
Methods for comparing numbers in non-positional
notation of residual classes

Victor Krasnobayev [0000-0001-5192-9918], Alexandr Kuznetsov [0000-0003-2331-6326],

Mihael Zub [0000-0002-7085-797X], Kateryna Kuznetsova [0000-0002-5605-9293]

V. N. Karazin Kharkiv National University, Svobody sq., 4, Kharkiv, 61022, Ukraine

v.a.krasnobaev@gmail.com, kuznetsov@karazin.ua,

mishazub007@gmail.com, kate.kuznetsova.2000@gmail.com

Abstract. Methods for optimizing computations in computer systems and com-
ponents that are based on the use of arithmetic transformations in the system of
residual classes are considered. Methods of comparing numbers in the system
of residual classes based on the representation and processing of data without
directly converting the compared numbers from a modular code to a positional
code and back are investigated. Some methods are based on the principle of ob-
taining and comparing a unitary single-row code. Based on the proposed meth-
ods, algorithms for their implementation have been developed, in accordance
with which a class of patentable devices has been developed for performing
arithmetic and algebraic comparison of numbers in the system of residual
classes.

Keywords. Non-positional number system, class of residues, arithmetic non-
positional coding, computer systems and components.

1 Introduction

It is known that the use of non-positional number system in residual classes (RCS)
significantly increases the reliability and performance of the computer system (CS)
[1-8]. However, the need to determine the positional characteristics of numbers in the
RCS reduces the overall effectiveness of the use of modular codes. Existing methods
for processing positional data, in particular, methods for comparing numbers into
RCS, have significant drawbacks, the main of which is the need to convert numbers
from RCS to positional number system and vice versa, which reduces user productiv-
ity and reliability of CS [9-12].

In the article there are four methods for comparing numbers into RCS, based on the
presentation and processing of data without directly converting the compared num-
bers from a modular code (an RCS code) into a positional code and backward.

2 Methods for arithmetic comparison of numbers in RCS

Let the RCS be given by ordered (mi < mi+1) mutually n pairs by simple natural num-
bers (bases) m1, m2, …, mn, d let the compared operands be represented as:

A= (a1, a2, …, an), B = (b1, b2, …, bn).

In the case, it is assumed that the source operands lie in the appropriate intervals:

1 1 1

n n

j M (j)M
,

m m

 


 
 and 2 2 1

n n

j M (j)M
,

m m

 


 
,

where 1
1

n

i

M m


 , and the interval's number 1kj  is determined by the well-known

expression k n n nj m (mod m) , where the value of mn is determined from the com-

parison solution n n nm M / m l(mod m) . When j1 ≠ j2 the operation of arithmetic

comparison can be implemented by comparing the number of intervals, namely: if
j1 < j2, then A < B, if j1 > j2, then A > B. When j1 = j2 is determined by the number

j2 + 1 of the interval 3 3 1

n n

j M (j)M
,

m m

 


 
, in which the number A – B is located. If

30 1 2nj (m) /   , then A < B, and if 3
1

2
nm

j m


  , then A > B.

The well-known [1] method of arithmetic comparison of numbers with RCS in-

volves the conversion of numbers and type 0 0(H)
nA (, ,...,) , which requires 1n 

clock cycles of the null operation. In addition, it is necessary to make a positional
comparison of the (j1 + 1) and (j2 + 1) intervals of the source operands A and B. All of
this complicates the comparison algorithm and increases the comparison time of
numbers, which leads to the need to develop a comparison method for RCS, which do
not require determination of positional characteristics. Consider each of these meth-
ods.

2.1 The method of arithmetic comparison of numbers in the RCS (the method
of arithmetic parallel subtraction)

We will consider comparable numbers in arbitrary intervals:  1i ijm ,(j)m , where

1 1
n

k
k l
k i

j , N N m



 
 

   
  
 

 .

In the case, the source operands A, B are reduced to numbers that are multiples to

im , by modular subtraction of the following form:

1 2 1 10
i

(i) (i) (i) (i) (i)
m i ni iA A a (a ,a ,...,a , ,a ,...,a    ,

1 2 1 10
i

(i) (i) (i) (i) (i)
m i ni iB B b (b ,b ,...,b , ,b ,...,b    ,

where

1 2i i na (a ,a , ..., a ,a)   , 1 2i i nb (b ,b , ..., b , b)   .

