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Abstract. Methods for optimizing computations in computer systems and com-
ponents that are based on the use of arithmetic transformations in the system of 
residual classes are considered. Methods of comparing numbers in the system 
of residual classes based on the representation and processing of data without 
directly converting the compared numbers from a modular code to a positional 
code and back are investigated. Some methods are based on the principle of ob-
taining and comparing a unitary single-row code. Based on the proposed meth-
ods, algorithms for their implementation have been developed, in accordance 
with which a class of patentable devices has been developed for performing 
arithmetic and algebraic comparison of numbers in the system of residual 
classes. 

Keywords. Non-positional number system, class of residues, arithmetic non-
positional coding, computer systems and components. 

1 Introduction 

It is known that the use of non-positional number system in residual classes (RCS) 
significantly increases the reliability and performance of the computer system (CS) 
[1-8]. However, the need to determine the positional characteristics of numbers in the 
RCS reduces the overall effectiveness of the use of modular codes. Existing methods 
for processing positional data, in particular, methods for comparing numbers into 
RCS, have significant drawbacks, the main of which is the need to convert numbers 
from RCS to positional number system and vice versa, which reduces user productiv-
ity and reliability of CS [9-12]. 

In the article there are four methods for comparing numbers into RCS, based on the 
presentation and processing of data without directly converting the compared num-
bers from a modular code (an RCS code) into a positional code and backward. 



   

2 Methods for arithmetic comparison of numbers in RCS 

Let the RCS be given by ordered (mi < mi+1) mutually n pairs by simple natural num-
bers (bases) m1, m2, …, mn, d let the compared operands be represented as: 

A= (a1, a2, …, an), B = (b1, b2, …, bn). 

In the case, it is assumed that the source operands lie in the appropriate intervals: 
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 , and the interval's number 1kj   is determined by the well-known 

expression k n n nj m (mod m ) , where the value of mn is determined from the com-

parison solution n n nm M / m l(mod m ) . When j1 ≠ j2 the operation of arithmetic 

comparison can be implemented by comparing the number of intervals, namely: if 
j1 < j2, then A < B, if j1 > j2, then A > B. When j1 = j2 is determined by the number 
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, in which the number A – B is located. If 

30 1 2nj ( m ) /   , then A < B, and if 3
1

2
nm

j m


  , then A > B. 

The well-known [1] method of arithmetic comparison of numbers with RCS in-

volves the conversion of numbers and type 0 0( H )
nA ( , ,..., ) , which requires 1n   

clock cycles of the null operation. In addition, it is necessary to make a positional 
comparison of the (j1 + 1) and (j2 + 1) intervals of the source operands A and B. All of 
this complicates the comparison algorithm and increases the comparison time of 
numbers, which leads to the need to develop a comparison method for RCS, which do 
not require determination of positional characteristics. Consider each of these meth-
ods. 

2.1 The method of arithmetic comparison of numbers in the RCS (the method 
of arithmetic parallel subtraction) 

We will consider comparable numbers in arbitrary intervals:  1i ijm ,( j )m , where  
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In the case, the source operands A, B are reduced to numbers that are multiples to 

im , by modular subtraction of the following form: 

1 2 1 10
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where 

1 2i i na ( a ,a , ..., a ,a )   , 1 2i i nb ( b ,b , ..., b , b )   . 

Further, by means of a set of constants 0 2 1i i i, m , m , ..., ( N )m , represented by 

1( n ) -у base of the RCS 1 2 1 1i i nm , m , ..., m , m , ..., m  , the construction of the so-

called single-row code, respectively, in the form 
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The algorithm for constructing a single-row code in RCS can be represented as fol-
lows (1): 
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In the case, we have: 

0
Anz  , at 0

im A iA n m ;    1
Anz  , at 

im A iA n m ;   

0
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im B iB n m  . 



   

Geometrically, this number comparison method can be explained as follows. The 
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This is the equivalent to bringing the compared numbers to numbers, which are com-
pile to comparison im  of the RCS. On this basis, the accuracy W с and comparison of 

the operands depends on the size of the base im , that is iW W( m ) . However, with 

the maximum accuracy of the comparison max minW W( m )  (for an ordered of the 

RCS 1maxW W( m )  the number of equipment for technical devices realizing the 

comparison operation in the RCS increases dramatically. Indeed, the number of 
equipment N0 of the comparison device in the RCS significantly depends on the num-
ber of address N1, performing the operation of parallel subtraction: 

In this way, necessity of ensure a high degree of accuracy of comparison requires a 
significant amount of equipment, which reduces the efficiency of using existing 
methods of comparing numbers in the RCS. This situation determines the relevance 
and importance of finding more effective methods of comparing numbers in the RCS, 
ensuring a high accuracy of W comparison with a minimum numbers N0 of equip-
ment comparing devices. 

