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Abstract. The methods of processing digital samples of complex structure sig-
nals with unknown parameters are considered. With the use of algebraic meth-
ods, the following tasks are sequentially solved: clock synchronization, deter-
mining the range of carrier frequencies, the multiplicity of phase modulation 
and obtaining a stream of information bits. The methods for improving the qual-
ity of processing digital samples of signals based on solving special overdeter-
mined systems of linear equations are proposed. The estimation of efficiency of 
the offered method is carried out by an imitation statistical modeling. The ad-
vantages of the proposed methods of signal processing for the telecommunica-
tions and radio monitoring systems are shown. 

Keywords. Orthogonal Frequency Division Multiplexing, digital sampling, lin-
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1 Introduction  

The construction of effective information transmission systems is inextricably linked 
with the problem of intensifying the usage of the time and frequency-energy resource 
of communication channels. One of the ways to solve this problem is using the com-
plex signals with combined types of modulation in combination with the methods of 
spectrum narrowing and noise-resistant coding [1-5]. In this connection, the structure 
of the signals used to transmit information is becoming complicated, and, conse-
quently, the algorithms of their processing are becoming complicated as well [6-11].  

The most promising type of signal code constructions in wireless networks is 
OFDM (Orthogonal Frequency Division with Multiplexing) [2-6, 12]. The basic idea 
of building such signals is arranging a set of mutually orthogonal frequency subchan-
nels so that, on the one hand, one subchannel does not interfere with the other, and on 
the other hand, the spectra of the subchannels overlap. Due to the orthogonality of the 
linear subchannels, each of them can be considered independently of the others. Er-
rors caused by the interference in one of the subchannels do not lead to errors in the 
other. As a result, only a small part of the transmitted information is distorted. Error-
correcting coding being used the errors can be corrected [13-18]. The structure of 



signals with multiple simultaneously operating subcarrier frequencies has well estab-
lished itself in conditions of heterogeneity of the propagation medium. In recent 
years, the capabilities of systems with OFDM signals have evolved significantly. 
Such signals began to be used in a wide variety of telecommunication systems operat-
ing in different radio frequency bands.  

The complex structure of such signals, the a priori uncertainty of the channel prop-
erties cause significant difficulties in solving the problems of radio control and radio 
monitoring. A distinctive feature of such tasks is the absence of data on the structure 
and informative parameters of the measured signals. This information should be ob-
tained from the results of the study, with high accuracy and as soon as possible. 
Therefore, the tasks of developing mathematical methods for analyzing complex sig-
nals based on digital measurement sequences are highly relevant.  

2 Mathematical model of OFDM signals  

For correct choice of the methods for digital analysis of the primary parameters of 
OFDM signals, a brief description of their basic properties is necessary. Arbitrary 
OFDM signal  jS t on j -th modulation interval pT  is formed by algebraic summa-

tion of the several harmonic oscillations of the same amplitude. Each of the oscilla-
tions has m  options of modulation phase shift. The value m  determines the multi-
plicity of the used phase (PM) modulation and corresponds to the base of the numeri-

cal source code. Commonly, 2km   where k  is the number of binary symbols (bits) 
represented by the elementary signal on one modulation interval. When using relative 
phase coding and a unit value of the amplitude of the oscillation subcarriers, the 
mathematical model of the signal can be represented as the following sequence:  
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where t  – current time; 0f  – the lowest subcarrier frequency in the signal spectrum; 

1T f   – inverse of the minimum subcarrier spacing f ; fn  – the number of fre-

quencies used ; ,j i  – the value of the manipulation angle of i -th fluctuation on j -th 

modulation interval. This angle can take one of m  values depending on the manipula-
tion code used. The informative features in the signal described by model (1) are rela-
tive phase jumps in carrier frequencies. These jumps are measured for each of the 
frequency subcarriers separately: , 1,j i j i   , 0, , 1fi n  . The time parameters 

of the modulation interval used in model (1) are tied by the relation:  
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where T - the duration of the prefix part of the signal. The prefix part (hereinafter – 
the prefix) is a repeating (to the exact sign) initial part of the signal added at the end 
of the modulation interval pT . Prefix structure is used to facilitate synchronization in 

the presence of channel irregularities. For OFDM synchronization violations the sig-
nal can be correctly received and processed for any segment with the duration of T  
within the full modulation interval .. PT ... Commonly, the choice of the prefix dura-

tion on the modulation interval corresponds to the ratio  0,1 0,5T T   . The sign 

of the prefix depends on the value of the following parameter:  