Further, by means of a set of constants 0 2 1i i i, m , m , ..., (N)m , represented by

1(n) -у base of the RCS 1 2 1 1i i nm , m , ..., m , m , ..., m  , the construction of the so-

called single-row code, respectively, in the form

1 2 1
A(n)

N NNK { z z ...z z } , 0
Anz  1 1 1 1 1 A(z ; ,N , n)   ,

1 2 1
B(n)

N NNK { z z ...z z }    , 0
Bnz  1 1 1 1 1 B(z , ,N , n)    .

The algorithm for constructing a single-row code in RCS can be represented as fol-
lows (1):

1

2

3

1

1
1

0

2

1

i

i

i

i

m

m i

m i

n

m i N

A z ,

A m z ,

A m z ,

.......................

A m m z ,








 


 
  




  
  
    
     



1

2

3

1

1
1

0

2

1

i

i

i

i

m

m i

m i

n

m i N

B z ,

B m z ,

B m z ,

.......................

B m m z .













 
  
  


             



 (1)

In the case, we have:

0
Anz  , at 0

im A iA n m ;   1
Anz  , at

im A iA n m ; 

0
Bnz  , at 0

im B iB n m ;   1
Bnz  , at

im B iB n m  .

Geometrically, this number comparison method can be explained as follows. The

interval
1

0
n

i
i

, m


 
  

 is divided into segments. The source operands A и B, by subtract-

ing the constants of the form
1

1

n

i

m








 , с and shift to the left edge of their hit interval.

This is the equivalent to bringing the compared numbers to numbers, which are com-
pile to comparison im of the RCS. On this basis, the accuracy W с and comparison of

the operands depends on the size of the base im , that is iW W(m) . However, with

the maximum accuracy of the comparison max minW W(m) (for an ordered of the

RCS 1maxW W(m) the number of equipment for technical devices realizing the

comparison operation in the RCS increases dramatically. Indeed, the number of
equipment N0 of the comparison device in the RCS significantly depends on the num-
ber of address N1, performing the operation of parallel subtraction:

In this way, necessity of ensure a high degree of accuracy of comparison requires a
significant amount of equipment, which reduces the efficiency of using existing
methods of comparing numbers in the RCS. This situation determines the relevance
and importance of finding more effective methods of comparing numbers in the RCS,
ensuring a high accuracy of W comparison with a minimum numbers N0 of equip-
ment comparing devices.

In general, the task is interpreted as follows. It is necessary to find 0N min at

Wmax, i.e. 0 maxN (W) min . As shown above 1maxW W(m) . In this case, a change

in the base im 1(i ,n) affects only the number N1 of the equipment of the group of

adders. In this case, the problem is correctly formulated as a definition (2)

 1 maxN (W) min . (2)

Obviously, with high accuracy equal to the unit length of the interval,
2max iW W(m)  . However, in this case 1 maxN (W) max , и and this result does

not satisfy the condition (2). On the other hand – 1 minN (W) min . Thus, it is neces-

sary to develop such a method of comparison (2). This problem is solved by the
method described below.

2.2 The method of arithmetic comparison of numbers in the RCS (the method
of parallel subtraction with the comparison of residues)

We introduce an additional operation of comparing the residues an and bn the magni-
tude of the bases mn of the RCS. In this case, the result of the comparison of the re-
siduals simultaneously with the result of the comparison of the single-row code

A(n)
NK and B(n)

NK , is determined by the solution of the problem (2), i.e. Wmax and

with the minimum amount of equipment Nmin is the result of solving the operation of

comparing two numbers in RCS. The algorithm for determining the result of an
arithmetic comparison operation can be represented as follows:

if then

if then

if and at the same time

at

at

at

A B

A B

A B

n n

n n

n n

n n , A B;

n n , A B;

n n ,

a b , A B,

a b , A B,

a b , A B.

 
  
 
      

 (3)

The set of relations (3) represents the general algorithm for the implementation of
the operation of arithmetic comparison of numbers in the RCS. It is advisable to con-
sider examples of specific performance of the operation of arithmetic comparison of
numbers in the RCS. Let the RCS be given by bases, 1 2m , 2 3m  and 3 5m  .