In general, the task is interpreted as follows. It is necessary to find 0N min  at 

Wmax, i.e. 0 maxN (W ) min . As shown above 1maxW W( m ) . In this case, a change 

in the base im  1( i ,n )  affects only the number N1 of the equipment of the group of 

adders. In this case, the problem is correctly formulated as a definition (2) 

 1 maxN (W ) min . (2) 

Obviously, with high accuracy equal to the unit length of the interval, 
2max iW W( m )  . However, in this case 1 maxN (W ) max , и and this result does 

not satisfy the condition (2). On the other hand – 1 minN (W ) min . Thus, it is neces-

sary to develop such a method of comparison (2). This problem is solved by the 
method described below. 

2.2 The method of arithmetic comparison of numbers in the RCS (the method 
of parallel subtraction with the comparison of residues) 

We introduce an additional operation of comparing the residues an and bn the magni-
tude of the bases mn of the RCS. In this case, the result of the comparison of the re-
siduals simultaneously with the result of the comparison of the single-row code 

A( n )
NK  and B( n )

NK , is determined by the solution of the problem (2), i.e. Wmax and 

with the minimum amount of equipment Nmin is the result of solving the operation of 



 

comparing two numbers in RCS. The algorithm for determining the result of an 
arithmetic comparison operation can be represented as follows: 
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The set of relations (3) represents the general algorithm for the implementation of 
the operation of arithmetic comparison of numbers in the RCS. It is advisable to con-
sider examples of specific performance of the operation of arithmetic comparison of 
numbers in the RCS. Let the RCS be given by bases, 1 2m ,  2 3m   and 3 5m  . 

Code words are given in Table 1. In Table 2 given constants an (bn) presented in a 
given RCS, and in Table 3, constants of a single-row code are nm   
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Table 1. Table of code words in RCS 

A in RCS A in RCS 

A 
1 2m   2 3m   3 5m   

 

A 
1 2m   2 3m   3 5m   

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

00 
01 
10 
00 
01 
10 
00 
01 
10 
00 
01 
10 
00 
01 
10 

000 
001 
010 
011 
100 
001 
001 
010 
011 
100 
000 
001 
010 
011 
100 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

00 
01 
10 
00 
01 
10 
00 
01 
10 
00 
01 
10 
00 
01 
10 

000 
001 
010 
011 
100 
000 
001 
010 
011 
100 
000 
001 
010 
011 
100 



   

Table 2. Table of constants 

3  Constants 

000 
001 
010 
011 
100 

(0, 00, 000) 
(1, 01, 001) 
(0, 10, 010) 
(1, 00, 011) 
(0, 01, 100) 

 
Example 1. Let the compared numbers be represented as 23 1 10 011A ( , , )  and 

21 1 00 001B ( , , ) . In this case, the values of the constants (Table 2) determine the 

values 23 0 10 000
nm nA A a ( , , )   , 21 01 00 000

nm nB B b ( , , )   , which corre-

sponds to the shift of the operands A and B to the left edge of the interval [20, 25). 
Then we use the constants of the single-row code (Table 3), we determine the single-
row code for the input numbers in the form: 

4
6 110111A( n ) ( )

NK K { }  ; 4
6 6 110111B B( n ) ( n ) ( )

NK K K { }   , 

where  
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
  . 

At the same time the comparison result 011 001n na b    is determined in par-

allel with the ( 2 1 1nn [log ( m )]   )-th bit comparison circuit in time. So, if 

4A Bn n  , in accordance with the above algorithm, we determine that 23 21A B . 

