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Abstract. The method of constructing lexicographic equivalence for solving li-
near mixed combinatorial optimization problems on arrangements is consid-
ered. The software that implements algorithms of this method is described. The 
efficiency of algorithms is analyzed be means of computational experiment. 
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1 Introduction 

Actual trend of the modern theory of optimization is to study the problems of combi-
natorial nature. In particular, these problems are examined by [1–7]. Important results 
have been obtained as a result of immersion of combinatorial sets in Euclidean space 
and study the properties of such problems. Y.G.Stoyan started the theory of Euclidean 
combinatorial optimization, his disciples – O.O. Iemets, S.V. Yakovlev, I.V. Gre-
bennik and numerous other representatives of this school carry out research in this 
sphere. They have studied in their works both and properties of Euclidean combinato-
rial sets immersed in the arithmetical space, and extreme properties of the objective 
functions, and methods of solving Euclidean combinatorial optimization problems. 

This article considers such an important class of Euclidean combinatorial optimiza-
tion problems as problems on arrangement. The properties of the convex hull of the 
set of arrangements are explored in [8, 9], in [10, 11] and others — properties of the 
solution of certain classes of problems on arrangements, a number of results on the 
solving methods and algorithms of the optimization problems on arrangements in a 
rather general statement are summarized in [12]. In particular, method of constructing 
lexicographic equivalence for solving completely linear combinatorial problems on 
arrangements is substantiated. In [13] this method was extended to mixed combinato-
rial problems. 

The aim of the paper is to describe the software implementation of the algorithms 
of the method of constructing lexicographic equivalence for solving linear mixed 



combinatorial optimization problems on arrangements and to present results of com-
putational experiments. 

New scientific result obtained in the paper is investigation of an effectiveness of 
algorithms of method of constructing lexicographic equivalence. Since theoretical 
estimates are not obtained, then the effectiveness is analyzed by mean of computa-
tional experiments. 

2 Formal problem statement 

Let’s consider necessary definitions and facts. As multiset G  we understand set of 

elements, which can include and similar ones. Any multiset  1 2, , ...,G g g g  can 

be assigned by its base  S G , i.e. the tuple of all its different elements, and by multi-

plicity – number of repetition of each element of the base. The tuple of multiplicities 
in the order that corresponds to the elements of the base is called primary specifica-
tion and is defined by  G . The set is called the Euclidian combinatorial set, the dif-

ferent elements of which are different ordered k -samples from the multiset 

 1 2, , ...,G g g g  of the representation  
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jig G , j ji i  ,j t ni i J  , , kj t J   (here and after kJ  defines set of k  first natu-

ral numbers). Examples of Euclidian combinatorial sets are [9] general set of ar-
rangements  kE G  — set of all k -samples of the representation from the multiset 

G , general multiset of permutations    E G E G
  . 

The introduction of the concept of Euclidean combinatorial sets allows highlight-
ing from problems of combinatorial nature the class of problems where the feasible 
set is Euclidean combinatorial set. In particular, the linear Euclidean problem of com-

binatorial optimization on arrangements is to find a pair  * *,L x x  (consisting of 

maximum and maximal) such that 
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under the combinatorial condition 
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where n k ,  1 2, , ..., k
kx x x x R  , 1

jc R  kj J  ,  kE G  is a general set of 

arrangements from the elements of multiset  1 2, , ...,G g g g . Variables 

1 2, , ..., kx x x  are combinatorial, variables 1 2, , ...,k k nx x x   are continuous. The linear 

Euclidean problem of lexicographic combinatorial optimization on arrangements is to 

find pair  * *,L x x  such that 
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under conditions (3)–(4), i.e.  *L x  is the maximum value of  L x  as the variables 

range over the set (3), (4) and *x  is lexicographically larger than any other maximal. 

3 The method of constructing lexicographic equivalence 

One of the approaches to solving  problem (3)–(5) is in the partition of a polyhedron 
into equivalence classes followed by directed search of the obtained classes . For 
linear completely combinatorial optimization problems on arrangements, this ap-
proach (method of constructing lexicographic equivalence) is justified in [12, 14]. The 
study [13] generalizes the equivalence relation, which is used to partition the polyhe-
dral set into equivalence classes, and proposes algorithms for constructing lexico-
graphic equivalence to solve mixed combinatorial linear problems. 

Lexicographic equivalence of points of the space with respect to k -arrangements 
(the relation k ) is used as the equivalence relation in the method of constructing 

lexicographic equivalence.  Elements of the quotient set with respect to the equiva-
lence k  are called k  -classes. Each element of set  kE G  defines separate 

k -class. Such classes are called combinatorial. Algorithms for constructing lexico-

graphic equivalence involve directed search of k  -classes. Let us describe these al-

gorithms (validation of these algorithms for solving mixed combinatorial problems is 
presented in [13]). 

