
Method of Constructing Lexicographic Equivalence for
Solving Linear Combinatorial Optimization Problems on

Arrangements: Results of Computational Experiment

Tetiana Barbolina [0000-0002-4596-7907]

Poltava V.G. Korolenko National Pedagogical University, Ostrogradski str., 2, Poltava, 36003,
Ukraine

tm-b@ukr.net

Abstract. The method of constructing lexicographic equivalence for solving li-
near mixed combinatorial optimization problems on arrangements is consid-
ered. The software that implements algorithms of this method is described. The
efficiency of algorithms is analyzed be means of computational experiment.

Keywords: Euclidean combinatorial optimization, problems on arrangements,
computational experiments, method of constructing lexicographic equivalence.

1 Introduction

Actual trend of the modern theory of optimization is to study the problems of combi-
natorial nature. In particular, these problems are examined by [1–7]. Important results
have been obtained as a result of immersion of combinatorial sets in Euclidean space
and study the properties of such problems. Y.G.Stoyan started the theory of Euclidean
combinatorial optimization, his disciples – O.O. Iemets, S.V. Yakovlev, I.V. Gre-
bennik and numerous other representatives of this school carry out research in this
sphere. They have studied in their works both and properties of Euclidean combinato-
rial sets immersed in the arithmetical space, and extreme properties of the objective
functions, and methods of solving Euclidean combinatorial optimization problems.

This article considers such an important class of Euclidean combinatorial optimiza-
tion problems as problems on arrangement. The properties of the convex hull of the
set of arrangements are explored in [8, 9], in [10, 11] and others — properties of the
solution of certain classes of problems on arrangements, a number of results on the
solving methods and algorithms of the optimization problems on arrangements in a
rather general statement are summarized in [12]. In particular, method of constructing
lexicographic equivalence for solving completely linear combinatorial problems on
arrangements is substantiated. In [13] this method was extended to mixed combinato-
rial problems.

The aim of the paper is to describe the software implementation of the algorithms
of the method of constructing lexicographic equivalence for solving linear mixed

combinatorial optimization problems on arrangements and to present results of com-
putational experiments.

New scientific result obtained in the paper is investigation of an effectiveness of
algorithms of method of constructing lexicographic equivalence. Since theoretical
estimates are not obtained, then the effectiveness is analyzed by mean of computa-
tional experiments.

2 Formal problem statement

Let’s consider necessary definitions and facts. As multiset G we understand set of

elements, which can include and similar ones. Any multiset  1 2, , ...,G g g g can

be assigned by its base  S G , i.e. the tuple of all its different elements, and by multi-

plicity – number of repetition of each element of the base. The tuple of multiplicities
in the order that corresponds to the elements of the base is called primary specifica-
tion and is defined by  G . The set is called the Euclidian combinatorial set, the dif-

ferent elements of which are different ordered k -samples from the multiset

 1 2, , ...,G g g g of the representation

  
1 2
, , ..., ,

ki i ig g g (1)

jig G , j ji i ,j t ni i J  , , kj t J  (here and after kJ defines set of k first natu-

ral numbers). Examples of Euclidian combinatorial sets are [9] general set of ar-
rangements  kE G — set of all k -samples of the representation from the multiset

G , general multiset of permutations    E G E G
  .

The introduction of the concept of Euclidean combinatorial sets allows highlight-
ing from problems of combinatorial nature the class of problems where the feasible
set is Euclidean combinatorial set. In particular, the linear Euclidean problem of com-

binatorial optimization on arrangements is to find a pair  * *,L x x (consisting of

maximum and maximal) such that

  *

1

max
n

n

j j
x R j

L x c x
 

  , *

1

arg max
n

n

j j
x R j

x c x
 

  , (2)

under the combinatorial condition

    1 2, , ..., k
kx x x E G (3)

and additional linear constraints

1

n

ij j i
j

a x b


 , mi J , (4)

where n k ,  1 2, , ..., k
kx x x x R  , 1

jc R kj J  ,  kE G is a general set of

arrangements from the elements of multiset  1 2, , ...,G g g g . Variables

1 2, , ..., kx x x are combinatorial, variables 1 2, , ...,k k nx x x  are continuous. The linear

Euclidean problem of lexicographic combinatorial optimization on arrangements is to

find pair  * *,L x x such that

  *

1

lexmax
n

n

j j
x R j

L x c x
 

  , *

1

arg lexmax
n

n

j j
x R j

x c x
 

  (5)

under conditions (3)–(4), i.e.  *L x is the maximum value of  L x as the variables

range over the set (3), (4) and *x is lexicographically larger than any other maximal.