Code words are given in Table 1. In Table 2 given constants an (bn) presented in a
given RCS, and in Table 3, constants of a single-row code are nm 

1

1

0
n

i
i

, m




 
 
 
 

 im on the basis of the RCS 1 1(i ,n)  .

Table 1. Table of code words in RCS

A in RCS A in RCS

A
1 2m  2 3m  3 5m 

A
1 2m  2 3m  3 5m 

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

00
01
10
00
01
10
00
01
10
00
01
10
00
01
10

000
001
010
011
100
001
001
010
011
100
000
001
010
011
100

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

00
01
10
00
01
10
00
01
10
00
01
10
00
01
10

000
001
010
011
100
000
001
010
011
100
000
001
010
011
100

Table 2. Table of constants

3 Constants

000
001
010
011
100

(0, 00, 000)
(1, 01, 001)
(0, 10, 010)
(1, 00, 011)
(0, 01, 100)

Example 1. Let the compared numbers be represented as 23 1 10 011A (, ,) and

21 1 00 001B (, ,) . In this case, the values of the constants (Table 2) determine the

values 23 0 10 000
nm nA A a (, ,)   , 21 01 00 000

nm nB B b (, ,)   , which corre-

sponds to the shift of the operands A and B to the left edge of the interval [20, 25).
Then we use the constants of the single-row code (Table 3), we determine the single-
row code for the input numbers in the form:

4
6 110111A(n) ()

NK K { }  ; 4
6 6 110111B B(n) (n) ()

NK K K { }   ,

where

1

1
1

6
n

i
i

N m



  .

At the same time the comparison result 011 001n na b   is determined in par-

allel with the (2 1 1nn [log (m)]  )-th bit comparison circuit in time. So, if

4A Bn n  , in accordance with the above algorithm, we determine that 23 21A B .

Table 3. Table of constants

RCS
0 1 n(N) m  

1 2m  2 3m 
Number of zero posi-

tion

30 0m  0 00 1

31 5m  1 10 2

32 10m  0 01 3

33 15m  1 00 4

34 20m  0 10 5

35 25m  1 01 6

Example 2. Let the compared numbers be represented as 23 1 10 011A (, ,) ,

3 1 00 011B (, ,) . In this case, the following differences are determined from the val-

ues of the constants (Table 2):

23 0 10 00
nm nA A a (, ,)   and 3 1 00 000

nm nB B b (, ,)   ,

which corresponds to the shift of the operand А23 to the left edge of the interval
[20, 25), and the operand B3 to the left edge of the interval [0, 5). Next, using the con-
stants of the single-row code (Table 3), we determine the single-row code for the
considered input operands 23A , and B3:

5
6 101111A(n) ()

NK K { }  , 1
6 111110B(n) ()

NK K { }  .

So, if 5 1A Bn n   , in accordance with the above algorithm, we determine that

23 3A B .

2.3 The arithmetical method of comparison of numbers in the RCS (the
method of comparison with a constant)

Consider the method of implementing the operation of arithmetic comparison of
numbers in the RCS. The essence of this method is that not the operands A and B, are
directly compared, but the quantities 1 2 n(A B)mod M (, ,...,)      and m1.

In this case, the value is determined:

1 1 2 30m n(, , , ...,)          ,

where constants 1 1 2 3 n(, , , ...,)       and 1 1 1 1(a b)mod m   are represented in

a given RCS.
Then the general algorithm for comparison of the operands is presented in the

form:

1

1

1

1

1

at

at

at 0

m

m

m

A B, m ;

A B, m ;

A B, .







  
  


 

 (4)

By dialing constants

1 1 1
1

0 2 1
n

i
i

, m , m , ..., (N) m N m


 
    

 
 ,

which were represented in the RCS with bases 2 3 nm , m , ..., m , the construction of a

single-row code in the form of:

1 2 1
(n)
n N NK { z z ...z z }

 ,

where

1

1

1

1

1

1 2

1 3

1

0

2

1

m

m

m

m n

z ,

m z ,

m z ,

.

(N)m z .