The first algorithm is used to solve a problem of finding a pair (5) under conditions 
(3), (4) and  L x A  where A  is a discrete set. This algorithm involves search of 

k  -classes whose representatives satisfy 

 
1

n
h

j j
j

c x 


  (6) 

where h  ( 0,1, 2, ...h  ) are sequential elements of set  A . 

According to the second algorithm, the direct search of combinatorial k  -classes 

in lexicographically increasing order and lexicographically decreasing order  is car-



ried out. Classes whose representatives give the objective function a value smaller 
than result obtained at previous iterations, are excluded from the search. 

The third algorithm is approximate and allows getting the objective function value 
that differs from the optimum by no more than a predetermined value. It involves 
search k  -classes whose representatives satisfy 
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where difference h h  ( 0,1, 2, ...h  ) decreases. 

4 Description of the software product 

The proposed algorithms of the method of constructing lexicographic equivalence for 
solving linear conditional problems of combinatorial optimization on arrangement 
(3) - (5) were implemented as software and experimentally investigated in solving the 
problem. 

Software was developed in the Turbo Delphi environment. The program allows 
you to generate a series of problems with the given parameters, to solve problems by 
selected algorithms, to save the results of problem solving, etc. 

Input data (multiset, coefficients of the objective function and additional con-
straints) are presented as text files. This allows you to access the same set of data 
more than once. Data is generated using standard Delphi language procedure. 

Multiset was assigned by its base and primary specification. Elements of the base 
are generated in increasing order, maximum difference between adjacent elements is 
given. Multiplicities of elements of the base were specified less or equal to the num-
ber k  of combinatorial variables because the choice of larger multiplicities does not 
affect the solving problem. 

When creating data files, the following parameters were set: 

 the number of elements of the multiset base; 
 the maximum difference between adjacent elements; 
 the dimension of space n ; 
 the number k  of combinatorial variables; 
 the number m of constraints. 

The main characteristics of the algorithms studied during computational experi-
ments are the running time and the number of iterations in the process of approaching 
the solution. Time is defined as the difference between the system time before the 
start of the procedure that implements the corresponding algorithm and after its com-
pletion. 

Before starting the test, the user must select the directory in which the problem 
files are placed. You can choose to test all the files contained in the selected directory, 



as well as individual files. You can also set the generation of files automatically be-
fore testing. 

In the main window of the program (see Fig. 1), the user can select algorithms 
which will be used for solving problems. We assume that values of the objective 
function in the first algorithm of the method of constructing lexicographic 
equivalence should be integers (i. e. A Z ). If you choose the third algorithm you 
need to specify the exactness.  

Fig. 1. The main window of software tool for solving linear combinatorial optimization prob-
lems on arrangements. 

Since even with rather small dimensions there are problems whose solving requires 
a considerable amount of time, the program allows you to set the time limit for the 
execution of algorithms. In case the algorithm runs longer than the specified time, the 
execution is interrupted and the corresponding message is output to the result file. If 
necessary, you can try to solve such problems later. 

During testing, the main window shows the percentage of problems that are com-
pleted, the name of the current problem file and the name of the algorithm. When the 
“Details” button is clicked, a table of results is displayed. This table contains the 
names of the tested files, the time of solving the corresponding problem by each of 
the algorithms and the number of iterations. 

In addition to solving existing problems by selected algorithms, the software prod-
uct allows automatically generate series of problems with given parameters (the di-
mension of space, the numbers of constraints and combinatorial variables, the number 
of elements of the multiset base, etc.). The maximum and minimum values of each 
parameter of the series are specified, as well as the number of problems with each set 
of parameters. 



All algorithms of the method of constructing lexicographic equivalence involve 
solving linear programming problem which is obtained by replacing the combinatorial 
condition (3) with the condition    1 2, , ..., conv k

kx x x E G  where  conv kE G  is a 

convex hull of the set  kE G . If such a problem has no solution then the initial com-

binatorial optimization problem (3)–(5) also has no solution. In this case, the study of 
the effectiveness of the algorithms for constructing lexicographic equivalence does 
not make sense. Therefore the possibility of repeated generation is provided in the 
program. If a series received such problem that corresponding linear programming 
problem has no solution then file of this problem is generated again. 

For the convenience of further analysis of the results of computational experiment, 
it is possible to create a summary file. This file contains for each problem information 
about the main parameters (the number of variables, the number of constraints, etc.) 
and the characteristics of the algorithms (the running time, the number of iterations). 
In the future, the data of such files can be systematized and grouped, for example, 
using a table processor. 

5 Results of computational experiments 

Several series of computational experiment were conducted  using the software prod-
uct described above. Testing of programs was carried out on a computer with a dual-
core AMD A4-3400 processor, clock speed of each core 2700 MHz. 

