
SVM-based Technique for Mobile Malware Detection

Sergii Lysenko[0000-0001-7243-8747], Kira Bobrovnikova[0000-0002-1046-893X],
Andrii Nicheporuk[0000-0002-7230-9475] and Roman Shchuka

Khmelnitsky National University, Khmelnitsky, Ukraine
{sirogyk@ukr.net, kirabobrovnikova@gmail.com

andrey.nicheporuk@gmail.com, schuka.roman@gmail.com}

Abstract. A paper presents a new technique for the mobile malware detection
based on the malware’s network features analysis is proposed. It uses SVM for
malicious programs detection. The novel approach provides the ability to detect
malware in the mobile devices. As the inference engine for malware detection
the support vector machine was used. The detection process is performed by
taking into account the malware’s features, captured in the mobile devices. Ex-
perimental research showed that the SVMs are able to produce the accurate
classification results. Experiments demonstrated, that technique is able to detect
different types of malware up to 98.21%.

Keywords: Malware, Mobile device, Cybersecurity, Behavior, Computer sys-
tem, Network, Android, Cyberattack

1 Introduction

Last year the threats against mobile devices in particular backdoors, malicious cryp-
tomining, banking trojans, especially during the second half of 2018, were growing
[1]. The both new mobile device infection techniques (for example, DNS hijacking)
and the use of tried-and-tested distribution schemes (for example, SMS spam) were
applied. The one third of all mobile attacks - from building botnets, to stealing bank-
ing credentials, perpetrating click fraud, or threatening reputation - were performed by
hidden apps. McAfee researchers identified 65 000 of fake mobile apps, up more
than six-fold from the 10 000 detected only six months earlier. However Android
remains by far the most popular mobile operating system, being used by four fifths of
respondents. iOS is the only other mobile OS to reach double figures, at 15% [2].

2 Related works

Today variety of approaches to identify of android malware is widely present on the
literature.

A malware detection technique called Personal Mobile Malware Guard – PMMG
that classifies malwares based on the mobile user feedback is presented in [3]. PMMG

controls permissions of different applications and their behavior according to the user
needs. These preferences are built incrementally on a personal basis according to the
feedback of the user. Performance analysis showed that it is theoretically feasible to
build PMMG tool and use it on mobile devices. However in case of sensitive mobile
resources that require a large portion of permissions, the proposed technique may lead
to increase a number of a false alarm.

Similar to above mentioned except permission, approach that use a combination of
permissions and intents supplemented with multiple stages of classifiers for malware
detection is proposed in [4]. Their experiments were performed on 1745 applications
samples starting with a performance comparison between MLP, Decision Table, De-
cision Tree, Random Forest, Naive Bayes and Sequential Minimal Optimization clas-
sifiers. The Decision Table, MLP, and Decision Tree classifiers were then com-
bined using three schemes: average of probabilities, product of probabilities and
majority voting.

In work [5] authors have proposed an approach to detect Android malware using
system call logs. The proposed technique mainly consists of three stages. At first us-
ing emulator Genymotion the system call log of applications are observed. To do this,
each application was executed in emulator for approximately five minutes. To im-
prove the quality of dataset on the second stage involves the using of filtering algo-
rithm. The third step is the implementation of the dataset on machine-learning algo-
rithms. The results of experiments have shown the high accuracy of detection, how-
ever authors didn't took into account capable of some applications identify a sandbox
type environment.

In [6] a malware detection system that uses a deep convolutional neural network
(CNN) is proposed. Malware classification is performed based on static analysis of
the raw opcode sequence from a disassembled program. Features indicative of mal-
ware are automatically learned by the network from the raw opcode sequence thus
removing the need for hand-engineered malware feature. Their experiments demon-
strate that CNNs can effectively learn to detect sequences of opcodes that are indica-
tive of malware.