 


 
  


   

In addition

0nz ,

 for

1 1 0m n m ,  

1nz ,

 for

1 1 0m n m   .

The first module m1 RCS is also represented by a single-row code of length N bi-
nary digits, in which the second place on the right will be zero 1 11 0(m m)   , and

on the rest - one, i.e. the single-row unitary code will be represented as:
2 11 101()

nK { ... } .

Further, by known methods, in accordance with algorithm (4), operands A and B,
represented by a single-row code, are compared.

Example 3. For the above RCS we consider an example of the implementation of
this method. Let the numbers be equal 0 01 010A (, ,) and 1 10 011B (, ,) . We de-

fine the value:

 0 1 2 01 10 3 010 011 5

1 10 100

(A B)mod M ()mod ,()mod ,()mod

(, ,).

       



By value 1 1  we define a constant in the form 1 1 01 001(, ,)  (Table 4). Then

we perform the operation:

1
00 01 011m (, ,)     .

The operand
1m , which is a multiple of the module 1 2m  value, goes to the

first inputs of the corresponding adders, the second inputs of which receive the corre-
sponding constants (Table 5).

Table 4. Constants

1 Constants

00
01

(0, 00, 000)
(1, 01, 001)

Table 5. Table of constants number of zero position

RCS 10 1(N) m  

2  2 3m  3 5m 
Number of zero posi-

tion

0 1 0m  00 000 1

1 1 2m  10 010 2

2 m1 = 4 01 100 3
3 m1 = 6 00 001 4
4 m1 = 8 10 011 5

5 m1 = 10 01 000 6
6 m1 = 12 00 010 7
7 m1 = 14 10 100 8
8 m1 = 16 01 001 9
9 m1 = 18 00 011 10
10 m1 = 20 10 000 11
11 m1 = 22 01 010 12
12 m1 = 24 00 100 13
13 m1 = 26 10 001 14
14 m1 = 28 01 011 15

Since

1
14 0

im m   , then the single-row code will take the form:

14
15 011111111111111

(n) ()
nK K { }   .

In accordance with algorithm (4), we determine that A < B.
The advantage of the considered method is to ensure maximum accuracy of com-

parison with an acceptable amount of equipment for its implementation.

2.4 The method of algebraic comparison of numbers in the RCS

It is easy to go from the implementation of the operation of arithmetic comparison of
numbers to the algebraic comparison of numbers. In this case, the compared numbers
A and B have one additional significant digit, i.e. the number is accompanied by a
indication A B()  of the sign signA(signB) , where:

0 if 0

1 if 0A B
, A(B) ,

()
, A(B) .

 


  

In this way, the compared numbers are presented in the form:

 1 2A A nA (; A) ;(a ,a ,...,a) ,    and  1 2B B nB (;B) ;(b ,b ,...,b) ,   

and the method of comparing numbers A and B is determined by the set of opera-
tions (5).

We will conduct a comparative analysis of the implementation time of the com-
parison operation of two numbers А and В or the proposed method and the most well-
known. The essence of the known method is to convert the numbers А and В from the
system of residual classes to the positional number system АПСС, ВПСС and the further
comparison of the operands of АPNS и ВPNS. Moreover, the transfer of numbers from
RCS to PNS is made in accordance with the expression:

PNS

n

i i
M

A a B  ,

where
PNSi i ia [A / m]m , where Bi – is the orthogonal basis over the mi base of the

RCS.

0 0 then

0 1 then
if

1 0 then

1 1 then

0 0 then

0 1 then
if

1 0 then

1 1 then

if

A B

A B
A B

A B

A B

A B

A B
A B ' '

A B

A B

n n

A B

, , A B ,

, , A B,
n n

, , A B ,

, , A B ;

, , A B ,

, , A B ,
n n

, , A B ,

, , A B ;

a b

n n

 
 
 
 

 
 

 
 

   
        
    

   
     

  
    





0 0 then

0 1 then

1 0 then

1 1 then

0 0 then

0 1 then

1 0 then

1 1 then

0 0 then

A B

A B

A B

A B

A B

A B
n n

A B

A B

A B

n n

, , A B ,

, , A B ,

, , A B ,

, , A B ;

, , A B ,

, , A B ,
a b

, , A B ,

, , A B ;

, , A

a b

 
 
 
 

 
 
 
 

 

   
    
    
    

   
         
    

 


0 1 then

1 0 then

1 1 then

A B

A B

A B

B ,

, , A B ,

, , A B ,

, , A B .