The first series of tests consists of 480 tasks, the generation of which parameters 
are given as follows: the dimension of space 30n  ; number of combinatorial vari-
ables k  accepts consecutive values from 15 to 30; number of constraints m  accepts 
consecutive values from 5 to 10. 

For each set of parameters, 5 problems were solved. Separate characteristics of the 
results of solving problems for which the running time does not exceed 30 min is 
given in the Table 1, Table 2, where such notation is used: qp  is the percentage of 

problems solved in less than 30 minutes; st  is the average running time; mt  is the 
maximum running time. 

Time is given in minutes:sec; time less than 1 second displayed as 0:01. 

Table 1.     The dependence of the running time of algorithms for constructing lexicographic 
equivalence on the number of constraints m (results of the first series of tests) 

The first algorithm The second algorithm The third algorithm m 
qp st mt qp st mt qp st mt 

5 100% 0:08 2:48 100% 0:40 12:58 100% 0:07 3:12 
6 100% 0:11 4:41 100% 0:55 13:16 100% 0:10 4:16 
7 100% 0:15 14:38 100% 0:51 15:33 100% 0:12 10:49 
8 98,8% 0:33 10:56 97,5% 1:25 25:55 98,8% 0:33 14:27 
9 97,5% 0:16 7:10 96,3% 1:04 16:09 97,5% 0:14 3:53 

10 98,8% 0:43 9:28 93,8% 1:13 17:58 96,3% 0:25 7:07 



Table 2.    The dependence of the running time of algorithms for constructing lexicographic 
equivalence on the number of combinatorial variables k (results of the first series of tests) 

The first algorithm The second algorithm The third algorithm 
k  

qp st mt qp st mt qp st mt 
15 100% 0:01 0:06 100% 0:01 0:17 100% 0:01 0:04 
16 100% 0:01 0:02 100% 0:02 0:13 100% 0:01 0:02 
17 100% 0:01 0:12 100% 0:05 0:38 100% 0:01 0:10 
18 100% 0:01 0:04 100% 0:03 0:22 100% 0:01 0:03 
19 100% 0:01 0:06 100% 0:05 0:55 100% 0:01 0:06 
20 100% 0:01 0:12 100% 0:05 1:38 100% 0:01 0:08 
21 100% 0:01 0:10 100% 0:07 0:43 100% 0:01 0:10 
22 100% 0:02 0:21 100% 0:19 4:09 100% 0:02 0:08 
23 100% 0:02 0:27 100% 0:14 1:36 100% 0:02 0:12 
24 100% 0:10 2:28 100% 1:03 12:25 100% 0:09 1:37 
25 100% 0:11 2:44 93,3% 0:26 3:52 96,7% 0:05 0:44 
26 100% 0:28 8:18 96,7% 1:44 9:36 93,3% 0:15 2:07 
27 96,7% 0:32 9:28 96,7% 2:13 15:01 100% 0:29 7:07 
28 96,7% 0:44 8:06 90% 2:04 12:58 96,7% 0:59 14:27 
29 96,7% 1:24 7:36 100% 3:36 25:55 96,7% 0:49 3:53 
30 96,7% 2:03 14:38 90% 4:43 17:58 96,7% 1:36 12:48 
 
The results of the experiments presented in the Table 1, 2 show that the depend-

ence of the running time of algorithms both on the number of combinatorial variables, 
and on the number of constraints, is characterized by a certain irregularity. In particu-
lar, all 30 problems with k=27 combinatorial variables were solved by the third algo-
rithm in less than 10 minutes, whereas for two problems with k=26  the solution was 
not obtained in 30 minutes. The average running time of the second algorithm for 
problems with 22 combinatorial variables is greater than for problems with 23 combi-
natorial variables. Solutions 78 out of 80 problems with 9 constraints were obtained 
by the first algorithm in less than 30 minutes,  while 79 out 80 problems with 10 con-
straints were solved in less than 30 minutes. 

“Irregularity” confirmed Fig. 2, where each point corresponds to the results of the 
solving using the first algorithm for constructing lexicographic equivalence of one 
problem (the abscissa of the point is the number of combinatorial variables, and the 
ordinate is the corresponding time of solving the problem; if problem was not solved 
then time was equal to 30 min). For the second and third algorithms, similar images 
are obtained. 



 

Fig. 2.  The dependence of the running time of the first algorithm for constructing lexico-
graphic equivalence on the number of combinatorial variables (results of the first series of tests) 

The second series of tests consists of 420 problems (see Table 3).  