Another static approach for android malware detection that uses multiple features
to analyze is presented in [7]. A set of features such as hardware, permission, applica-
tion components, filtered intents, opcodes and strings are extracted from the samples
to form a vector space model. Feature selection methods such as Entropy based Cate-
gory Coverage Difference (ECCD) and Weighted Mutual Information (WI) are used
to choose the prominent features. The performance of the system is analyzed using
classifiers, Random Forest, Rotation Forest and Support Vector Machine (SVM).

Authors in [8] propose a static-analysis based system that named MaMaDroid.
The operation of a MaMaDroid goes through four stages. First, it extract the call
graph from each app by using static analysis, then, it obtain the sequences of API calls
using all unique nodes after which it abstract each call to class, package, or family.
The third stage involves modeling of the behavior of each app by constructing Mar-
kov chains from the sequences of abstracted API calls for the app, with the transition

probabilities used as the feature vector toclassify the app as either benign or malware
using a machine learning classifier.

The framework TriFlow that use a triage mechanism to rank applications consid-
ering their potential risk is developed [9]. TriFlow combines a probabilistic model to
predict the existence of information flows with a metric of how significant a flow is in
benign and malicious apps. Based on this, TriFlow provides a score for each applica-
tion that can be used to prioritize analysis. The experimental results show that it can
predict the presence of information flows very accurately and that the overall triage
mechanism enables significant resource saving.

The literature review has shown that the problem of android malware detection is
extremely actuals. However considered approaches have some common disadvan-
tages which are manifested in ignoring packed malware and impossibility to protect
the device from Zero Day attacks and malwares capable of modifying themselves.

In [10–13] an approaches for malware detection based on the network and hosting
behavior analysis are presented. They use the self-adaptive idea for the malware de-
tection and are based on usage of the semi-supervised fuzzy c-means clustering,
where the objects of clustering were the feature vectors which elements may indicate
the appearance of cyber threats networks and computer systems.

The mentioned above methods of the malware detection in the mobile devices have
shown a high level of effectiveness, but also demonstrate high rate of false positives.

The common weakness of the aforementioned approaches is the requirement of
large amounts of computing resources and the fact that they aren’t able to respond adap-
tively to known and unknown attacks performed by malware against the mobile devices.

3 Support Vector Machine

The support vector machines (SVMs) are the high-potential approach for the object
classification. SVMs are the supervised learning models with associated learning
algorithms [14–15]. They are able to produce accurate and robust classification re-
sults, even when input data is non-monotone and non-linearly separable, and to evalu-
ate more relevant information in a convenient way, providing high accuracy of classi-
fication with small training sets [16].

Basically, SVM performs classification by finding the hyperplane that maximizes
the margin between two classes. Vectors (cases) that define the hyperplane are the
support vectors. To define an optimal hyperplane we need to maximize the width of
the margin:

,0 bxw (1)

where x is a classification object lying on the hyperplane, w is normal to the hyper-

plane, b is the basis and
||||

||

w

b

is the perpendicular distance from the hyperplane to

the origin, with |||| w

the Euclidean norm of w [14, 17].

Let be a mapping function which projects the training data into a Hilbert high

dimensional space H, HRq : . The data point x is represented in space H as

)(x .

In the context of SVM, the kernel function defines the hypothesis space, and is de-
fined as:

)),()((),(ii xxxxK (2)

where ix is a training data.

It leads to decision functions of the following form:

,),(sgn)(
1

r

i
iii bxxKxf

(3)

where rii ,...,1, are Lagrange multipliers, the maximal magnitude of which is

governed by C.
In order to compute the separating hyperplane without explicitly carrying out the

mapping into the feature space, different kernel functions can be used [18, 19]. In this
approach, the classification process involved the kernels: linear, polynomial, Gaus-
sian, exponential, and B-Spline.