Table 3. Table of constants 

RCS 
0 1 n( N ) m    

1 2m   2 3m   
Number of zero posi-

tion 

30 0m   0 00 1 

31 5m   1 10 2 

32 10m   0 01 3 

33 15m   1 00 4 

34 20m   0 10 5 

35 25m   1 01 6 

 
Example 2. Let the compared numbers be represented as 23 1 10 011A ( , , ) , 

3 1 00 011B ( , , ) . In this case, the following differences are determined from the val-

ues of the constants (Table 2): 



 

23 0 10 00
nm nA A a ( , , )    and 3 1 00 000

nm nB B b ( , , )   , 

which corresponds to the shift of the operand А23 to the left edge of the interval 
[20, 25), and the operand B3 to the left edge of the interval [0, 5). Next, using the con-
stants of the single-row code (Table 3), we determine the single-row code for the 
considered input operands 23A , and B3: 

5
6 101111A( n ) ( )

NK K { }  , 1
6 111110B( n ) ( )

NK K { }  . 

So, if 5 1A Bn n   , in accordance with the above algorithm, we determine that 

23 3A B . 

2.3 The arithmetical method of comparison of numbers in the RCS (the 
method of comparison with a constant) 

 
Consider the method of implementing the operation of arithmetic comparison of 
numbers in the RCS. The essence of this method is that not the operands A and B, are 
directly compared, but the quantities 1 2 n( A B )mod M ( , ,..., )       and m1. 

In this case, the value is determined: 

1 1 2 30m n( , , , ..., )          , 

where constants 1 1 2 3 n( , , , ..., )        and 1 1 1 1( a b )mod m    are represented in 

a given RCS. 
Then the general algorithm for comparison of the operands is presented in the 

form: 
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By dialing constants  
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which were represented in the RCS with bases 2 3 nm , m , ..., m , the construction of a 

single-row code in the form of: 

1 2 1
( n )
n N NK { z z ...z z }

 , 



   

where 
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In addition 

0nz ,

  for 

1 1 0m n m ,    

1nz ,

  for 

1 1 0m n m   . 

The first module m1 RCS is also represented by a single-row code of length N bi-
nary digits, in which the second place on the right will be zero 1 11 0( m m )   , and 

on the rest - one, i.e. the single-row unitary code will be represented as: 
2 11 101( )

nK { ... } . 

Further, by known methods, in accordance with algorithm (4), operands A and B, 
represented by a single-row code, are compared. 

Example 3. For the above RCS we consider an example of the implementation of 
this method. Let the numbers be equal 0 01 010A ( , , )  and 1 10 011B ( , , ) . We de-

fine the value: 

 0 1 2 01 10 3 010 011 5

1 10 100

( A B )mod M ( )mod ,( )mod ,( )mod

( , , ).

       


 

By value 1 1   we define a constant in the form 1 1 01 001( , , )   (Table 4). Then 

we perform the operation: 

1
00 01 011m ( , , )     . 

The operand 
1m , which is a multiple of the module 1 2m   value, goes to the 

first inputs of the corresponding adders, the second inputs of which receive the corre-
sponding constants (Table 5). 

Table 4. Constants 

1  Constants 

00 
01 

(0, 00, 000) 
(1, 01, 001) 



 

Table 5. Table of constants number of zero position 

RCS 10 1( N ) m    

2   2 3m   3 5m   
Number of zero posi-

tion 

0 1 0m   00 000 1 

1 1 2m   10 010 2 

2 m1 = 4 01 100 3 
3 m1 = 6 00 001 4 
4 m1 = 8 10 011 5 

5 m1 = 10 01 000 6 
6 m1 = 12 00 010 7 
7 m1 = 14 10 100 8 
8 m1 = 16 01 001 9 
9 m1 = 18 00 011 10 
10 m1 = 20 10 000 11 
11 m1 = 22 01 010 12 
12 m1 = 24 00 100 13 
13 m1 = 26 10 001 14 
14 m1 = 28 01 011 15 

 
Since 

1
14 0

im m   , then the single-row code will take the form:  

14
15 011111111111111

( n ) ( )
nK K { }   .  

In accordance with algorithm (4), we determine that A < B. 
The advantage of the considered method is to ensure maximum accuracy of com-

parison with an acceptable amount of equipment for its implementation. 

2.4 The method of algebraic comparison of numbers in the RCS 

It is easy to go from the implementation of the operation of arithmetic comparison of 
numbers to the algebraic comparison of numbers. In this case, the compared numbers 
A and B have one additional significant digit, i.e. the number is accompanied by a 
indication A B( )   of the sign signA( signB ) , where: 

0 if 0

1 if 0A B
, A( B ) ,

( )
, A( B ) .

