
Evaluation	of	testing	assignment	for	system	level	self‐
diagnosis	

Viktor Mashkov1[0000-0001-9817-3388], Jiri Fiser1[0000-0002-5404-1727],
Volodymyr Lytvynenko2[0000-0002-1536-5542], Maria Voronenko2[0000-0002-5392-5125]

1University J.E. Purkyne, Usti nad Labem, Department of Informatics, Usti nad Labem,
Czech Republic,

viktor.mashkov@ujep.cz, jf@jf.cz
2Kherson National Technical University, Department of Informatics & Computing Tech-

nology, Kherson, Ukraine
immun56@gmail.com, mary_voronenko@i.ua

Abstract:	The research concerns a task of comparing and assessing test-
ing graphs in context of system level self-diagnosis. System level self-
diagnosis aims at diagnosing systems composed of units, with the require-
ment that they are able to test each other by exchanging information
through available links. A set of tests performed in a system can be repre-
sented as a testing graph. The obtained testing graph can be assessed
based on the quality of diagnosis that it allows to achieve. In the research,
we suggest the method allowing different testing graphs to be assessed and
compared. The method uses the characteristic numbers. We have shown
how such numbers can be computed.

Keywords:	complex systems, self-diagnosis, probabilistic algorithm, deci-
sion rule

1 Introduction

Research in the area of system level self-diagnosis started in the late 60s of the last
century. Since that time there has been done a great amount of research. Achieve-
ments in theoretical research gave impulse to practical implementation and enabled a
broadening of the application domains of system level self-diagnosis. Initially, system
level self-diagnosis was applied in complex multiprocessor systems and then it gradu-
ally spread to distributed systems, different types of networks, multi-agent systems [1,
2, 3, 4] etc. There are four main issues, which form the context of system level self-
diagnosis [5].

The first issue is the system testing assignment that defines the possible set of tests
among the system units. The second issue is the assumptions underlying the diagnosis
algorithms. Particularly, these assumptions tackle the possible faulty sets and the test
results. These assumptions have direct impact on achievable quality of diagnosis (i.e.,
correctness and completeness).

The third issue is the organization of test performance. It concerns the tasks of test
scheduling, test repetition, test performing (random or deterministic), etc. The fourth
issue relates to the problem of determining the unit(s), which will perform a diagnosis
algorithm and/or will provide environment with the information about system state.

Usually, the first and second issues are considered together, and they can be
viewed as theoretical ground of system level self-diagnosis. In the theory of system
level self-diagnosis, three main problems were formulated. They are characterization,
diagnosability and diagnosis problems [6].

The characterization problem (i.e., the problem of testing assignment) was the first
one which was considered in context of system level self-diagnosis. The work of Pre-
parata at al. [7] studied the requirements to the system testing assignment. In this
research, the authors have introduced the diagnosability measure which, to a great
extent, depends on the system testing assignment. Particularly, in this research, they
proved that for correct diagnosis of at most t faulty units there must be satisfied the
following two requirements: a system must have n units, where 2 1n t  ; each sys-
tem unit must be tested by at least t distinct other units. When these requirements are
not satisfied correct diagnosis is not guaranteed. Nevertheless, there is a probability
(sometimes great enough) that in this case it is also possible to achieve correct diag-
nosis. In this research, we suggest new diagnosability measure which allows compar-
ing system testing assignments and evaluating the formed testing graphs obtained
after performing a set of tests.

2 Formal problem statement

System level self-diagnosis is based on the results of tests performed by system units.
System units test each other either according to predefined schedule or randomly.

One of the ways of how to express a testing assignment consists in presenting it as
a testing graph. Testing graph is a basis for a model of test performance. This model
can be used for simulation of tests execution and obtaining a syndrome. Syndrome is
an input for a diagnosis algorithm (see Fig. 1).

Fig.1. The role of task of evaluation of testing assignment

Different testing assignments, T (i.e., testing graphs) allow obtaining different

credibility of diagnosis result (i.e., probabilities of correct diagnosis result, CTP). To

3

predict the credibility of possible diagnosis results it is needed to evaluate the avail-
able testing graph. It can be expressed as CTT P . The problem of computing a

credibility of diagnosis results consists in determining the function f, where

 crP f T . Characteristic numbers kC can be used for computing f .