3 The method of constructing lexicographic equivalence

One of the approaches to solving problem (3)–(5) is in the partition of a polyhedron
into equivalence classes followed by directed search of the obtained classes . For
linear completely combinatorial optimization problems on arrangements, this ap-
proach (method of constructing lexicographic equivalence) is justified in [12, 14]. The
study [13] generalizes the equivalence relation, which is used to partition the polyhe-
dral set into equivalence classes, and proposes algorithms for constructing lexico-
graphic equivalence to solve mixed combinatorial linear problems.

Lexicographic equivalence of points of the space with respect to k -arrangements
(the relation k) is used as the equivalence relation in the method of constructing

lexicographic equivalence. Elements of the quotient set with respect to the equiva-
lence k are called k -classes. Each element of set  kE G defines separate

k -class. Such classes are called combinatorial. Algorithms for constructing lexico-

graphic equivalence involve directed search of k -classes. Let us describe these al-

gorithms (validation of these algorithms for solving mixed combinatorial problems is
presented in [13]).

The first algorithm is used to solve a problem of finding a pair (5) under conditions
(3), (4) and  L x A where A is a discrete set. This algorithm involves search of

k -classes whose representatives satisfy

1

n
h

j j
j

c x 


 (6)

where h (0,1, 2, ...h ) are sequential elements of set A .

According to the second algorithm, the direct search of combinatorial k -classes

in lexicographically increasing order and lexicographically decreasing order is car-

ried out. Classes whose representatives give the objective function a value smaller
than result obtained at previous iterations, are excluded from the search.

The third algorithm is approximate and allows getting the objective function value
that differs from the optimum by no more than a predetermined value. It involves
search k -classes whose representatives satisfy

1

n
h h

j j
j

c x 


  (7)

where difference h h  (0,1, 2, ...h ) decreases.

4 Description of the software product

The proposed algorithms of the method of constructing lexicographic equivalence for
solving linear conditional problems of combinatorial optimization on arrangement
(3) - (5) were implemented as software and experimentally investigated in solving the
problem.

Software was developed in the Turbo Delphi environment. The program allows
you to generate a series of problems with the given parameters, to solve problems by
selected algorithms, to save the results of problem solving, etc.

Input data (multiset, coefficients of the objective function and additional con-
straints) are presented as text files. This allows you to access the same set of data
more than once. Data is generated using standard Delphi language procedure.

Multiset was assigned by its base and primary specification. Elements of the base
are generated in increasing order, maximum difference between adjacent elements is
given. Multiplicities of elements of the base were specified less or equal to the num-
ber k of combinatorial variables because the choice of larger multiplicities does not
affect the solving problem.

When creating data files, the following parameters were set:

 the number of elements of the multiset base;
 the maximum difference between adjacent elements;
 the dimension of space n ;
 the number k of combinatorial variables;
 the number m of constraints.

The main characteristics of the algorithms studied during computational experi-
ments are the running time and the number of iterations in the process of approaching
the solution. Time is defined as the difference between the system time before the
start of the procedure that implements the corresponding algorithm and after its com-
pletion.

Before starting the test, the user must select the directory in which the problem
files are placed. You can choose to test all the files contained in the selected directory,

as well as individual files. You can also set the generation of files automatically be-
fore testing.

In the main window of the program (see Fig. 1), the user can select algorithms
which will be used for solving problems. We assume that values of the objective
function in the first algorithm of the method of constructing lexicographic
equivalence should be integers (i. e. A Z). If you choose the third algorithm you
need to specify the exactness.

Fig. 1. The main window of software tool for solving linear combinatorial optimization prob-
lems on arrangements.

Since even with rather small dimensions there are problems whose solving requires
a considerable amount of time, the program allows you to set the time limit for the
execution of algorithms. In case the algorithm runs longer than the specified time, the
execution is interrupted and the corresponding message is output to the result file. If
necessary, you can try to solve such problems later.

During testing, the main window shows the percentage of problems that are com-
pleted, the name of the current problem file and the name of the algorithm. When the
“Details” button is clicked, a table of results is displayed. This table contains the
names of the tested files, the time of solving the corresponding problem by each of
the algorithms and the number of iterations.

In addition to solving existing problems by selected algorithms, the software prod-
uct allows automatically generate series of problems with given parameters (the di-
mension of space, the numbers of constraints and combinatorial variables, the number
of elements of the multiset base, etc.). The maximum and minimum values of each
parameter of the series are specified, as well as the number of problems with each set
of parameters.