Table 3.  The dependence of the running time of algorithms for constructing lexicographic 
equivalence on the dimension n of space (results of the second series of tests) 

The first algorithm The second algorithm The third algorithm n  
st  mt  st  mt  st  mt  

30 0:11 2:16 0:43 8:57 0:11 2:56 
31 0:16 4:49 0:53 10:46 0:11 3:26 
32 0:01 0:08 0:13 1:54 0:01 0:09 
33 0:02 0:20 0:19 4:04 0:02 0:17 
34 0:10 4:37 0:34 4:43 0:04 1:00 
35 0:02 0:14 0:12 2:03 0:02 0:15 
36 0:02 0:21 0:18 1:53 0:02 0:12 
37 0:01 0:04 0:17 4:44 0:01 0:06 
38 0:01 0:13 0:20 3:19 0:02 0:17 
39 0:01 0:05 0:09 1:28 0:01 0:14 
40 0:01 0:09 0:18 3:26 0:01 0:13 
41 0:01 0:06 0:15 1:59 0:01 0:09 
42 0:01 0:23 0:08 2:00 0:01 0:16 
43 0:01 0:02 0:05 1:03 0:01 0:03 
 
The number of combinatorial variables is equal to 25, dimension accepts consecu-

tive values from 30 to 43 and the number of constraints accepts consecutive values 
from 5 to 10,  5 problems were solved for each set of parameters. The running time 
was less than 11 minutes. The results are presented in the Table 3, where, as in the 
previous tables, st is the average running time; mt  is the maximum running time. In 



contrast to the first series of tests if the dimension of space increases (so the number 
of continuous variables increases) then the running time decreases. 

Parameters of problems in the third series of tests were defined as follows:  the 
number of continuous variables is equal to 7, the number of constraints is equal to 10, 
dimension accepts consecutive values from 25 to 48 (so the number of combinatorial 
variables changes from 18 to 40),  the number of problems with identical parameters 
is equal to 10.  

The analysis of Table 3 and Table 4 gives reason to assert that the dimension of 
space has less effect on the running time than the number of continuous variables, but 
the corresponding dependencies with an acceptable correlation coefficient can not be 
established. 

Table 4.  The dependence of the running time of algorithms for constructing lexicographic 
equivalence on the dimension n of space (results of the third series of tests) 

The first algorithm The second algorithm The third algorithm n  
qp st mt qp st mt qp st mt 

25 100% 0:02 0:17 100% 0:04 0:12 100% 0:01 0:04 
26 100% 0:08 0:32 100% 0:13 0:37 100% 0:04 0:13 
27 100% 0:02 0:08 100% 0:12 1:18 100% 0:01 0:04 
28 100% 0:02 0:05 100% 0:08 0:31 100% 0:01 0:03 
29 100% 0:13 1:51 100% 0:14 0:44 100% 0:04 0:21 
30 100% 0:13 1:09 100% 0:55 3:27 100% 0:12 0:48 
31 100% 0:07 0:22 100% 0:51 3:22 100% 0:06 0:17 
32 100% 0:21 1:46 100% 1:06 2:19 100% 0:11 0:31 
33 100% 0:08 0:26 90% 0:22 1:25 100% 0:08 0:41 
34 100% 0:13 1:04 100% 1:52 6:58 100% 0:24 2:32 
35 100% 0:59 7:02 100% 1:36 6:35 100% 0:31 2:60 
36 100% 0:06 0:31 100% 2:49 12:04 100% 0:11 0:33 
37 100% 0:03 0:11 100% 0:49 2:49 100% 0:04 0:16 
38 100% 0:18 2:12 90% 1:36 7:20 90% 0:09 0:29 
39 100% 0:10 0:32 80% 1:54 7:37 90% 0:27 2:27 
40 100% 0:04 0:19 90% 0:29 2:08 100% 0:11 1:03 
41 90% 0:14 0:59 90% 1:57 12:42 100% 2:57 25:37 
42 100% 0:27 1:44 90% 7:19 26:38 100% 0:40 2:34 
43 100% 1:26 4:48 70% 3:53 18:48 100% 1:36 6:52 
44 80% 0:01 0:04 80% 2:27 8:17 80% 0:09 0:25 
45 100% 0:58 4:41 90% 4:33 22:52 100% 1:14 5:25 
46 100% 0:11 1:01 90% 2:37 12:53 100% 0:22 1:17 
47 100% 0:11 0:28 90% 4:23 14:42 100% 0:28 1:53 
48 90% 0:21 0:42 60% 12:01 28:54 90% 1:25 3:43 

6 Conclusion 

The paper considers the software implementation of the algorithms of the method of 
constructing lexicographic equivalence. This method is used for solving linear mixed 



combinatorial optimization problems on arrangements and involves partition the 
space into equivalence classes followed by their direct search. The offered software 
allows you to generate a series of problems with the given parameters, to solve prob-
lems by selected algorithms, to save the results of problem solving. The computa-
tional experiment showed that the developed algorithms are effective for most prob-
lems with dimensions up to 50. 
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