3 Literature review

System level self-diagnosis (SLSD) was introduced by Preparata at al. [7] and has
been deeply investigated in literature. There are four main issues that form the context
of SLSD [8]. The first issue is the testing assignment that defines the possible set of
tests among the system units. The second issue is the assumptions underlying the
diagnosis algorithms. The third issue is the organization of tests performance. The
fourth issue relates to the problem of choosing the diagnostic nucleus. The first and
second issues can be considered as theoretical ground of SLSD. In the theory of
SLSD, three basic problems were formulated [6, 9]. These are characterization prob-
lem, diagnosability problem and diagnosis problem. The problem of testing assign-
ment (i.e., characterization problem) was the first task that was considered in context
of SLSD. The work of Preparata at al. [7] determined the requirements to the testing
assignment of a system. Diagnosis problem concerns the task of determining a fault
set from an allowable family, for a given testing assignment, fault model, and syn-
drome [8].

There have been developed many algorithms allowing to identify a fault set
uniquely (when some assumptions are made about the faulty units). The main task
while developing these algorithms is to reduce their complexity. Among the most
efficient algorithms there could be named algorithm proposed by Dahbura and Mas-

son [10] which has  2 5.O N time complexity and  3O t E algorithm suggested

by Sullivan [11]. Both algorithms were developed for t-diagnosable systems under the
symmetric invalidation model and when permanent fault are allowable only. There
are many special classes of t-diagnosable systems that support more efficient diagno-

sis techniques than above mentioned ones, and this is reason to believe that an  O E

diagnosis solution exists for all t-diagnosable systems. Preparata et al. defined the
.D t structure in which unit iu tests uj if and only if  modj i m n  , where

1 2, , ,m t  . Meyer and Masson [12] gave  O nt) solution to the case of 1  .

In real complex systems, units are not necessarily homogeneous and can operate
under different conditions. Therefore, units can have different levels of their reliabil-
ity. This fact can be accounted for by assigning probabilities to the unit states. Prob-
abilistic approach to system level self-diagnosis doesn’t deal with such problems as
t -diagnosability and testing assignment. Among the first who investigated the prob-
abilistic algorithms were H. Fujiwara and K. Kinoshita [13]. Probabilistic algorithms
are based on the computing of the posterior probabilities of system unit states, upon
which the decision about the system state is made.

4 Testing graph

Tests in a system can be performed:
- either in accordance with a preset schedule (i.e., defined a priori)
- or in an adapted manner when, at the beginning, the tests are performed in accor-

dance with defined a priori testing assignment.
Once a unit is diagnosed as fault free, the tests it performs are considered reliable,

and therefore, any other units should only be tested ones by this fault-free unit to cor-
rectly determine its status. Thus, the testing assignment is adapted such that units
diagnosed as fault-free perform all the testing in the system [14]:

- or entirely randomly (i.e., from the beginning to the end of testing);
- or adaptively randomly.
At the beginning, all units are engaged in tests performing. Tests are performed

randomly. Once a test reset takes the value of 1, the units participated in this test (so-
called suspected pair) should only be tested by other system units (i.e., should not
perform tests on other units). The choice of each pair of units for testing is performed
randomly.

Testing graph is a convenient form for presenting the tests performed in a system.
Testing graph is a directed graph  ,G V E . Each vertex iv V of G repre-

sents unit iu and edge ije E represents the test which is performed by unit iu on

unit ju .

Having obtained the testing graph, we can investigate the diagnosis properties
which this graph possesses. Based on these diagnosis properties, it is possible to com-
pare different testing graphs and find the best one from a certain criteria.

It is easy to show that diagnosis result depends on number of faulty units. Let t be
the total number of faulty units that are allowable in the system. For some values of
t , it is always possible to construct the testing graph, which will ensure the correct
and full diagnosis whichever syndrome is obtained.

Syndrome is a set of test results. Test result is represented by binary variable ijr ,

such that 1ijr  if unit ju has not passed the test, and 0ijr  otherwise.