All algorithms of the method of constructing lexicographic equivalence involve
solving linear programming problem which is obtained by replacing the combinatorial
condition (3) with the condition    1 2, , ..., conv k

kx x x E G where  conv kE G is a

convex hull of the set  kE G . If such a problem has no solution then the initial com-

binatorial optimization problem (3)–(5) also has no solution. In this case, the study of
the effectiveness of the algorithms for constructing lexicographic equivalence does
not make sense. Therefore the possibility of repeated generation is provided in the
program. If a series received such problem that corresponding linear programming
problem has no solution then file of this problem is generated again.

For the convenience of further analysis of the results of computational experiment,
it is possible to create a summary file. This file contains for each problem information
about the main parameters (the number of variables, the number of constraints, etc.)
and the characteristics of the algorithms (the running time, the number of iterations).
In the future, the data of such files can be systematized and grouped, for example,
using a table processor.

5 Results of computational experiments

Several series of computational experiment were conducted using the software prod-
uct described above. Testing of programs was carried out on a computer with a dual-
core AMD A4-3400 processor, clock speed of each core 2700 MHz.

The first series of tests consists of 480 tasks, the generation of which parameters
are given as follows: the dimension of space 30n  ; number of combinatorial vari-
ables k accepts consecutive values from 15 to 30; number of constraints m accepts
consecutive values from 5 to 10.

For each set of parameters, 5 problems were solved. Separate characteristics of the
results of solving problems for which the running time does not exceed 30 min is
given in the Table 1, Table 2, where such notation is used: qp is the percentage of

problems solved in less than 30 minutes; st is the average running time; mt is the
maximum running time.

Time is given in minutes:sec; time less than 1 second displayed as 0:01.

Table 1. The dependence of the running time of algorithms for constructing lexicographic
equivalence on the number of constraints m (results of the first series of tests)

The first algorithm The second algorithm The third algorithm m
qp st mt qp st mt qp st mt

5 100% 0:08 2:48 100% 0:40 12:58 100% 0:07 3:12
6 100% 0:11 4:41 100% 0:55 13:16 100% 0:10 4:16
7 100% 0:15 14:38 100% 0:51 15:33 100% 0:12 10:49
8 98,8% 0:33 10:56 97,5% 1:25 25:55 98,8% 0:33 14:27
9 97,5% 0:16 7:10 96,3% 1:04 16:09 97,5% 0:14 3:53

10 98,8% 0:43 9:28 93,8% 1:13 17:58 96,3% 0:25 7:07

Table 2. The dependence of the running time of algorithms for constructing lexicographic
equivalence on the number of combinatorial variables k (results of the first series of tests)

The first algorithm The second algorithm The third algorithm
k

qp st mt qp st mt qp st mt
15 100% 0:01 0:06 100% 0:01 0:17 100% 0:01 0:04
16 100% 0:01 0:02 100% 0:02 0:13 100% 0:01 0:02
17 100% 0:01 0:12 100% 0:05 0:38 100% 0:01 0:10
18 100% 0:01 0:04 100% 0:03 0:22 100% 0:01 0:03
19 100% 0:01 0:06 100% 0:05 0:55 100% 0:01 0:06
20 100% 0:01 0:12 100% 0:05 1:38 100% 0:01 0:08
21 100% 0:01 0:10 100% 0:07 0:43 100% 0:01 0:10
22 100% 0:02 0:21 100% 0:19 4:09 100% 0:02 0:08
23 100% 0:02 0:27 100% 0:14 1:36 100% 0:02 0:12
24 100% 0:10 2:28 100% 1:03 12:25 100% 0:09 1:37
25 100% 0:11 2:44 93,3% 0:26 3:52 96,7% 0:05 0:44
26 100% 0:28 8:18 96,7% 1:44 9:36 93,3% 0:15 2:07
27 96,7% 0:32 9:28 96,7% 2:13 15:01 100% 0:29 7:07
28 96,7% 0:44 8:06 90% 2:04 12:58 96,7% 0:59 14:27
29 96,7% 1:24 7:36 100% 3:36 25:55 96,7% 0:49 3:53
30 96,7% 2:03 14:38 90% 4:43 17:58 96,7% 1:36 12:48

The results of the experiments presented in the Table 1, 2 show that the depend-

ence of the running time of algorithms both on the number of combinatorial variables,
and on the number of constraints, is characterized by a certain irregularity. In particu-
lar, all 30 problems with k=27 combinatorial variables were solved by the third algo-
rithm in less than 10 minutes, whereas for two problems with k=26 the solution was
not obtained in 30 minutes. The average running time of the second algorithm for
problems with 22 combinatorial variables is greater than for problems with 23 combi-
natorial variables. Solutions 78 out of 80 problems with 9 constraints were obtained
by the first algorithm in less than 30 minutes, while 79 out 80 problems with 10 con-
straints were solved in less than 30 minutes.