 
 
 














    





 





  
                




 (5)

For the known and proposed methods of comparing numbers, the implementation
time is determined by the corresponding mathematical relations

 1 11 12 13 14() () () () ()
RCST t t t t    , (6)

 2 21 22 23() () () ()
RCST t t t   , (7)

where

 t(11) – is the implementation time of the multiplication operation for the maximum
mn by the magnitude of the RCS module (the implementation time of the multipli-
cation operation of two-digit binary numbers 2 1 1nK [log (m)]  );

 t(12) – is the time 1(n) of the th addition of two numbers of the type

1 1 1 1i i i ia B a B (i ,n)    ;

 t(13) – is the time for determining the deduction of the number of АPNS (ВPNS);
 t(14) – is the comparison time of the positional operands of the АPNS and ВPNS;
 t(21) – is the time of implementation of the operation of subtraction in the RCS

COK iA a ;

 t(22) – is the time of implementation of the operation of subtraction in the RCS

im iA k m  ;

 t(23) – is the time of comparison of two positional N-bit single-row unitary codes of
two corresponding numbers.

It is known that the time of addition of tc and ty multiplication of two operands in
the PNS is determined by the following relations:

2 1ct ()   and 22yt  ,0

where ρ is the bit width of the processed operands; τ – is the time of "shift" of one
binary digit. In this case, the time of "triggering" of the logical element AND (OR) is

determined by the expression: 2AND ORt t /  , and 23 6()
nt t and expression

2

13
2

1

2 1 1
n

()
i

i

t log m


               
 .

Taking into account the above, relations (6) and (7), respectively, are presented in
the form:

2

1 2
2

1

2 1 2 1 2 1 1 3
n

()
iCS

i
RT k (n) (k) log m   



                    
 ; (8)

 2 2 2 3CS
(
R

)T      . (9)

According to with expressions (8) and (9), values are calculated 1)
RCS
(T , 2)

RCS
(T (ta-

ble 6) for various l – byte bit CS grids 1 4(l ,) . From Table 6 it can be seen that

with increasing length of the CS discharge grid, which is typical of the current trend
in the development of systems and tools for processing digital information, the effec-
tiveness of applying the proposed methods for comparing numbers, as compared to
existing ones, increases.

Table 6. Comparative analysis of the implementation time of the comparison operation

l
T

1 2 3 4
1)

RCS
(T 324 870 1916 3334

2)
RCS
(T 6 6 6 6

On the basis of the proposed methods, algorithms for their implementation have

been developed, in accordance with which a class of patentable devices has been de-
veloped for performing arithmetic and algebraic comparisons of numbers in an RCS
[13-15]. Prospective direction of a further research is the argumentation of practical
recommendations concerning a realization of the introduced method and the ways of
its use in different mechanisms of an information security of telecommunications net-
works and systems [16-31].

3 Conclusion

In this paper, a method is proposed for comparing numbers in a non-positional num-
ber system of remainder classes, which is based on the principle of obtaining and
comparing a unitary single-row code.

The developed method can be used to improve advanced computer systems and
their components. In particular, its practical use allows to increase the performance of
computer calculations and the reliability of information systems.

References

1. Shu, S., Wang, Y., Wang, Y.: A research of architecture-based reliability with fault propa-
gation for software-intensive systems. In: 2016 Annual Reliability and Maintainability
Symposium (RAMS), Tucson, AZ, 2016, pp. 1–6. (2016)
doi:10.1109/RAMS.2016.7447984

2. Gokhale, S.S., Lyu, M.R., Trivedi, K.S.: Reliability simulation of component-based soft-
ware systems. In: Proceedings Ninth International Symposium on Software Reliability En-
gineering (Cat. No.98TB100257), Paderborn, Germany, 1998, pp. 192–201. (1998)
doi:10.1109/ISSRE.1998.730882