Correct diagnosis means that the detected faulty units are indeed faulty units. Full
diagnosis means that every faulty unit is identified.

For the testing graphs that ensure unique diagnosis [5] of at most t faulty units (so
called t-diagnosability) the following conditions should be satisfied [7]: each vertex of
the graph should have at least t incoming edges and there should not be multiple edg-
es.

For example, a testing graph may satisfy the requirements for t-diagnosability for

1t  and for 2t  , but fails to be t-diagnosable for 3t  . The maximum value of t
for which a testing graph is t-diagnosable is denoted as maxt . Many t-diagnosable

testing graphs (for maxt t) can exist. Thus, the task arises to determine those testing

graphs which have the least number of edges for providing t-diagnosability.

5

Definition: Testing graph is t-optimal if it contains minimal number of edges and
at the same time it ensures t-diagnosability.

For the value maxt t , t-optimal testing graph could be simply named as optimal.

The number of edges of t-optimal testing graph can be easily computed as follows:
l tN (1)

Thus, the number of edges of optimal testing graph is equal to:
1

2max

N
l t N N

     

(2)

Whichever testing graph that contains more than l edges is considered as redun-
dant testing graph. It is also possible for the given value t to construct instances of
testing graphs which provide certain diagnosis properties, e.g., capability to detect
certain number of faulty units. For example, testing graph (see Fig. 1.a) is t-optimal
for 1t  since it provides unique diagnosis of any faulty unit, and it has minimal total
number of edges which is needed for such diagnosis.

Fig. 2. Optimal testing graphs

Testing graph in Fig. 1.b has 2t  and provides unique diagnosis of any two
faulty units. Moreover, this graph is optimal since maxt t .

All testing graphs depicted in Fig. 2 provide unique diagnosis of the same number
of faulty units (particularly, 1t ) but have different total number of edges.

Fig. 3. Examples of the testing graphs with 1t 

5 Assessment of testing graphs

The method suggested by Preparata et al. [7] for assessing testing graphs does not
allow comparing the testing graphs and determining more precisely their diagnosis
properties. Only parameter t and its maximum value are taken into account. Besides
parameter t, there also exist further criteria for evaluating diagnosis properties of test-
ing graphs, which make it possible to assess and compare the testing graphs.
For example, to each testing graph there could be assigned the value of probability,
which will reflex the fault detection property of testing graph [15, 16, 17]. It can be a
probability that a syndrome (obtained after performing all tests, which are depicted in
testing graph) is sufficient to detect all possible faulty units, PFD. It is only assumed
that a fault-free unit is always able to detect a faulty unit (i.e., test covering is 100%).
This probability can be also interpreted as probability that a system is fault-free when
obtained syndrome contains only zero test results.

The probability PFD can be calculated as a sum of probabilities of the events when
a fault-free units test all the other units. In the testing graph, it means that vertices
which correspond to the fault-free units have edges directed to all remaining vertices.

The computation of these probabilities can be explained with help of a simple ex-
ample. Let the testing graph be the one as shown in Figure 3.

Fig. 4. Exemplary testing graph

For this testing graph there is seven  32 1  possible combinations of faulty-

free units.
The combination without faulty-free unit occurring with probability 3

UP , where UP

is probability of unit faulty state (it is assumed that all system units have the same
probability), is irrelevant because empty set of fault-free units cannot test the other
system units.

More useful are three situations with one fault-free unit. In Fig. 4, this faulty-free
unit is depicted by white vertex:

Fig. 5. Exemplary situations with one faulty free unit

7

Each of these situations occurs with probability   21 U UP P , but only one of them

corresponds the condition that fault-free units test all the other system units. Two
other situations do not allow to perform correct diagnosis of system units.