The linear kernel is the simplest kernel function. It is given by the inner product
),(ixx plus an optional constant c:

.,),(RccxxxxK i
T

i
(4)

The polynomial kernel is a non-stationary kernel, where the adjustable parameters
are the slope α, the constant term c and the polynomial degree p:

.,,,)(),(NpRcRcxxxxK p
i

T
i

(5)

The Gaussian kernel is an example of radial basis function kernel:

,0,),(
2

2
)||||(

2

1

ixx

i exxK
(6)

where σ is the parameter that controls the width of the Gaussian kernel.
The exponential kernel is closely related to the Gaussian kernel, with only the

square of the norm left out. It is also a radial basis function kernel:

.),(
||)||(

2

1
2 ixx

i exxK

(7)

The B-Spline is a radial basis function kernel, and is defined on the interval
[−1, 1]. It is given by the recursive formula [18]:

0112 :),(),(BBBwithNpwherexxBxxK iiipi (8)

In order to perform the multi-class classification, the ”one against all” and ”one
against one” SVM-based methods are used [16].
”One Against all” SVM Classifier. This method constructs k SVM models, where k
is the number of classes. The m-th SVM is trained with all of the samples in the m-th
class with positive labels, and all other samples with negative labels. The m-th SVM
solves the task of training data mapping to a higher dimensional space for the given l

training data),,(),...,,(11 ll axax where },...,1{,,...,1, kialiRx i
n

i is the class

of training data ix .

In order to perform the classification for ix , we use k decision functions, where k

is the number of classes:

,,...,1,)()(kiwherebxw ii
T

i
(9)

where – is the mapping function, .: HRq

The data ix then belongs to class a, for which the above decision function has the

largest value:

).)()((maxarg ,...,1 ii
T

iki bxwxa

(10)

”One Against One” SVM Classifier. The proposed technique uses the ”one against
one” SVM classification method as well. Here, 2/)1(kk classifiers are to be con-

structed for each pair of classes and the max-win strategy is to be followed. Specifi-

cally, if jli
T

jl bxwsqn)()(evaluates ix to be in j-th class, then the vote for the j-th

class is incremented by one, else that for the l-th class is increased by one. Finally, the
training data vector ix is predicted to belong to the class with maximum number of

votes [16].
Taking into account the advantages of the SVM, it can be used as the inference

engine for the making the decision about the presence of the malware in the mobile
devices.

4 SVM-based Approach of the Mobile Malware Detection

We propose a new technique for the mobile malware detection. An approach presents
the SVM-based system for malware detection with the ability to classify the malicious
program and blocking them.

The proposed approach includes learning and detection stages. The learning stage
consists of the following steps:

1. Knowledge formation based on the features that may indicate the mobile mal-
ware presence.

2. Presentation of the knowledge about the mobile malware behavior as a set of

feature vectors.
3. Formation the set of mobile malware classes using SVM.
The monitoring stage consists of the following steps:
1. Gathering the features in the mobile device, which may indicate the mobile

malware presence.
2. Construction of the feature vectors based on the obtained information.
3. The detecting stage involves the implementation of SVM classification of the

obtained feature vectors in order to assign them to one of the mobile malware’s class.
4. The blocking of the malicious program execution.
Let us take a closer look at each step of the method.

4.1 Knowledge Formation Based on the Features that May Indicate
Mobile Malware Presence

Let us denote the set of malware’s classes as AN

mmaА
1 , where 1a – the Trojans; 2a

– the backdoors; 3a – the mobile botnets; 4a – the spammers; 5a – the spyware; 6a

– smartphone trackers; 7a – the mobile proxy-servers; 8a – SMS malware; 9a – the

exploits; 10a – the rootkits; 11a – the Adware; 12a – the DDoS attackers, where AN –

the number of attacks, performed by DDoS botnets [20].
Let us denote the set of features, that may indicate mobile malware’s attacks

against the device and are to be analyzed as BN

jjbB
1

 , where BN – the number of

features. The list of features is presented in Table 1. Let us denote the set of devices

attacked by mobile malware as HN

iihH 1 , where HN – the number of mobile de-

vices. Thus, the function of the malware’s attack identifying f can be presented as:

mji abhf : .

