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Abstract. Analysis process and transformation of non-stationary diagnostic 
signals to reduce the degree of their non-stationarity and the subsequent synthe-
sis of neural network predictive model based on them are considered. The 
software which allows to apply the developed methods for processing of signals 
of diagnostics of transmission of the helicopter and on their basis to build the 
forecasting model for the solution of practical problems of technical diagnostics is 
developed. 
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1 Introduction 

Preventing machinery failure is an important component of the maintenance activities 
of most engineering systems. For quality control of a technical product, at the end of 
its production and during design tests technical diagnostics is carried out. 

Automation of decision-making in the process of technical diagnosis is an urgent 
task, as it helps to reduce the load on the human operator, as well as provides 
efficiency and speed of decision-making and reduces the dependence of complex 
technical systems on the negative impact of the human factor. 

A promising basis for solving the problems of automation of diagnosis are 
intelligent information technologies that are able to build models for examples – 
experimental observations "input - output" and extract knowledge from the data in the 
learning process. 

The paper considers the process of diagnosing the helicopter transmission. The 
helicopter is a complex and valuable technical product. Therefore, after designing the 
test sample is tested on the stand for a large number of hours. During these tests, 
changes in the vibration level of the sample are monitored. As a result of such tests, a 
large amount of data is accumulated in the form of diagnostic signals. 



A sharp increase in vibration negatively affects the sample, which can lead to its 
failure. This entails material costs and the need to suspend testing. Therefore, having 
a system that can predict the vibration level for a certain time in advance will help to 
improve the testing process. 

The basis of such a system can be used an intelligent model of data-driven [1, 2], 
for example, as one of the most powerful ones - the neural network model, by 
teaching it to predict the future level of vibration based on historical data collected. 
However, incoming signals are characterized by a high degree of non-stationary, 
which makes complex and long-time synthesis and training of such models. 

The goal of the work is to develop methods for converting diagnostic signals to 
reduce their dimension, allocating the necessary component and reducing the degree 
of their non-stationary for further synthesis of neuromodels based on them. 

The objective of this study is to predict these signals using neural network models. 

2 Formal problem statement 

Consider the problem of diagnosing the helicopter transmission [4]. Preventing 
machinery failure is an important component of the maintenance activities of most 
engineering systems. Helicopters are constantly exposed to periodic loads and 
vibrations that initiate and propagate the occurrence of damage in many components 
of the equipment. This is due to the design of the helicopter and the presence of 
complex mechanical systems, such as the inventive rotor, control rotor, main gearbox 
and other transmission elements. In most cases, the failure of these systems lead to 
catastrophic situations. 

For monitoring the technical condition of the helicopter used systems like Health 
and Usage Monitoring Systems (HUMS) [5-6]. These systems make it possible to 
detect damage in the transmission components and predict their residual life. 

Important in HUMS is the ability to assess the technical condition of critical ele-
ments of the transmission, using the data of vibration signals that were recorded dur-
ing the flight or ground tests. 

A neural network model will be used as a predictive model. Formally, the 
problem of neuromodels synthesis can be presented in this form. 

Suppose given the original sample as a set of prece-dents (instances) <xt, yt> is a 
set of S precedents characterizing dependence yt(xt), at the moment t, t = 1, 2, …, T, 
where xt={xs

t}, y={ys
t}, s = 1, 2, ..., S, characterized by the set of N input features 

{xt
j}, j = 1, 2, ..., N, where j is a number of feature, and output feature y. Each s-th 

precedent can be noted as <xs
t, y

s
t>, where xs

t={xs
tj}. 

Then the problem of model synthesis of dependence yt(xt) will be considered in 
search of such structure F() and adjusting such values of parameters w of a model 
which will satisfy the model quality criterion f(F(), w, <xt, yt>) → opt, where opt – is 
a symbol of optimum. Usually, the criterion of learning quality of neuromodels is 
defined as a function of model error (1): 
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3 Analysis of the level of nonstationarity of the signals of the 
diagnostic process 

In most research methods, it is assumed that the signal, and in General, any time 
series is stationary, and the time dependence is considered possible to take into 
account a variety of non-statistical methods. For example, the series is decomposed 
into three components: trend, cyclic and random. A trend is a component of a series 
that changes over a long period of time due to the influence of fundamental factors. 
The cyclic component changes in time with a certain period according to the course of 
repetitive processes. The random component includes all the last components that can 
not be assigned to one of the first two groups. The use of such separation for technical 
diagnostic signals may not provide optimum results due to the following factors. 