                 0 modP f f  . (3) 

For existing OFDM standards, parameter (3) can take two values that determine 
the sign of the cyclic prefix: when 0P   the prefix is positive and when 2P f   – 

inverse. Fig. 1 gives a qualitative idea of the form of the signal envelope constructed 
in accordance with model (1) on two adjacent modulation intervals with 16fn   and 

1,47pT T  . At the end of each of the intervals pT  the inverse cyclic continuation of 

the signal with duration T  is located, which repeats, up to a sign, the shape of the 
initial segment of the signal on the modulation interval. For the example in question 

2P f   therefore the prefix part is the inverse of the initial part of the signal.  

 

Fig. 1. Example of OFDM signal 

3 The main stages of the structural analysis of OFDM signals  

A comprehensive analysis of the properties of complex signals is advisable to imple-
ment on the basis of phased processing. At each stage, only a part of the signal pa-
rameters is determined. Given the fact that OFDM signals contain a prefix, it is advis-
able to use the correlation method for determining structural time parameters pT  and 

T  at the first stage. This technique is based on the principle of "sliding" time win-
dow. This makes it possible to determine the following parameters of an OFDM sig-
nal: the value of the orthogonality interval, the duration of the modulation interval, 
and the value of the frequency spacing between the channels.  



At the second stage of the analysis, the tasks of determining the number and the 
values of service and information channel frequencies, as well as, the signal phase 
demodulation.  

The two-stage processing results in the possibility to extract an information flow 
from signals of an a priori unknown structure without using traditional fast Fourier 
transform algorithms (FFT – Fast Fourier Transformation).  

3.1 Correlation method for determining the time parameters of OFDM 
signals  

We propose a correlation method for determining structural time parameters pT  

andT . The basis is the "sliding time window" principle. The most probably value of 
the time interval between the most correlated segments (with the "+" or "-" sign) of 
the segments from the digital sample of signal measurements is determined. The as-
sessment of pT  – the most likely period of the emergence of "bursts" of correlation in 

the process of moving the viewing window on the samples of the array of measure-
ments  0 1, ,Q q q 

 
is determined as well. The scheme of the calculation procedure 

is presented in Fig. 2. For the correlation analysis the two vectors, each containing K  
elements of array Q  in two non-overlapping time observation windows of the signal 

are formed,  
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removed from each other by , 0, ,i i M  . The position of the second time window 

corresponding to the vector 1Y  is determined by the successive change in the offset 
index 0, ,i M   that ensures its "slip" along the signal sample Q  at each of the 

values 0j L  .  

For a wide range of analyzed signals, for example, for the 0.3-3.4 KHz frequency 
band with minimum quality ADC, the most universal limits of the values of these 
parameters, resulting in a quick and accurate assessment, are 10 30K   , 

200 300M   and 1000L  .  
At each value of index j (moving the window slip area) the 1M   dimensional 

vector is being formed 

  0 1, , ,j j j
j MV v v v   ,  (5) 

the elements of which are the coefficients of mutual correlation of vectors 0Y and 
1Y . The calculations (according to the Fig. 2) are performed after centering and nor-

malizing the vectors by the formulas:  



 

11 1

0 0

11 1

0 0

1 1
0 0 0 0 ;

1 1
1 1 1 1 .

K K

N j i i
i i

K K

N j i i
i i

Y Y Y Y
K K

Y Y Y Y
K K

 

 

 

 

   
     
      

   
     
      

 

 
  (6) 

 

Fig. 2. Calculation scheme  

 The resulting vectors 0NY  and 1NY  in normalized space have the same length, 

equal to К , and the cosine of the angle between these vectors is equal to the cross-
correlation coefficient:  
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Since the prefix is a repetitive (up to sign) part of the OFDM signal, ideally the 
correlation coefficient between these parts is ± 1.  