“Irregularity” confirmed Fig. 2, where each point corresponds to the results of the
solving using the first algorithm for constructing lexicographic equivalence of one
problem (the abscissa of the point is the number of combinatorial variables, and the
ordinate is the corresponding time of solving the problem; if problem was not solved
then time was equal to 30 min). For the second and third algorithms, similar images
are obtained.

Fig. 2. The dependence of the running time of the first algorithm for constructing lexico-
graphic equivalence on the number of combinatorial variables (results of the first series of tests)

The second series of tests consists of 420 problems (see Table 3).

Table 3. The dependence of the running time of algorithms for constructing lexicographic
equivalence on the dimension n of space (results of the second series of tests)

The first algorithm The second algorithm The third algorithm n
st mt st mt st mt

30 0:11 2:16 0:43 8:57 0:11 2:56
31 0:16 4:49 0:53 10:46 0:11 3:26
32 0:01 0:08 0:13 1:54 0:01 0:09
33 0:02 0:20 0:19 4:04 0:02 0:17
34 0:10 4:37 0:34 4:43 0:04 1:00
35 0:02 0:14 0:12 2:03 0:02 0:15
36 0:02 0:21 0:18 1:53 0:02 0:12
37 0:01 0:04 0:17 4:44 0:01 0:06
38 0:01 0:13 0:20 3:19 0:02 0:17
39 0:01 0:05 0:09 1:28 0:01 0:14
40 0:01 0:09 0:18 3:26 0:01 0:13
41 0:01 0:06 0:15 1:59 0:01 0:09
42 0:01 0:23 0:08 2:00 0:01 0:16
43 0:01 0:02 0:05 1:03 0:01 0:03

The number of combinatorial variables is equal to 25, dimension accepts consecu-

tive values from 30 to 43 and the number of constraints accepts consecutive values
from 5 to 10, 5 problems were solved for each set of parameters. The running time
was less than 11 minutes. The results are presented in the Table 3, where, as in the
previous tables, st is the average running time; mt is the maximum running time. In

contrast to the first series of tests if the dimension of space increases (so the number
of continuous variables increases) then the running time decreases.

Parameters of problems in the third series of tests were defined as follows: the
number of continuous variables is equal to 7, the number of constraints is equal to 10,
dimension accepts consecutive values from 25 to 48 (so the number of combinatorial
variables changes from 18 to 40), the number of problems with identical parameters
is equal to 10.

The analysis of Table 3 and Table 4 gives reason to assert that the dimension of
space has less effect on the running time than the number of continuous variables, but
the corresponding dependencies with an acceptable correlation coefficient can not be
established.

Table 4. The dependence of the running time of algorithms for constructing lexicographic
equivalence on the dimension n of space (results of the third series of tests)

The first algorithm The second algorithm The third algorithm n
qp st mt qp st mt qp st mt

25 100% 0:02 0:17 100% 0:04 0:12 100% 0:01 0:04
26 100% 0:08 0:32 100% 0:13 0:37 100% 0:04 0:13
27 100% 0:02 0:08 100% 0:12 1:18 100% 0:01 0:04
28 100% 0:02 0:05 100% 0:08 0:31 100% 0:01 0:03
29 100% 0:13 1:51 100% 0:14 0:44 100% 0:04 0:21
30 100% 0:13 1:09 100% 0:55 3:27 100% 0:12 0:48
31 100% 0:07 0:22 100% 0:51 3:22 100% 0:06 0:17
32 100% 0:21 1:46 100% 1:06 2:19 100% 0:11 0:31
33 100% 0:08 0:26 90% 0:22 1:25 100% 0:08 0:41
34 100% 0:13 1:04 100% 1:52 6:58 100% 0:24 2:32
35 100% 0:59 7:02 100% 1:36 6:35 100% 0:31 2:60
36 100% 0:06 0:31 100% 2:49 12:04 100% 0:11 0:33
37 100% 0:03 0:11 100% 0:49 2:49 100% 0:04 0:16
38 100% 0:18 2:12 90% 1:36 7:20 90% 0:09 0:29
39 100% 0:10 0:32 80% 1:54 7:37 90% 0:27 2:27
40 100% 0:04 0:19 90% 0:29 2:08 100% 0:11 1:03
41 90% 0:14 0:59 90% 1:57 12:42 100% 2:57 25:37
42 100% 0:27 1:44 90% 7:19 26:38 100% 0:40 2:34
43 100% 1:26 4:48 70% 3:53 18:48 100% 1:36 6:52
44 80% 0:01 0:04 80% 2:27 8:17 80% 0:09 0:25
45 100% 0:58 4:41 90% 4:33 22:52 100% 1:14 5:25
46 100% 0:11 1:01 90% 2:37 12:53 100% 0:22 1:17
47 100% 0:11 0:28 90% 4:23 14:42 100% 0:28 1:53
48 90% 0:21 0:42 60% 12:01 28:54 90% 1:25 3:43