Table 1. The features, that take place in the malware’s detection process [21].

Feature Description

The CPU resource consumption features

PUCPU the percentage of CPU time required for the user space by the operating system

PKCPU the percentage of CPU time required for the kernel space by the operating sys-
tem

PSCPU the percentage of shared CPU assigned by the OS

NPCPU the total number of processes running for the application AUA

NTCPU the total number of threads running for the application AUA

The memory resource consumption features

FM the global amount of idle memory

UM the global amount of used memory

AM the global amount of anonymous mapping maps, i.e., the area of the virtual
memory (all processes) not backed by any file

SM the global amount of slab – a slab is the amount by which a cache can grow or
shrink.

TVM the total amount of memory in swap and RAM

PSM the amount of application AUA memory shared with other processes, accounted
in a way that the amount is divided evenly between the processes that share it

RAMM the size portion of memory occupied by the application AUA that is held in
RAM

UPM the set of pages that are unique for the application AUA

The storage resource consumption features

kBW the amount of information (expressed in kB) written on the storage by all the
processes

kBR the amount of information (expressed in kB) read from storage by all the proc-
esses

BR the number of bytes which are read from storage by the application AUA

BW the number of bytes which are written into the storage by the application AUA

NR the value represents the number of read I/O operations

NW the value represents the number of write I/O operations

The network resource consumption features

APR the number of packets received by all the processes

APT the number of packets transmitted by all the processes

ABR the number of bytes received by all the processes

ABT the number of bytes transmitted by all the processes

PR the number of packets received by the application AUA

PT the number of packets transmitted by the application AUA

BR the number of bytes received by the application AUA

BT the number of bytes transmitted by the application AUA

DNS-based features

NL the length of the domain name

UN the number of unique characters in the domain name

NE entropy of the domain name

avermed TTT ,,mod TTL-periods (mode, median, average value)

AN

the number of A-records corresponding to domain name in the incomig DNS-
message

IPN

the number of IP-addresses concerned with the domain name

IPS

the average distance between the IP-addresses concerned with domain name

AS

the average distance between the IP-addresses in the set of A-records for domain
name in the incoming DNS-message

UAN

number of unique IP-addresses in sets of A-records corresponding to the domain
name in the DNS-messages

UAS

the average distance between unique IP-addresses in sets A-record corresponding
to the domain name in the DNS-messages

DN

number of domain names that share IP-address corresponding to the domain
name

URF

the sign of the usage of uncommon types of the DNS-records, or DNS-records
that are not commonly used by a typical client

RE

entropy of the DNS-records, which are contained in the DNS-messages

PL maximum size of the DNS-messages about domain name

SF the sign of success of DNS-query

4.2 Presentation of the Knowledge About the Cyberattacks As the Set
of the Feature Vectors

All the above-mentioned features are the base of the set of feature vectors XN

kkxX 1 ,

where each of feature vector kx describes the botnet’ attack and the legitimate traffic,

XN – the number of the feature vectors.

4.3 Usage of the SVM-based inference engine for the malware detection

The main task of the SVM-based inference engine is to assign feature vector ix to

class ta at, where ,}{,, 1
AN

ttti aAAaXx AN – is the number of classes, where

each class corresponds to one specified type of attacks, performed by malware. The
SVM-based inference engine makes a conclusion about the presence or absence of a
malware in the mobile device and detects the possible type of the malware.

5 Experiments

In order to evaluate the effectiveness of the malware detection based on proposed
method, experimental studies were conducted.

The experimental part of the study involved the solving of the following tasks:
- to investigate the applicability of SVM for making decisions about the presence

of malware in the mobile device;
- to evaluate the detection efficiency of the malware detection in the mobile de-

vices.