Fig. 3 shows the distribution of the values of the elements of the vector jV calcu-

lated according to a specific implementation OFDM signal (16 carrier frequencies, a 
modulation rate – 75 bauds) at 200M  . The presence of pronounced extreme values 
which are close in magnitude to unity is obvious. According to the results of calcula-
tions when 0j L   the two new vector  0 11 1 , 1 , , 1Lv v vV  and 

 0 12 2 , 2 , , 2Lv v vV  are formed. Their elements are calculated according to the 

rules:  
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Here the function  ,match x X  calculates the indices of the elements of the vector 

X  equal to x , where the index 0 in the function (8) indicates a selection of the ele-
ment with a minimum sequence number, if there are several such elements in the 
vector. The elements of the vector 1V  represent the number of sampling intervals that 
fit between the initial elements 0Y  and 1Y  with minimal (negative) correlation on 
j -th step of moving the observation window. Accordingly, the elements of the vector 

2V  are calculated for the maximum (positive) correlation of the vectors 0Y  and 1Y . 
Simultaneous determination of the maximum and minimum is necessary to reveal the 
value of function (3). It is obvious that the elements of the vectors 1V  and 2V  de-
fined by expression (8), can take values only in the range K K M . To study the 
statistical distribution of the values of the elements the histograms for the elements of 
the vectors 1V  and 2V  are formed:  
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Fig. 3.  Cross-correlation coefficients 

  Obtaining distributions (9) gives an opportunity to estimate the most likely value 
Num  – the number of sampling intervals between the initial measurements of the 
segments of the digital sample Q  with maximal (positive or negative) correlation:  
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The value Num  determines the number of sampling intervals that fit on the or-
thogonality interval of the signal T . It gives an opportunity to find two interrelated 
OFDM signal parameters: the orthogonality interval and the minimum carrier fre-
quency spacing:  
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Besides, choosing the corresponding method of detecting the Num  value according 
to the condition specified in (10) automatically determines the value of the function 
(3), and, consequently, the ratio between the frequency parameters 0f  and f . If the 

value Num  is determined by the first line of expression (10), then 0
1

2
f k f

    
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. 

Otherwise the minimal carrier frequency is multiple to the spacing of the carrier fre-
quencies: 0f k f   where k  – any positive integer.  

As a result of processing histograms (9) according to (10) based on the values of 
function (3), only one of the vectors 1V  or 2V  is left for the further analysis, herein-

after denoted *V . This is possible because the prefix repetition sign is defined. Based 

on the elements of the vector *V  another vector 3V  is formed for the analysis:  

 *3 ,match Num   V V .  (12) 

The elements of this vector are equal to the numbers of the elements of the vector 
*V  in which the numbers Num  are located. The feature of the vector *V  provided 

that the analyzed signal belongs to the OFDM class, is that it contains a sequence of 
periodic series of numbers which are close or equal to Num . Therefore, the values of 
the elements of 3V  in order of increasing their indices will be the segments (series) 
of an ordinary positive integer sequence with some gaps in the sequence. Small gaps 
can be observed inside the series too. A possible approximation of the sequence of the 
elements of 3V  is illustrated by the following expression:  

2series 1 series series

3 11,12,14,15,16,105,107,108,110, ,620,621,622,623,624
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The length of series of consecutive numbers (position numbers) may differ due to 
measurement errors, features of the signal envelope and rounding during calculations. 
However, when the vector length is sufficient, averaging results converges to the true 
estimation in accordance with the law of large numbers. To exclude "fragmentation" 
of the series, small gaps between adjacent numbers of the series must be ignored. It 
has been empirically found that in most cases the number iN  should be considered to 

belong to the current series of numbers if 1i iN N   where 3 5   . In general, 

the structure of the vector 3V  can be depicted as shown in Fig. 4.  
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Fig. 4. Example of the 3V  series structure  