6 Conclusion

The paper considers the software implementation of the algorithms of the method of
constructing lexicographic equivalence. This method is used for solving linear mixed

combinatorial optimization problems on arrangements and involves partition the
space into equivalence classes followed by their direct search. The offered software
allows you to generate a series of problems with the given parameters, to solve prob-
lems by selected algorithms, to save the results of problem solving. The computa-
tional experiment showed that the developed algorithms are effective for most prob-
lems with dimensions up to 50.

References

1. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: Algorithms and Complex-
ity. Dover Publications, Mineola, New York (1982)

2. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimi-
zation. Springer-Verlag, Berlin Heidelberg (1993)

3. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Algorithms and
Combinatorics, vol.21. Springer, Berlin, Heidelberg (2018) doi: 10.1007/978-3-662-
56039-6

4. Nemhauser, G. L., Wolsey, L. A.: Integer and combinatorial optimization. John Wiley &
Sons, New York (1988)

5. Pardalos, P.M., Du, D.-Z., Graham R.L. (eds.): Handbook of Combinatorial Optimization,
Springer-Verlag, New York (2013)

6. Hulianytskyi, L., Riasna, I.: Formalization and Classification of Combinatorial Optimiza-
tion Problems. In: Butenko S., Pardalos P., Shylo V. (eds): Optimization Methods and Ap-
plications. Springer Optimization and Its Applications, vol 130, pp. 239-250. Springer,
Cham (2017) doi: 10.1007/978-3-319-68640-0_11

7. Zgurovsky, M.Z., Pavlov. A.A.: Combinatorial Optimization Problems in Planning and
Decision Making. Studies in Systems, Decision and Control, vol. 173. Springer, Cham
(2019) doi: 10.1007/978-3-319-98977-8

8. Emets', O. O., Roskladka, O. V., Nedobachii S. I.: Irreducible System of Constraints for a
General Polyhedron of Arrangements. Ukr. Mat. Zh.. 55(1): 1-12 (2003) doi:
10.1023/A:1025060316418

9. Stoyan, Yu. G., Iemets, O. O.: Theory and methods of Euclidean combinatorial optimiza-
tion [in Ukrainian]. Instytut systemnykh doslidzhen osvity, Kyiv (1993).
http://dspace.puet.edu.ua/handle/123456789/487

10. Semenova, N. V., Kolechkina, L. N., Nagornaya, A. N.: One Approach to Solving Vector
Problems with Fractionally Linear Functions of the Criteria on the Combinatorial Set of
Arrangements. J. Automat. Inform. Sci. 42(2): 67-80 (2010) doi:
10.1615/JAutomatInfScien.v42.i2.50

11. Yakovlev, S. V., Grebennik, I. V.: Some classes of optimization problems on a set of ar-
rangements and their properties. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
11: 74-86 (1991)

12. Iemets, O. O., Barbolina, T. M.: Combinatorial optimization on arrangements [in Russian].
Naukova dumka, Kyiv (2008) http://dspace.puet.edu.ua/handle/123456789/473

13. Barbolina, T. N. Solution of mixed combinatorial optimization problems on arrangements
by the method of construction of lexicographic equivalence. Cybern. Syst. Analysis 49 (6):
137-149 (2013) doi: 10.1007/s10559-013-9582-4

14. Yemets, O. A., Barbolina, T. N.: Solution of euclidean combinatorial optimization prob-
lems by the method of construction of a lexicographic equivalence. Cybern. Syst. Analysis
40 (5): 76-734 (2004) doi: 10.1007/s10559-005-0010-2