5.1 Evaluation Setting

In order to evaluate the technique’s, a detection accuracy tests using malware’s sam-
ples were conducted. For this purpose, a mobile malware datasets [22, 23] were em-
ployed. Used datasets were divided into training T and evaluation (test) E datasets.
The training dataset includes 383 samples, 49.56% of which are malicious and the

reminder contains normal behaviors. The test dataset includes 403 samples, 55.77%
of which represent malicious behaviors.

To retrieve information about the CPU consumption the top tool, which is able to
provide an overview of the CPU activity in real time, was used.

To extract the features concerning the memory resource usage, system monitoring
tool vmstat and procrank tool were used.

Since the tracking of the input-output activity information is disabled by default to
retrieve it the modification of the specific configuration file (depending on the kernel
and on the architecture of the device) was perfected and the kernel was recompiled.
With purpose of the collection of input-output activity information the iostat com-
mand was used. To extract the features related to the use of the network, the means of
open source tool Android Device Monitor was used.

Support vector machine was implemented using Matlab [24].

5.2 Performance Measures of the BotGRABBER System

The experimental results were estimated via standard sensitivity (SN), specificity
(SP), and overall accuracy (Q) performance measures, taking into account the quan-
tity measures of True Positives (TP), True Negatives (TN), False Positives (FP), False
Negatives (FN):

.,
)(

,
)(FNFPTNTP

TNTP
Q

FPTN

TN
SP

FNTP

TP
SN

(11)

In order to investigate the SVM-based inference engine efficiency we used differ-
ent SVM kernel functions. Examples of classification results using linear, polynomial,
Gaussian, exponential, and B-Spline kernels are presented in Fig. 1.

The process of classification is divided into several iterations.
In the first iteration, the classification objects are divided into two classes: mali-

cious behavior and the benign one. Then classifiers divide objects into other two clas-
ses, for instance: malicious behavior and spam bot. The next iterations separate mali-
cious behavior and other classes of malware and so on until all of them are totally
divided.

Fig. 1 presents the placement of the classification objects on the 2-D plane and the
objects’ separation into two classes.

Fig. 3. Results of SVM classification using different kernel functions: a) malicious pro-
gram/benign program; b) malicious program /spam bot; c) malicious program/trojn program

Experimental results of different SVM classifiers elucidated that the linear and
polynomial classifiers had provided the worst results (Table 2). They were character-
ized by longer execution times, and higher rates of the overall classification accuracy.

Table 2. Experimental results for different SVM classifiers.

Classification accuracyClassifier
kernel one

against
one against
all SVM

Execution
time (sec)

Distance
between
hyperplanes

linear 92.53 96.35 0.5 0.18
Gaussian 96.18 97.39 0.4 0.25
B-spline 98.01 97.43 0.4 0.38
polynomial 93.56 96.79 0.5 0.37
exponential 97.02 97.64 0.5 0.33

Non-linear classifiers demonstrated better results, where B-Spline provided better

results than others did.

For an experimental evaluation samples, the most effective classifier using the
SVM was the B-spline since it provided the greatest distance between hyperplanes,
the shortest time of evaluation, and the best accuracy of the classification. Given that,
it was employed as a basic kernel function in the SVM-based inference engine of the
proposed technique.

5.3 Results

This subsection presents overall results of technique’s efficiency, taking into account
sensitivity, specificity, and the overall accuracy. Employing the datasets [21, 22] this
stage involved the evaluation of the SVM-based inference engine accuracy concerning
each type of malware separately. The combined results are given in Table 3.

Table 3. Test results for different mobile malware’s classes: number of training set samples T,
number of evaluation samples E (including malicious and benign traffic samples), sensitivity
(SN), specificity (SP), overall accuracy (Q) of the proposed approach, true positives (TP), true
negatives (TN), false positives (FP), false negatives (FN), the rate of successful reconfigura-
tions (SR).