 In Fig. 4: 3
jn

v , 3
jk

v – initial and final elements of the j -th series of the consecu-

tive numbers in the vector 3V ; cn  – the total number of the identified series. Using 

the presented structure and values of the elements of the vector 3V , it is possible to 
determine the number of sampling intervals that fit between adjacent pairs of mutu-
ally correlated segments of signal measurements, i.e. a period of "bursts" of correla-
tion:  
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Using the obtained value 1Num , we can determine the average value of the modu-
lation interval pT  and, therefore, the average modulation rate W :  
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For the final determination of the time-frequency structure of the signal, we must 
find the number of carrier frequencies fn  and the vector of their nominal values  

 0 1, ,
fn

f f F  . This can be done on the basis of previously obtained values 

, ,pT T f  when the position of the element of the array Q  corresponding to the be-

ginning of the first full modulation interval is determined correctly. The beginning of 
a reliably identified clock interval could be most correctly associated with the begin-
ning of the second series of maximal responses of correlators in the vector 3V , since, 
due to the randomness of the beginning of the observation, the first series may be 
incomplete. It should be taken into account that the beginning of a series of maximal 
responses of correlation of the segments from K  samples must appear before the next 
modulation interval actually begins. Therefore, to fall within the interval with the 
duration pT   (taking into account that demodulation can be performed on any seg-

ment T  within pT ) it is necessary to add the number 2K  to the starting sample, at 

least. Then the beginning of the modulation interval can be assumed to coincide with 
the next element number in the sequence  

 
2

0 3 mod
2

д
T n

f K
n round v

W

        
    

.  (15) 

Here  round x  – the rounding function to the nearest integer. The lowest possible 

frequency 0f  in the group of carrier frequencies is determined by the value of func-

tion (3) and the fulfillment of the corresponding condition in (10):  
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The maximal number of subcarrier frequencies (or half the number of quadrature 
components) that can fit in the channel band efF  is  
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3.2 Determining the amount and nominal values of subcarrier frequencies of 
OFDM signals  

The correlation method, considered above, allows making a reliable assessment of the 

main structural parameters of OFDM – T  and PT . The value of 1f T    uniquely 

defines the spacing of adjacent subcarrier frequencies. The minimal value of the sub-
carrier frequency and the maximal possible number of subcarriers placed within the 
signal bandwidth maxfn  are determined from (16) and (17).  

The number of samples N  taken into account when analyzing a signal on one 

modulation interval, as well as, the harmonic quadrature  max2 fn  define the di-

mensions of the matrix of the linear algebraic equations system (SLAE) which can be 
compiled and solved to estimate the frequency range. Depending on the ratio of the 
vertical and horizontal dimensions of the matrix of coefficients, the system of equa-

tions can be overdetermined  max2 fN n  , determined  max2 fN n   or under-

determined    max2 fN n  . The simplest one is the  max2 fN n   case because 

then the SLAE is a joint one almost every time. The number of equations that 
matches the number of used elements of the digital sample Q  equals to the number 

of unknowns  max2 fn  determining the amplitudes of quadrature components in the 

spectrum of carrier frequencies OFDM. For the correct solution of SLAU 

 max2 fn  uniformly spaced sample counts Q  starting from the point of beginning 

of the observation of the first complete clock interval of signal 0
Tn  should be selected 

on i -m modulation interval. For this the following rule is used:  

  0i
T Tn n round i   where P дT t  .   (18) 

Square matrix of coefficients for unknown SLAE with size    max max2 2f fn n    

composed for quadrature components of subcarrier frequencies is formed according to 
the rule:  
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where                
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The column-matrix of free members is formed as a vector of signal measurements 
on the duration of one orthogonality interval:  
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Normal solution of normally defined SLAE  

 1 1 1 A X B    1
1 1 1

  X A B  (21) 

gives an estimation of the amplitude vector of quadrature components 
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X   which corresponds to the permissible values of carrier fre-

quencies. 
On the basis of this solution, it is possible to determine the power distribution vec-

tor of the signal between the harmonic oscillations of the carrier frequencies:  

         
max max

221 1
0 max1
, , , , 0, , 1

f f
i i fn i n

y y y x x i n
 

      
 

Y   . (22) 

