,...,, 10  are n -dimensional vectors of coefficients. 

Instead of polynomials of the form (9), we will consider equivalent polynomials 
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where vectors ka  and kb  are connected by the ratio lkkab kk ,0  ,!  . 

Further, the vector polynomial (10) will be represented in a vector-matrix form. 
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where B  is an  1 ln -dimensional matrix, whose columns correspond to the vec-

tor coefficients of the polynomial (10), and 
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 is the  1l -

dimensional column vector. 
Representation of multidimensional polynomials in the vector-matrix form (11) 

will allow in the future to effectively apply matrix methods to solving specific inver-
sion problems of dynamic systems. 

Consider some elementary operations with polynomials and their analogues in vec-
tor-matrix form: 

 addition:      TBBtt 2121  ; 

 multiplication by number:    TBt  ; 

 multiplication by the matrix С  on the left:   CBTtC  ; 

 differentiation: 
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where the elements of the    11  ll  dimension matrix   are the form 

 1,  jiij , 1,1,  lji , (13) 



where ij  is the Kronecker delta. 

Subsequent derivatives are found in accordance with the formula 
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where the elements of the matrix k  are found by the formula which is  similar to 
(13) 
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Consider first the SISO system defined in the form of "input-output" (2) 
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where paaa ,...,, 10 , qbbb ,...,, 10  are constant coefficients, qp  . 

The polynomial signals at the input and at the output will be represented in a vec-
tor-matrix form 

   YTty  ,   UTtu  , (17) 

where Y  and U  are  1l -dimensional row vector composed of the coefficients of 

the polynomials  ty  and  tu . 

After substitution (17) into (16) we get 
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From (18) directly follows  
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Introducing the corresponding notations, we rewrite (19) in the form 

 BUAY  , (20) 

where A  and B  are the square    11  ll  lower triangular matrices, which are 

formed in accordance with the following rules: 
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and have the form 



Table 1. View of the lower triangular matrix A  

 1 2 3 4   1l  

1 pa  0 0 0   0 

2 1pa  pa  0 0   0 

3 2pa  1pa  pa  0   0 

              
1p  

0a  1a  2a  3a    0 

              
1l  0 0 0 0   pa  

A  

       

Table 2. View of the lower triangular matrix B  

 1 2 3 4   1l  

1 qb  0 0 0   0 

2 1qb  qb  0 0   0 

3 2qb  1qb  qb  0   0 

              
1q  

0b  1b  2b  3b    0 

              
1l  0 0 0 0   qb  

B  

       
Let us analyze the relation (20). It is easy to see that (20) is a linear mapping be-

tween vectors Y  and U , written in a symmetric form. Since A  and B  are lower 

triangular matrices with diagonal elements pii aa   and bii = bq  1,1  li , then A  

and B , in the general case, are non-degenerate and system (20) has a unique solution. 

If a solution of the direct control problem is sought, then 1  ABUY . 
In the case that is of interest to us, the solution of the inversion problem, the de-

sired vector of coefficients U  is found from the relation 1 BAYU . 

The matrix 1B  can be calculated as follows. 
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where l ,...,, 21  is the sequence of minors of matrix B , in which each successive 

one is formed as a result of the bordering of the previous minor, starting from 

11  qb  – the element of the matrix 21b . 

An effective method for calculating minors k is a method based on the consistent 

application of the Schur and Frobenius formulas [8] for calculating the determinant 
and inversion of block matrices. From the computational point of view, the solution 
(20) with respect to the vector U  is easier to find by sequential calculation of the 
components U , starting from lu . In this case, due to the triangular structure of the 

matrix B , a linear equation with one unknown is formed at each step of the iterative 
process. Thus, the solution of the inversion problem is found for 1l  steps. 

Consider the solution of the inversion problem for MIMO systems in the polyno-
mial signals environment. Let the mathematical model of the system under considera-
tion be of the form (1). Then the solution of the direct control problem in the general 
form is represented in the form (8). Substitute in (8) vector-matrix expressions for 
polynomials  ty  and  tu , taking into account that the powers of the matrix   sat-

isfy the condition 0k , lk  . 
As a result, we obtain the analytical relationship between the matrices Y  and U : 
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The result (21) for solving the direct control problem in the polynomial signal envi-
ronment makes it easy to solve the inverse problem by solving the matrix equation 
(21) with respect to the matrix U  under a specified matrix Y . 

The solution of the matrix equation (21) can be obtained by vectoring matrices Y  
and U  and constructions based on the Kronecker product of matrices [9], which leads 
to a linear system of algebraic equations of  1 lm  dimension: 
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where the column vectors vecU  and vecY  are composed of transposed rows of ma-
trices Y  and U  matched in ascending order of the row number. 