First, the component can be quite complicated. For example, its trend 
characteristics may be nonlinear and non-linear, as predicted in most trend allocation 
methods. Secondly, in the tasks of technical diagnostics there is always a "white 
noise", the smallest error of forecasting which is equal to its dispersion. Thus, the 
series is divided into three parts, although this separation is fuzzy, the cyclic 
component can become a trend at intervals of less than a period, and the trend and the 
cyclic component can go into the category of random component. 

The solution of the problem of stationary signaling of technical diagnostics is 
possible, but in most cases it entails a significant change in the structure of the signal 
itself. And the evaluation of the technical product on the received signal can not 
provide the necessary level of its quality. Metrics that are based on the components of 
its internal structure, for example, based on its wavelet decomposition [11], can be 
applied to a non-stationary signal to assess the quality of a technical product on a 
diagnostic signal. However, before switching to the application of such methods of 
constructing forecasting models, it is necessary to make sure that all possible 
procedures have been carried out to minimize the unsteadiness of the series, which 
does not lead to a significant change in its initial structure. 

To estimate the degree of unsteadiness of the signal, we will use the dilated 
Dickey-Fuller criterion [13], the number of shifts will be calculated based on the data 
minimization of the information criterion (AIC - metric). This criterion is used to test 
the hypothesis of stationarity of the time series. Also, this criterion can be used to 
estimate the degree of nonstationarity of the time series. The closer the criterion value 
to the boundary, the lower the degree of nonstationarity has the signal. The values of 
the Dickie-Fuller criteria for the obtained values are given in Table 1. 

 
 



Table 1.  The value of the Dickie-Fuller criterion for processed signals. 

 
Name of the 

transmis-
sion ele-

ment 

Place of 
measure-
ment of 

the input 
signal 

Direction 
of meas-
urement 

Controlled 
parameter 

Value of 
the 

extended 
Dickey-
Fuller 

criterion 

Critical 
value of 

the 
extended 
Dickey-
Fuller 

criterion 
(for Mac 
Kinnon 

[14]) for p 
= 0.95 

Rotor blade Rotor shaft 
cover 

Vertical Vibration 
speed 

 

-8.37 -2.86 

Horizon-
tal 

Vibration 
overload 

-9.76 -2.86 First gear 
drive of the 
intermediate 
gearbox 

Intermedi-
ate gear-
box Axial Vibration 

overload 
-10.44 -2.86 

Vertical Vibration 
overload 

-13.55 -2.86 First gear 
drive of the 
tail  
gearbox 

Tail gear-
box 

Axial Vibration 
overload 

-9.29 -2.86 

 
From the results it is possible to observe a sufficiently high degree of unsteadiness 

of the studied signals. To find the relationship between the current and the previous 
signal values, we use the auto-correlation function. Autocorrelation is a correlation of 
the function itself with a certain variable of an independent variable. The 
autocorrelation function is defined as: 

                                        




 dttftfR f )()()( *  ,                                      (2) 

where the function )(tf  integrates into a product with a complex conjugate and a 

function displaced by a certain value . 
The graph of the signal received on the intermediate gearbox (axial direction of 

measurement), which characterizes the state of the first gear drive of the intermediate 
gearbox is shown in Fig. 1. The graph also contains a 95% confidence interval to 
determine the statistical significance of the autocorrelation coefficient. 

 



 

Fig. 1. Autocorrelogram of signal received on the intermediate gearbox (axial direction of 
measurement) 

The carried autocorrelation analysis confirmed the proposed assumption of the 
presence of cyclicity in the signal. The presence of auto-correlation complicates the 
use of a number of methods of analysis of time series. Therefore, to reduce 
autocorrelation, elimination is used to shift from correlation of levels to correction of 
deviations from trends - residues (for example, the conversion of a time series into a 
number of values of differences between its adjacent members). This approach can 
not be applied in this case due to the above reasons for impossibility to change the 
initial structure of the diagnostic signal. 

Another solution to this problem is to split the signal into several components, 
which will eliminate cyclicity and maintain the original signal strength. 