E Results
Malicious Benign

Mobile malware’s classes

T

TP FN TN FP
SN ,
%

SP ,
%

Q,
%

trojans 36 38 3 34 1 92,68 97,14 94,74
backdoors 31 33 2 29 2 94,29 93,55 93,94
mobile botnets 28 27 1 25 0 96,43 100,00 98,11
spammers 32 34 3 35 2 91,89 94,59 93,24
spyware 26 29 2 30 0 93,55 100,00 96,72
smartphone trackers 37 39 3 35 3 92,86 92,11 92,50
mobile proxy-servers 24 30 0 25 1 100,00 96,15 98,21
SMS malware 41 40 3 39 2 93,02 95,12 94,05
exploits 35 36 3 34 2 92,31 94,44 93,33
rootkits 30 35 6 30 1 85,37 96,77 90,28
adware 34 27 2 28 2 93,10 93,33 93,22
DDoS attackers 29 35 2 30 1 94,59 96,77 95,59

Table 3 shows that the overall accuracy of technique is in the range from 90.28%

to 98.21%. Moreover, sensitivity and specificity are in the range of 85.37–100% and
92.11–100%, respectively. Therefore, this approach indicates the capability of SVM
for the botnets classification.

6 Discussion

As the technique uses the SVM-based engine, there are several factors which may
affect the prediction accuracy. One of them is the diversity of used training samples.
Most conspicuously, that not all possible feature vectors, that describe different mal-
ware classes, are adequately represented in the training set. Thus, system may be fur-

ther improved by choosing more refined set of malicious samples for each malware
classes.

In order to increase the classification accuracy the SVM prediction may be further
improved by using different classification kernels, as well as the SVM optimization
procedure and new mobile malware classes (and its feature vector selection) may also
be improved.

Results of the experiments demonstrated, that the technique achieves the best results
for detection of such mobile malware as DDoS, spyware, SMS malware, botnets, etc.

At the same time, the efficiency of the system concerning rootkits is rather lower.
This is because the behavior of some malware is very similar to users’ ones and some
of malware’s features weren’t taken into account for the detection process.

7 Conclusions

A new technique for the mobile malware detection based on the malware’s network
features analysis is proposed. It uses SVM for malicious programs detection. The
novel approach provides the ability to detect malware in the mobile devices.

As the inference engine for malware detection the support vector machine was
used. The detection process is performed by taking into account the malware’s fea-
tures, captured in the mobile devices.

Experimental research showed that the SVMs are able to produce the accurate clas-
sification results. Implementation of the SVM-based inference engine into the mobile
malware’s detection process allowed to obtain its mean detection accuracy up to
98.01%. Experiments demonstrated, that technique is able to detect different types of
malware in the range from 90.28 to 98.21%, while false positives is about 5%.

8 References

1. McAfee Mobile Threat Report Q1, 2019, https://www.mcafee.com /enterprise/en-
us/assets/reports/rp-mobile-threat-report-2019.pdf

2. AV-Comparatives Security Survey, 2019, https://www.av-comparatives.org/wp-
content/uploads/2019/02/Security_Survey_2019_en.pdf

3. Amro, B.: Personal Mobile Malware Guard PMMG: a mobile malware detection technique
based on user’s preferences. IJCSNS International Journal of Computer Science and Net-
work Security, Vol. 18, No. 1, pp. 18–24 (2018)

4. Idrees, F., Rajarajan, M., Conti, M., Chen, T., Rahulamathavan, Y.: Pindroid: a novel an-
droid malware detection system using ensemble learning methods. Computers & Security,
Vol. 68, pp. 36–46 (2017)

5. Chaba, S., Kumar, R., Pant, R., Dave, M.: Malware Detection Approach for Android sys-
tems Using System Call Logs, arXiv preprint arXiv:1709.0880 (2017)

6. McLaughlin, N., Martinez del Rincon, J., Kang, B, et al.: Deep android malware detec-
tion. In Proc. of the Seventh ACM on Conference on Data and Application Security and
Privacy, pp. 301–308 (2017)