4 Inverting dynamic systems in the class of quasiharmonic 
functions 

Let the signals at the input and output of a dynamic system have the form 
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where  tRk  and  tQk  are vector polynomials of the degree not higher than l , k  

are some positive numbers. 
Using the matrix-vector representation of polynomials, the relation (23) can be 

written as 
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where kR  and kQ  are matrices whose rows correspond to the coefficients of the 

components of vector polynomials in (23).  
To find the derivatives of the function (24), we first consider the single-frequency 

function of the form (24) 
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The sequence of derivative functions of the form (25) can be written as 
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where kR  and kQ  are calculated by the recurrence formula 

      11 kkkk QRQR , (26) 

where   is a    1212  ll  block matrix 
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each block of which has a dimension of    11  ll . 

Based on the relations (26) and (27), the sequence of matrices of polynomial coef-
ficients of derivatives of a single-frequency function (25) can be written as 

     kkk QRQR  , (28) 

where the matrix k  is calculated by successive raising to the power of the matrix 
(27). 

Consider the most general case when an exponential multiplier is present at a speci-
fied output of the system, i. e. 
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Spreading the method for finding the derivatives of a single-frequency quasi-
harmonic signal, discussed earlier, we will write the sequence of derivatives of single-
frequency functions (29) in the form 
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or in a matrix form 
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Introducing the notation 
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we obtain the final ratio to calculate the coefficients kR  and kQ  of derivatives 
  tk : 

     kkk QRQR  , (30) 

where the power of the matrix k  are calculated by successive raising   to a power. 
Let the matrix representation of the input and output signals be in the form 
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where uR , uQ , yR , yQ  are the  1 lq -dimensional matrix of coefficients of poly-

nomial multiplier. 
Then the derivatives of these signals in accordance with (30) can be represented as 
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where the matrix coefficients k
uR , k

uQ , k
yR , k

yQ  are found in accordance with the 

formula (30). 
After substituting the (31) and (32) into (2) and reducing by te  and T  we get 
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where  yy QRY   and  uu QRU   are matrix representations of polynomial 

factors in front of functions tsin  and tcos for output and input signals. 
The obtained matrix mapping (33) is symmetrical and allows us to find solutions to 

both direct and inverse control problems by vectoring the desired control of matrix Y  
and constructions based on the Kronecker product of matrices [9] by analogy with 
(22). 

The obtained result is easily distributed to the SISO system. In this case, the matri-
ces kA  and kB  are scalars ka  and kb , accordingly, and the matrix equation (33) takes 

the form 
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whose solution with respect to vectors Y  or U  (for the problem of inversion) is con-

nected to the procedure of inversion of matrices 
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   1212  ll  dimension. 

5 Software package for solving inversion problems 

The software is fully developed in relation to polynomial models of input and output 
signals and contains the following basic structural blocks: 

1. The block of input the initial information i.e. matrices A , B , C  and their di-
mensions for the case of specifying the controlled object in the form (1), and coeffi-
cients paaa ,...,, 10 , qbbb ,...,, 10  for SISO systems specified in the form of "input-

output" (16). 
2. A task formation block that includes a random or fixed-step selection of N  val-

ues of components of the output vector  ty*  at a fixed time interval, as well as set-

ting the degree l  of approximating polynomials  ty*  and calculating their coeffi-

cients using the least squares method. The approximation of signals by cubic splines 
is provided. 

3. The block of formation of matrices A  and B  as well as the matrix of the system 
of linear equations (22) and the calculation of the condition number  cond  of sys-

tems of linear equations based on the Euclidean norm. If   100cond , then the solu-



tion of systems (20) or (22) is followed. Otherwise, the degree of approximating pol-
ynomials l  is incremented by one. 

4. The correctness of the inversion problem solution is controlled by numerical in-
tegration of the initial systems of differential equations with zero initial conditions 
and comparison of the result of integration  ty  to the corresponding values of the 

initial output function  ty* . 

6 Conclusion 

Simplified mathematical models of signals based on polynomials and harmonic func-
tions with polynomial varying amplitude are proposed in the paper. 

A matrix representation of polynomial signals was proposed and substantiated, 
which made it possible to represent controlled dynamic processes as static linear 
transformations in the space of rectangular matrices. Rather simple and effective algo-
rithms for the numerical solution of the inversion problem, as well as a method for 
estimating the degree of robustness of the results, are obtained. 
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