 


  
 

In this way, the compared numbers are presented in the form: 

 1 2A A nA ( ; A ) ;( a ,a ,...,a ) ,     and  1 2B B nB ( ;B ) ;( b ,b ,...,b ) ,     

and the method of comparing numbers A  and B  is determined by the set of opera-
tions (5). 



   

We will conduct a comparative analysis of the implementation time of the com-
parison operation of two numbers А and В or the proposed method and the most well-
known. The essence of the known method is to convert the numbers А and В from the 
system of residual classes to the positional number system АПСС, ВПСС and the further 
comparison of the operands of АPNS и ВPNS. Moreover, the transfer of numbers from 
RCS to PNS is made in accordance with the expression: 

PNS

n

i i
M

A a B  , 

where 
PNSi i ia [ A / m ]m , where Bi – is the orthogonal basis over the mi base of the 

RCS. 
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


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



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



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
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


  
                




 (5) 

For the known and proposed methods of comparing numbers, the implementation 
time is determined by the corresponding mathematical relations 



 

 1 11 12 13 14( ) ( ) ( ) ( ) ( )
RCST t t t t    , (6) 

 2 21 22 23( ) ( ) ( ) ( )
RCST t t t   , (7) 

where  

 t(11) – is the implementation time of the multiplication operation for the maximum 
mn by the magnitude of the RCS module (the implementation time of the multipli-
cation operation of two-digit binary numbers 2 1 1nK [log ( m )]   ); 

 t(12) – is the time 1( n )  of the th addition of two numbers of the type  

1 1 1 1i i i ia B a B ( i ,n )    ; 

 t(13) – is the time for determining the deduction of the number of АPNS (ВPNS); 
 t(14) – is the comparison time of the positional operands of the АPNS and ВPNS; 
 t(21) – is the time of implementation of the operation of subtraction in the RCS 

COK iA a ; 

 t(22) – is the time of implementation of the operation of subtraction in the RCS 

im iA k m  ; 

 t(23) – is the time of comparison of two positional N-bit single-row unitary codes of 
two corresponding numbers. 

It is known that the time of addition of tc and ty multiplication of two operands in 
the PNS is determined by the following relations: 

2 1ct ( )    and 22yt  ,0 

where ρ is the bit width of the processed operands; τ – is the time of "shift" of one 
binary digit. In this case, the time of "triggering" of the logical element AND (OR) is 

determined by the expression: 2AND ORt t /  , and 23 6( )
nt t  and expression 

2

13
2

1

2 1 1
n

( )
i

i

t log m


               
 . 

Taking into account the above, relations (6) and (7), respectively, are presented in 
the form: 

 

2

1 2
2

1

2 1 2 1 2 1 1 3
n

( )
iCS

i
RT k ( n ) ( k ) log m   



                    
 ; (8) 

 2 2 2 3CS
(
R

)T      . (9) 



   

According to with expressions (8) and (9), values are calculated 1 )
RCS
(T , 2 )

RCS
(T  (ta-

ble 6) for various l – byte bit CS grids 1 4( l , ) . From Table 6 it can be seen that 

with increasing length of the CS discharge grid, which is typical of the current trend 
in the development of systems and tools for processing digital information, the effec-
tiveness of applying the proposed methods for comparing numbers, as compared to 
existing ones, increases. 

Table 6. Comparative analysis of the implementation time of the comparison operation  

l 
T 

1 2 3 4 
1 )

RCS
(T  324 870 1916 3334 

2 )
RCS
(T  6 6 6 6 

 
On the basis of the proposed methods, algorithms for their implementation have 

been developed, in accordance with which a class of patentable devices has been de-
veloped for performing arithmetic and algebraic comparisons of numbers in an RCS 
[13-15]. Prospective direction of a further research is the argumentation of practical 
recommendations concerning a realization of the introduced method and the ways of 
its use in different mechanisms of an information security of telecommunications net-
works and systems [16-31]. 

3 Conclusion 

In this paper, a method is proposed for comparing numbers in a non-positional num-
ber system of remainder classes, which is based on the principle of obtaining and 
comparing a unitary single-row code. 

The developed method can be used to improve advanced computer systems and 
their components. In particular, its practical use allows to increase the performance of 
computer calculations and the reliability of information systems.  
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