7. Varsha, M., Vinod, P., Dhanya, K.: Identification of malicious android app using manifest
and opcode features. Journal of Computer Virology and Hacking Techniques, Vol. 13, Is-
sue 2, pp. 125–138 (2016)

8. Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, et al.: MaMaDroid: Detecting
Android Malware by Building Markov Chains of Behavioral Model (Extended Version).
ACM Trans. Priv. Sec., Vol. 1, No. 1, pp. 1–33 (2019)

9. Mirzaei, O., Suarez-Tangil, G., Tapiador, J., M.de Fuentes, J.: Triflow: Triaging android
applications using speculative information flows. In Proc. of the 2017 ACM on Asia Con-
ference on Computer and Communications Security, pp. 640-651 (2017)

10. Lysenko, S., Pomorova, O., Savenko, O., Kryshchuk, A., Bobrovnikova, K.: DNS-based
anti-evasion technique for botnets detection. In Proc. of the 8th International Conference
Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applica-
tions (IDAACS), Vol. 1, pp. 453–458 (2015)

11. Pomorova, O., Savenko, O., Lysenko, S., Kryshchuk, A., Bobrovnikova, K.: Antievasion
technique for the botnets detection based on the passive DNS monitoring and active DNS
probing. In Proc. of the 23rd International Conference, CN 2016, Computer Networks, pp.
83–95 (2016)

12. Lysenko, S., Savenko, O., Bobrovnikova, K., Kryshchuk, A., Savenko, B.: Information
Technology for Botnets Detection Based on Their Behaviour in the Corporate Area Net-
work. In Proc. of the 24th International Conference, CN 2017, Computer Networks, pp.
166–181 (2017)

13. Lysenko, S., Savenko, O., Bobrovnikova, K., Kryshchuk, A.: Self-adaptive System for the
Corporate Area Network Resilience in the Presence of Botnet Cyberattacks. In Proc. of the
25th International Conference, CN 2018, Computer Networks, pp. 385–401 (2018)

14. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T. Vapnik, V.: Feature selec-
tion for SVMs. In Proc. of the 2000 Neural Information Processing Systems (NIPS) Con-
ference, pp. 668–674 (2001)

15. Chapelle, O., Vapnik, V., Bousquet, O. Mukherjee, S.: Choosing multiple parameters for
support vector machines. Machine learning, Vol. 46, Issue 1-3, pp.131-159 (2002)

16. Foody, G. M., Mathur, A.: A relative evaluation of multiclass image classification by sup-
port vector machines. IEEE Transactions on geoscience and remote sensing, Vol. 42, Issue
6, pp. 1335–1343 (2004)

17. Deng, N., Tian, Y., Zhang, C.: Support vector machines: optimization based theory, algo-
rithms, and extensions. Chapman and Hall/CRC, Data Mining and Knowledge Discovery
Series, 363 p. (2012)

18. Hofmann, T., Schölkopf, B., Smola, A. J.: Kernel methods in machine learning. The annals
of statistics, Vol. 36, No. 3(2008), pp. 1171-1220 (2008)

19. Larranaga, P., Atienza, D., Diaz-Rozo, J., et al.: Industrial Applications of Machine Learn-
ing / CRC Press, 336 p (2018)

20. Forensic Blog. Available: https://forensics.spreitzenbarth.de/android-malware/
21. Canfora, G., Medvet, E., Mercaldo, F., Visaggio, C. A.: Acquiring and analyzing app met-

rics for effective mobile malware detection. In Proc. of the 2016 ACM on International
Workshop on Security And Privacy Analytics. ACM., pp. 50–57 (2016)

22. The Drebin Dataset, https://www.sec.cs.tu-bs.de/~danarp/drebin
23. Android malware genome project, http://www.malgenomeproject.org
24. MathWorks, https://www.mathworks.com/