The case of insufficiently defined SLAE  max2 fN n   is interesting for analyz-

ing small samples of the signal. To solve such a SLAE, the pseudo inverse matrix 
method Moore-Penrose can be used. It is known that there is the normal solution of an 

underdetermined SLAE and is the only one.  It is found by: 1 1 1
 X A B  where 1

A  

– Moore-Penrose pseudo inverse matrix of size max max2 2f fn n    which is deter-

mined by the ratio: 1 1 1 1A  A A A . In practice 1
A  can be found by the formula:  
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The representation of the matrix 1
A  in the form of a product of two matrices with 

the size of N r  and r N  is used:  
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With various skeletal decompositions of the matrix A  the same solution for A  
which can be written in the form: 1 1 1

 X A B  is derived. It is a pseudo solution 

giving a zero residual: 1 1 1 0  X A B .  

The case of  max2 fN n   is the most advantageous for the maximal recording of 

signal information on the modulation interval. Due to using additional signal meas-
urements from the sample Q  the system which contains more equations with the 

same number of unknowns is formed. To form the matrix 2A  and the vector 2B
 
the 

maximal number of signal measurements determined by P дNum T t  on the dura-

tion PT  is used:  

  

 2 , max

, max

, max max

, 0, , ( 1), 0... 2 1 ;

Sin , 0 1;

Cos , 2 1;

i j f

i j j i f

i j j i f

a i Num j n

a t j n

a t n j n





     

      
       

A 

 (23) 

     2 0 1, , , , 0, , 1 .k kNumb b b q k Num   B     (24) 

SLAE has the form:  

 2 2 2 A X B , (25) 

and as a rule, has many solutions. To select the only one we need to use some criteria. 
In practice, the maximum likelihood criterion is used more often. In the case of a 
normal distribution of the vector 2B it is equivalent of the least square’s criterion:  

 
2

* 1
2 2 2 2( )T T  X A A A B . (26) 

An approximate solution of system (26) gives a more accurate result than a strict 
solution of (25). The noise immunity of the solution is achieved by averaging the 
disturbing effect of interference when the number of signal measurements exceeds the 
required minimum. The obtained vector of amplitudes of the quadrature components 

2

*X , as well as 
1

*X  gives a possibility to calculate the power distribution signal in 

carrier frequencies using expression (22), wherein 2
ix  is used instead of 1

ix .  

For any type of SLAE determining the actual list of carrier frequencies in the 
OFDM spectrum is performed by comparing the elements of power distribution histo-
grams with a threshold value. The obtained nominal values of frequencies determine 



the last structural time-frequency parameter of the analyzed signal – the vector of 
working subcarrier frequencies F .  

Thus, the previously obtained signal parameters , ,pT T f , W  and the obtained in 

this subsection vector F  identifies completely its structural properties and makes 
signal demodulation possible.  

4 Conclusions  

The considered statistical method for analyzing the structure and demodulation of 
OFDM signals under conditions of a priori uncertainty of solving radio monitoring 
tasks has been practically tested. It has demonstrated the high accuracy of parameter 
identification. The relatively low computational complexity of correlation and alge-
braic analysis makes it possible to identify the structure and the parameters of signals 
practically in seconds.  

The noise immunity of the analysis is achieved by solving a SLAE with rectangu-
lar overdetermined matrixes of coefficients. To eliminate phase errors generated by 
asynchronous, with respect to the clock intervals of modulation, sampling the method 
for calculating phase corrections which takes into account the time-frequency parame-
ters of the signal structure is proposed. The application of the phase correction 
method provides ideal conditions for identifying the modulation type of subcarrier 
oscillations. Mathematical formalization of solving the problem of determining the 
modulation multiplicity, based on generating the multimodal reference functions and 
sequential calculating the degree of mutual correlation, allows us completely auto-
mate the process of identifying the secondary parameters which are necessary for 
demodulating the signals of subcarrier frequencies.  

The further researches can be focused on the generalization of the method for any 
structures of mono and poly frequency signals including those with a linear frequency 
modulation and also proposed author’s method can be used in some different other 
areas [19-23].  
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