3. Tiwari, A., Tomko, K.: Enhanced Reliability of Finite State Machines in FPGA Through
Efficient Fault Detection and Correction. IEEE Transaction on Reliability, vol. 54(3), pp.
459–467. (2005) doi:10.1109/TR.2005.853438

4. Singh, C., Sprintson, A.: Reliability assurance of cyber-physical power systems. In: IEEE
PES General Meeting, Providence, RI, 2010, pp. 1–6. (2010)
doi:10.1109/PES.2010.5590189

5. Krasnobayev, V.A., Koshman, S.A., Mavrina, V.A.: A Method for Increasing the Reliabil-
ity of Verification of Data Represented in a Residue Number System. Cybernetics and
Systems Analysis, 2014, vol. 50(6), pp. 969–976. (2014) doi:10.1007/s10559-014-9688-3

6. Reddy, M., Nalini, N.: FT2R2Cloud: Fault tolerance using time-out and retransmission of
requests for cloud applications. In: 2014 International Conference on Advances in Elec-
tronics Computers and Communications, Bangalore, 2014, pp. 1–4. (2014)
doi:10.1109/ICAECC.2014.7002396

7. Braun, C., Wunderlich, H.: Algorithm-based fault tolerance for many-core architectures.
In: 2010 15th IEEE European Test Symposium, Praha, 2010, pp. 253–253. (2010)
doi:10.1109/ETSYM.2010.5512738

8. Radu, M.: Reliability and fault tolerance analysis of FPGA platforms. In: IEEE Long Is-
land Systems, Applications and Technology (LISAT) Conference 2014, Farmingdale, NY,
2014, pp. 1–4. (2014) doi:10.1109/LISAT.2014.6845211

9. Akushsky, I., Yuditsky, D.: Machine arithmetic in residual classes. Moscow, Sov. Radio
(in Russian) (1968)

10. Torgashov, V.: System of residual classes and reliability of digital computers. Moscow,
Sov. Radio (in Russian) (1973)

11. Krasnobayev, V., Kuznetsov, A., Koshman, S., Moroz, S.: Improved Method of Determin-
ing the Alternative Set of Numbers in Residue Number System. In: Recent Developments
in Data Science and Intelligent Analysis of Information. ICDSIAI 2018. Advances in Intel-
ligent Systems and Computing, Springer, Cham, 2018, vol. 836, pp. 319–328. (2019)
doi:10.1007/978-3-319-97885-7_31

12. Krasnobayev, V.A., Yanko, A.S., Koshman, S.A.: A Method for arithmetic comparison of
data represented in a residue number system. Cybernetics and Systems Analysis, 2016,
vol. 52(1), pp. 145–150. (2016) doi:10.1007/s10559-016-9809-2

13. Patent for utility model No. 73379, Ukraine, G 06F 7/04. Device for the popular danich,
which is presented in the classroom extra. No. u 2012 01885. Appl. 02/20/2012. Publ.
09/25/2012, Bull. No. 18

14. Patent for utility model No. 73384, Ukraine, G 06F 7/04. Device for the same number of
numbers in the classroom too. No. u 2012 01916. Appl. 02/20/2012. Publ. 09/25/2012,
Bull. No. 18

15. Patent for utility model No. 73407, Ukraine, G 06F 7/04. Device for algebraic porous
numbers with class numbers No. U 2012 02150. Appl. February 24, 2012. Publ.
09/25/2012, Bull. No. 18

16. Gorbenko, I.D., Zamula, A.A., Semenko, A.E., Morozov, V.L.: Method for complex im-
provement of characteristics of orthogonal ensembles based on multiplicative combining
of signals of different classes. Telecommunications and Radio Engineering, 2017, vol.
76(18), pp. 1581–1594. (2017) doi:10.1615/TelecomRadEng.v76.i18.10

17. Si-ru, Z.: Application of Improved Genetic Algorithm in Optimization Computation.
In: 2009 Fifth International Conference on Natural Computation, Tianjin, 2009, pp. 144–
148. (2009) doi:10.1109/ICNC.2009.393

18. Gorbenko, I., Zamula, A., Morozov, V.: Methods for implementing communications in
info-communication systems based on signal structures with specified properties. In: 2017