4 Reduction of the nonstationarity of the signals based on 
information about the operating modes in the cycle of 
diagnosis 

To reduce the non-stationary time series, methods can be applied that will lead to its 
breakdown into a certain number of smaller time series, in such a way that they are 
absent, explicitly, as a component of cyclicity [12]. When applying such a 
breakdown, the problem is to find the period of the cycle (which can change over 
time). For qualitative partitioning of a series it is necessary to use knowledge of the 
subject area of the investigated process. Apply expert knowledge in the field of 
aircraft engineering for breaking the signal of diagnosis. Fig. 2 shows a graph of 
signal of rotation of the turbocharger rotor left engine. 



         

Fig. 2.  Raw signal of rotation of the turbocharger rotor left engine  

We process the processing of these signals to obtain the values of the rotational 
frequency by counting the number of times the signal changes in 1 second (the 
discretization frequency of the rough signal 7200 Hz). The graph of the signal 
received on the intermediate gearbox (axial direction of measurement), which 
characterizes the state of the first gear drive of the intermediate gearbox is shown in 
Fig. 3. 

 

 

Fig. 3. Processed signal of rotation of the turbocharger rotor left engine 



After processing the signal, you can observe the progress of 18 cycles of diagnosis. 
You can also observe the change in operating modes. In one mode of operation, the 
speed does not change significantly. The processed signals of rotation of the turbo-
charger rotor right engine demonstrate similar results. This is because the left and 
right engines duplicate each other to increase reliability.  

It is proposed to allocate from the general signal of diagnosing the intervals during 
which the diagnosis took place in one mode of operation. For example, we isolate 
from the general signal for diagnosing the intervals during which the diagnosis took 
place in the second mode of operation. It is proposed to perform autocorrelation 
analysis for the received signals. 

The graph of the signal received on the intermediate gearbox (axial direction of 
measurement), which characterizes the state of the first gear drive of the intermediate 
gearbox in the second mode of operation of turbochargers is shown in Fig. 4 The 
graph also contains a 95% confidence interval to determine the statistical significance 
of the autocorrelation coefficient. 

 

 

Fig. 4.  Autocorrelogram of signal received on the intermediate gearbox (axial direction of 
measurement) in the second mode of operation of turbochargers 

The performed autocorrelation analysis demonstrates the absence of expressed 
cyclicity in the signal. This indicates a qualitative breakdown of diagnostic signals, 
which should help to reduce the unsteadiness of newly formed signals.  

To quantify the degree of non-stationarity of the signals, we calculate the values of 
the Dickey - Fuller criterion for them. Table 2 contains the values of the extended 
Dickey - Fuller criterion for part of the signals obtained from the signals of 
diagnosing the helicopter transmission by the proposed methods gearbox in the 
second mode of operation of turbochargers. 



Table 2. The values of the extended Dickey - Fuller criterion for the signals obtained from the 
signals of diagnosing the helicopter transmission in the second mode of operation of 
turbochargers. 

 
Name of the 

transmis-
sion ele-

ment 

Place of 
measure-
ment of 

the input 
signal 

Direction 
of meas-
urement 

Controlled 
parameter 

Value of 
the 

extended 
Dickey-
Fuller 

criterion 

Critical 
value of 

the 
extended 
Dickey-
Fuller 

criterion 
(for Mac 
Kinnon 

[14]) for p 
= 0.95 

Rotor blade Rotor shaft 
cover 

Vertical Vibration 
speed 

 

-5.42 -2.86 

Horizon-
tal 

Vibration 
overload 

-5.65 -2.86 First gear 
drive of the 
intermediate 
gearbox 

Intermedi-
ate gear-
box Axial Vibration 

overload 
-4.78 -2.86 

Vertical Vibration 
overload 

-5.44 -2.86 First gear 
drive of the 
tail  
gearbox 

Tail gear-
box 

Axial Vibration 
overload 

-5.56 -2.86 

 
There is a significant decrease in the values of the Dickey - Fuller criteria, which 

indicates a decrease in the degree of signal non-stationarity after the proposed 
partition. Also, there is a much smaller scope of the test values than in table 1, this 
makes it possible to assume that the degree of non-stationarity of the signals 
corresponds to the non-stationarity of the diagnosis process in this mode. All this 
makes it possible to better use the signals for the synthesis of predictive models. 