The probability of all satisfactory situations with one fault-free unit is:

    2
1 1 1U UP A P P   (3)

The probability of each situation with two faulty-free units is  2
1 U UP P . There

are three such situations (see Fig. 5):

Fig. 6. Situations with two fault-free units

In the first situation, fault-free units 1u and 2u test the remaining unit (i.e., unit

3u). Therefore its probability  2
1 U UP P should be considered as one of the sum-

mands for computing probability FDP . In a similar way, the probability of the second

situations (units 1 3,u u test unit 2u) should be taken into account. The third situation

(units 2u , 3u are fault-free) does not guarantee correct diagnosis of the remaining

units (and, therefore, it is not a summand for computing probability FDP).

The probability of all satisfactory situations with two faulty free units is:

   2

2 1 2U UP A P P   (4)

Now, there is only one situation left. Particularly, the situation when all units are
faulty-free. This case also leads to correct diagnosis. The probability of this situations

is  3
1 UP and it is always included in computing probability FDP regardless of

testing assignment:

   2

2 1 UP A P  (5)

The total probability PFD can be generally expressed by the following sum:

   
1 1

1
N N

k N k
FD k u U k

k k

P P A P P C

 

   

(6)

where kC is the number of options to choice the subgraph with k vertices from

which all the remaining vertices are achievable (NC is always 1).

For the considered testing graph 1 1C  (only one subgraph is satisfactory for cor-

rect diagnosis) and 1 2C  (two subgraphs are satisfactory). Therefore, the total prob-

ability is:

     2 221 1 1 2 1FD U U U UP P P P P P        (7)

For given 0 1.UP  , we receive 0 9.FDP  .

Let’s make some changes in this testing graph. Particularly, edges from u3 to u2
and u1 are added, which makes testing graph 1-diagnosable (see Fig. 6).

Fig. 7. Exemplary testing graph with t=1

For this graph, 1 1C  (both units u1 and u3 test all remaining units) and 2 3C 

(all sets with two units test remaining unit). Therefore, for 0 1.UP  we receive prob-

ability 2 2 30 9 0 1 0 9 0 1 3 0 9 0 99.FDP        .

The graph in Figure 7 has six edges (every unit tests all remaining units).

Fig. 8. Testing graph with six edges

In this graph, number 1C is increased up to 3 (from each vertex of the testing

graph now it is possible to directly reach all the remaining vertices of the graph).
Clearly, number 2C is also equal to 3. The value of FDP is 0.9 ∙ 0.12 ∙ 3 + 0.92 ∙ 0.1 ∙

3 + 0.93 = 0.999.
This graph has the same value t (particularly 1t ) and provides the same 1-

diagnosability. However, from the point of probability PFD, it is evident that the
graph in Figure 6 has better diagnosis properties  0 999.FDP  than the graph in

Figure 5  0 99.FDP  .

For comparing the probabilities FDP , we need to have the numbers kC ,

1 2, , ,k n  to be computed in advance. These numbers is called as characteristic
numbers.

Definition: Characteristic numbers 1 2, , , ,kC k n  are the numbers of choices

of k vertices (resp. sub-graphs) from the testing graph so that all the remaining verti-
ces of the graph are directly reachable.

9

For more complex graphs the characteristic numbers can be computed from the
modified adjacency matrix of the testing graph.

Adjacency matrix of a testing graph  ijM a has the following entries:

1

0

if unit tests unit

otherwise
i j

ij

u u
a

 


(8)

Modified adjacency matrix is derived from the adjacency matrix by way of setting
the values of 1 alongside the main diagonal. An algorithm for computing the charac-
teristics numbers for particular testing graph have to account all the combinations of
choices a unit(s), from which all the remaining ones are directly reachable, according
to the following expression:

 
 

1 2
1,

k

n

k c j c j c j
c C k n j

C a a a
 

 
    

 
  

(9)

where  , ,kC C k n is set of all k-combination i.e. all subsets of set  1 2, , ,n

with k distinct element.