4th International Scientific-Practical Conference Problems of Infocommunications. Sci-
ence and Technology (PIC S&T), Kharkov, 2017, pp. 101–104. (2017)
doi:10.1109/INFOCOMMST.2017.8246359

19. Kuznetsov, A., Kiyan, A., Uvarova, A., Serhiienko, R., Smirnov, V.: New Code Based
Fuzzy Extractor for Biometric Cryptography. In: 2018 International Scientific-Practical
Conference Problems of Infocommunications. Science and Technology (PIC S&T),
Kharkiv, Ukraine, 2018, pp. 119–124. (2018) doi:10.1109/INFOCOMMST.2018.8632040

20. Gorbenko, I., Kuznetsov, A., Tymchenko, V., Gorbenko, Y., Kachko, O.: Experimental
Studies of the Modern Symmetric Stream Ciphers. In: 2018 International Scientific-
Practical Conference Problems of Infocommunications. Science and Technology (PIC
S&T), Kharkiv, Ukraine, 2018, pp. 125–128. (2018)
doi:10.1109/INFOCOMMST.2018.8632058

21. Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms.
In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.
No.01TH8546), Seoul, South Korea, 2001, pp. 94–100. (2001)
doi:10.1109/CEC.2001.934376O

22. Ivanov, O., Ruzhentsev, V., Oliynykov, R.: Comparison of Modern Network Attacks on
TLS Protocol. In: 2018 International Scientific-Practical Conference Problems of Info-
communications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 2018, pp. 565–
570. (2018) doi:10.1109/INFOCOMMST.2018.8632026

23. Kandemir, M., Choudhary, A., Ramanujam, J., Kandaswamy, M.A.: A unified framework
for optimizing locality, parallelism, and communication in out-of-core computations. IEEE
Transactions on Parallel and Distributed Systems, 2000, vol. 11(7), pp. 648–668. (2000)
doi:10.1109/71.877759

24. Pousset, Y., Vauzelle, R., Combeau, P.: Optimising the computation time of radio cover-
age predictions for microcellular mobile systems. IEEE Proceedings - Microwaves, An-
tennas and Propagation, 2003, vol. 150(5), pp. 360–364. (2003) doi:10.1049/ip-
map:20030543

25. Xing, C., Wang, H.: Optimized similarity computation for nearest neighbor choosing.
In: Proceedings of 2012 2nd International Conference on Computer Science and Network
Technology, Changchun, 2012, pp. 2011–2014. (2012)
doi:10.1109/ICCSNT.2012.6526313

26. Munetomo, M., Bando, S.: A scalable infrastructure of interactive evolutionary computa-
tion to evolve services online with data. In: 2013 IEEE International Conference on Big
Data, Silicon Valley, CA, 2013, pp. 28–28. (2013) doi:10.1109/BigData.2013.6691793

27. Kavun, S.: Conceptual fundamentals of a theory of mathematical
interpretation. Int. J. Computing Science and Mathematics, 2015, vol. 6(2), pp. 107–121.
(2015) doi:10.1504/IJCSM.2015.069459

28. Kavun, S.: Indicative-geometric method for estimation of any business entity. Int. J. Data
Analysis Techniques and Strategies, 2016, vol. 8(2), pp. 87–107. (2016) doi:
10.1504/IJDATS.2016.077486

29. Kovtun, V., Kavun, S., Zyma, O.: Co-Z Divisor Addition Formulae in Homogeneous Rep-
resentation in Jacobian of Genus 2 Hyperelliptic Curves over Binary Fields. International
Journal Biomedical Soft Computing and Human Sciences, 2012, vol. 17(2), pp. 37–43.
(2012) doi:10.24466/ijbschs.17.2_37

30. Zamula, A., Kavun, S.: Complex systems modeling with intelligent control elements. Int.
J. Model. Simul. Sci. Comput., 2017, vol. 08(01). (2017)
doi:10.1142/S179396231750009X

31. Kavun, S., Zamula, A., Mikheev, I.: Calculation of expense for local computer networks.
In: Scientific-Practical Conference Problems of Infocommunications. Science and Tech-
nology (PIC S&T), 2017 4th International, Kharkiv, Ukraine, 2017, pp. 146–151. (2017)
doi:10.1109/INFOCOMMST.2017.8246369