5 Experiments and results 

A four – layer recurrent neuron network with an input layer, two hidden layers with 
GRU-cell (Fig. 5) and an output layer with one linear neuron was chosen as a neu-ral 
network model. GRU [15] is a simplified model of a well – known LSTM cell with 
significantly fewer parame-ters. Through this, learning GRU is easier than LSTM, so 
it is gaining popularity in many real-world tasks. 
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Fig. 5.  The structure of the GRU-cell 

 
At the input of the GRU-cell receives a vector x, which contains the current values 

of the signals. The output of the cell is calculated by the following formulas (3)-(6): 
)( 1 uthutxut bhWxWu   ,              (6) 
)( 1 rthrtxrt bhWxWr   ,             (7) 

))(tanh( 1  tthhthxt hrWxWh ,        (8) 

1)1(  ttttt huhuh .             (9) 
The synthesized neural network model was tested and optimized on a sampling of 

signals during the diagnosis of the helicopter transmission at the second mode of the 
turbochargers of the engines. The total initial sample contained data collected in total 
for 1010 seconds for 22 diagnostic signals. She was divided into a training sample - 1 
- 800 seconds, and the test - 801 - 1010 seconds. 

As the input data of the models, the data for all signals for a given time window 
width were used. Data on one of the 22 signals with a given forecasting horizon, that 
is, a forward shift in the time scale of 120 seconds, were used alternately as initial 
data. The neural network error was calculated by formula 1. Neural network training 
was conducted over 250 epochs. 

To improve the quality of the forecast, optimization of neural network 
hyperparameters was carried out. The results are given in tables 3 - 5. 



Table 3. Results of the optimization of the batch size 

 
Batch size Error on test sample Standard deviation on the test 

sample 
5 0,0195 0,0121 

10 0,0219 0,0127 
20 0,0208 0,0156 
40 0,0178 0,0105 
80 0,0180 0,0123 

100 0,0244 0,0291 
 

Table 4. Results of optimal optimization algorithm selection 

 
Name of the 
algorithm 

Error on test sample Standard deviation on the test 
sample 

SGD 0,0207 0,0183 
RMSprop 0,0179 0,0103 
Adagrad 0,0184 0,0116 
Adadelta 0,0182 0,0114 

Adam 0,0211 0,0184 
Adamax 0,0185 0,0122 
Nadam 0,0193 0,0128 

 

Table 5.  Results of the optimization of the learning rate 

 
Learning 

rate 
Error on test sample Standard deviation on the test 

sample 
0,001 0,0187 0,0125 
0,01 0,0179 0,0089 
0,1 0,0216 0,0096 
0,2 0,1030 0,2297 
0,3 0,1176 0,1969 

 
Fig. 6 shows a graph of the true and predicted in the neural network model values 

of the signal received on the intermediate gearbox (axial direction of measurement) 
and processed with parameter vibration ovetload that characterizes the state of the 
first gear drive of the intermediate gearbox during the second mode of turbochargers 
for the interval 801 - 1010 seconds (test sample). 

 



 

 

Fig. 6. True and predicted values of the signal 

 
The prediction error is 0.0167 for the second mode of operation of turbochargers, 

which is 13.45 % in percentage terms. The forecast error for a signal without division 
into operating modes is 0.1096, which is 28.56% in percentage terms.  

Therefore, if it is necessary to predict the state of the helicopter transmission for all 
modes, it is recommended to divide the signal by the proposed method, to predict 
each part of the signal using a predictive model and combine them on the basis of 
information about the duration of the operating modes.  

6 Conclusion 

In the conducted research of methods of analysis and transformation of non-stationary 
signals of diagnosing the method of reducing the degree of non-stationarity of the 
received signals based on expert information about the modes of operation during the 
diagnosis cycle was proposed. 

The effectiveness of the method of reducing the degree of unsteadiness of signals 
based on expert information about the modes of operation during the diagnosis cycle 
is evidenced by a significant optimization of the value of the Dickey-fuller criterion 
after its application. This method, unlike most, does not require changing the internal 
structure of the signal, and works only by splitting the signal into several other 
signals, which can then be combined. 

On the basis of processed signals, a neural network was synthesized to predict the 
state of the helicopter transmission and its hyperparameters were configured. 

The results are planned to be used to improve the diagnostic quality of the 
helicopter transmission. 



The method of transformation of nonstationary signals and the construction of 
neural network models developed and applied in the investigated method can be used 
to solve problems in which it is necessary to predict the future state of the object, by 
its diagnostic signals. 
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