6 Computation of characteristic numbers

The effectiveness of calculation of probability FDP for a testing assignment strongly

depends on implementation of computation of characteristic number kC for this test-

ing assignment.
Modern programming languages make possible straightforward computation of

equation 3.2. For example in Julia programming language [18], the program is almost
identical to its mathematical form (where parameter a is a modified adjacency ma-
trix).

function C(a::Matrix{Int}, k::Int)
 n = size(a, 1) # size in the first = second dimension
 return sum(prod(reduce(|, a[c,j]) for j = 1:n)
 for c in combinations(1:n, k))
end

The outer summation iterates over sequences of every k -combinations of set
1 2, , ,n (set is generated by range 1:n) produced by function combinations. The
individual combination (denoted as c) is vector of integers. The computation of inner

logical summation  
1 2 kc j c j c ja a a   of selected items in columns is provided by

discontinuous indexing (index is vector of integers) and by reduction (folding) using
bitwise or operation.

This initial and naïve implementation is depicted in Figure 9 (example of compu-
tation of characteristic number 2C for system with tree units).

Fig. 9. Straightforward computation of character number

This implementation is compact but it has some shortcomings such as:

─ effective iterator over all k-combination is not available in most programming lan-
guages (e.g. Matlab or Java);

─ it does not use any form of parallelism (including bit-wise parallelism which is
supported by all processors);

─ the computation does not utilize already calculated values (outputs).

The first two shortcomings can be eliminated by iteration over k-combinations
which are represented by bit patterns. These patterns are formed by string of bits con-
taining k 1's and n-k 0's. Sequences of all k-combinations are special cases of combi-
natorial Gray codes [19] (generalization of commonly used and well-known Gray
code) and they are realizable by elementary bitwise operations at processor level (e.g.
bit complement, bitwise OR, AND and shifts).

In our implementation we use simple generator [20] which utilizes only basic bit-
wise operations as well as operation of counting trailing zeros. This operation is often
directly and efficiently supported by current CPUs (for example, trailing_zeros func-
tion is directly translated to BSF instruction in x86-64 platform [21] by Julia pro-
gramming language).

The generator of k-combinations Gray codes in Julia has a form of iterator func-
tion. For pattern v it returns pair (v,w) where w is next patterns.

function Base.next(c:: Combinations {Int}, v:: Int)
 t = v | (v - 1)

11

 w = (t + 1) | (((~t & -~t) - 1) >> (trailing_zeros (v) + 1))
 return (v,w)

end

At every step of iteration over bit patterns, only relatively simple operations are

performed. The parameter pa is a modified adjacency matrix packed as array of inte-
ger values each of which corresponds to one column of the original matrix. For exam-
ple sample matrix from Figure 5 is represented as array [6, 8, 5] i.e. [100, 110, 011] in
binary notation. Parameter gcode is again bit pattern (integer) representing a selection
of modules of diagnostic graph (the so-called subgraph).

function cover_test (pa:: Vector {Int64}, gcode :: Int64)
 for column in pa #iteration over packed column
 if column & gcode == 0
 return false
 end
 end
 return true #OK subgraph covers all remaining vertices
end

Bitwise AND operator in this code replaces slow discontinuous indexing of the
original code. The reduction by logical OR is substituted by one instruction of integer
equality (operator ==). Product is performed by for each-loop which realizes short
circuit evaluation (the first occurrence of zero exits loop).

This new implementation is illustrated on Figure 10 (only one of summation is de-
picted).

Fig. 10. Fragment of suggested computation of characteristic number C2

Further acceleration of algorithm is possible by utilization of trivial assertion: if
vertices of subgraph of a testing graph cover all the remaining vertices of this testing
graph then the vertices of any graph which include this subgraph (the so-called super-
graph) also cover the remaining vertices.

The improved algorithm computes characteristic numbers all together concur-
rently i.e. it returns vector of characteristic number  1 2, , , nc c c .

The first tested subgraph in this algorithm contains one unit and it is represented
by bit pattern with 1 on the leftmost position (e.g. bit pattern 1000 for system with

four unit). If this subgraph covers the remaining vertices (i.e. function cover_test re-
turns value true) then c1 is incremented and its supergraphs containing 2 to n vertices
(e.g. 1100, 1101, 1111) are taken in account in increment of values 2 , , nc c (number

of subgraphs is determined by appropriate binomial coefficient). These supergraphs
need not be consequently iterated and tested in the following phases of computation.
Otherwise, the next subgraphs with two units represented by 1's on the leftmost posi-
tion is tested (e.g. pattern 1100).

When all supergraphs of the first one-vertex subgraph are considered (i.e. directly
tested or automatically included in bulk) the next one-vertex subgraph is tested (eg.
0100).

This implementation requires additional memory for generation of sequences of
bit patterns but generated combinatorial Gray codes take into consideration partial
ordering of combination by supergraph relation i.e. codes are hierarchical in some
sense.

Optionally the precomputed table of binomial coefficients can be used. The as-
ymptotic space complexity of algorithm is O(k) which is acceptable because k is rela-
tively small (time complexity is still exponential). The code is more complex but it is
still usable in small devices.

function Cvec(a:: Matrix {Int}, sorting :: Bool)
 pa = pack(a) # packing of matrix to vector of bit patterns (i.e integer values)
 if sorting # sort by 1’s count (i.e. by outdegree of given vertex), see next paragraph
 sort!(pa , by= count_ones)
 end
 n = length (pa) # number of vertices
 binom = binomials(n) # populating of matrix of binomials coefficients
 p = zeros0(Int , n + 2) #vector of indexes of the leftmost positions of ones (indexed
from zero)
 gc = zeros0(Int64 , n + 1) # vector of subgraph bit patterns (zero based indexing)
 c = zeros(Int , n) # vector of characteristic numbers (one based indexing)
 p[0] = n + 1 # p[0] is only formal stop position
 k = 1 # number of vertices in subgraph (= number of 1's in patterns)
 while k > 0
 p[k] += 1 # shift leftmost 1-bit position to the right
 if p[k] == p[k -1] # if it is not possible
 p[k] = 0
 k -= 1 # return to iteration over (k-1)-vertex subgraph
 else
 gc[k] = gc[k -1] | (1 << (p[k] - 1)) # bit pattern of k-vertex subgraph

if cover_test (pa , gc[k])
 c[k] += 1 # it counts this subgraph
 for j=1:p[k]-1 # and all its super-graphs
 c[k+j] += binom[p[k] - 1, j]
 end

13

 else
 k += 1 # or test next subgraph
 end
 end
 end
 return c
end

According to the above mentioned assertion the algorithm is rather asymmetrical.
The subgraphs which are represented by 1-bits positioned on the left side of a bit pat-
tern take advantage of the assertion on greater extent (the generator fills bit strings
from the leftmost bit). The (one vertex) subgraph represented by the least significant
bit does not utilize assertion anymore.

The partial improvement consists of the sorting of vertices by out-degree values
because the vertex with greater out-degree is better candidate for participation in sub-
graph covering all remaining vertices (i.e. should be placed on more significant bit of
packed column).

The efficiency of algorithms is evaluated by the time required for application of
algorithms on random diagnostics graphs (see Figure 11). The random testing graphs
contain approximately 2/n edges (close to density of edges in optimal testing
graphs).

Fig. 11. Time of computation of characteristic number for different number of units

All algorithms have exponential time complexity but their application areas are
different. The straightforward implementation is usable only for relatively small num-
ber of units (<17 for subseconds execution times on PC range CPU). The algorithm
using bit-level parallelism is usable to greater number of units (approximately 25).
The algorithm with hierarchical bit patterns makes possible computation with sub-
seconds delays for system with 34 unit. The pre-sorting of vertices leads to some
speed-up but it is in most real cases practically negligible.

The hierarchical algorithm also depends on specific structures of testing graph (de-
tails are subject to further research).

Figure 12 shows effectiveness of algorithms for almost maxt -optimal testing graphs

i.e. or graphs with a large number of tests. For t-optimal testing graphs  maxt t the

situation may be very different. Plot in Figure depicts the time of computation for
simple t-optimal graphs for system with 25 units (maxt is 12) and for both algorithms

based on bit patterns (straightforward implementation is useless for system with 25
units).

Fig. 12. Computational time for t-optimal testing graphs

For testing graphs with a small number of edges (tests) the simple (non-
hierarchical) algorithm is better compared to maxt optimal testing graphs because

iteration is simpler and short circuit evaluation of product operation is performed
almost immediately (only two direct instruction are executed per subgraph). On other
hand the hierarchical approach is more complicated (tens of direct instruction per
subgraph) and it cannot utilize acceleration of bulk increments (small subgraphs do
not cover its remaining vertices). But this acceleration outperform short-circuit for 3-
optimal graph and for nearly maxt –optimal graphs the difference is in order of tens.

The computation of probability PFD using equation 3.1 requires floating point unit
because it uses multiplication of rational numbers (computation of characteristic
number is limited to integer arithmetic with simple operation without multiplication).
Fortunately, the relative comparison of probabilities (i.e. evaluation of testing assign-
ment) does not depend on probability of a unit faulty state UP (if it is assumed that

all system units have the same probability UP). Therefore we can choose any probabil-

ity PU from interval [0,1]. For probability 0.5 (although it is unrealistic) the equation
3.1 is simplified to form:

1 2

k
k
N

i

C




(10)

15

Comparison of probabilities for concrete system requires only (integer) summation
of characteristic number (value 2N is constant). When we need to compare testing
graphs with differed number of units the computation can be performed by way of bit
shift operation on fixed point representation of probability values.

7 Conclusions

Tests performed in a system can be represented as a testing graph. Analysis of the
obtained testing graph aims at checking whether all system units have been tested or
whether the formed testing graph belongs to predefined subset of testing graphs. It
depends on the value of required credibility of system self-diagnosis. Testing graph
can be also used as input data for diagnosis algorithm. For different testing graphs the
obtained diagnosis results will have different credibility.

In the research, we have considered the probability that all system units can be cor-
rectly diagnosed after performing all tests. This probability can be used as a diag-
nosability measure which will allow comparing system testing assignments and
evaluating obtained testing graphs. This probability is computed by using characteris-
tic numbers. In the research, we suggested relatively effective method for computing
characteristic numbers and developed the algorithm (based on bitwise operations with
integer values). Efficiency of the developed algorithm was also evaluated for different
scenarios of testing assignments.

References

1. Mashkov, V.: Task allocation among agents of restricted alliance. Proc. of IASTED
ISC’2005 conference, Cambridge, MA, USA, 2005, pp.13-18 (2005)

2. Mashkov, V.: Restricted Alliance and Coalitions Formation. Proc. of IEEE/WIC/ACM In-
ternational Conference on Intelligent Agent Technology/ Beijing, China, 2004, pp.329-332
(2004)

3. Qin, L., He, X., Zhou, D.: A survey of fault diagnosis for swarm systems. Systems Science
and Control Engineering. Vol. 2, 2014, pp. 13-23 (2014)

4. Mahapatro, A., Khilar, P.: Fault diagnosis in wireless sensor networks: a survey IEEE
Commun Surv Tutorials. Vol. 15, 2013, pp. 2000-2026 (2013)

5. Mashkov, V., Mashkov, O.: Interpretation of diagnosis problem of system level self-
diagnosis. Int. Journal „Mathematical Modeling and Computing“, Vol.2, No.1, 2015,
pp.71-76 (2015)

6. Barborak, M., Malek, M., Dahbura, A.: The consensus problem in fault-tolerant comput-
ing. ACM Computing Surveys. Vol.25, No.2, 1663, pp.171-220 (1663)

7. Preparata, T., Metze, G., Chien, R.: On the connection assignment problem of diagnosable
system. IEEE Transactions on Electronic Computers. Vol.EC-16, No.12, 1967. pp. 848-
854(1967)

8. Mashkov, V.: Selected problems of system level self-diagnosis. Lviv: Ukrainian Academic
Press, 2011, 184 pages (2011)

9. Somani, A.: System Level Diagnosis: A Review. (1997) [online]. Available from www:
<http://citeseerx.ist.psu.edu/viewdoc/ summary?doi=10.1.1.52.9488>.

10. Dahbura, A., Masson, G. :An O(n2.5) fault identification algorithm for diagnosable sys-
tems. IEEE Trans. Comput., Vol.C-33, 1984. pp.486-492 (1984)

11. Sullivan, G.: An O(t3 + |E|) fault identification algorithm for diagnosable systems. IEEE
Trans. Comput., Vol.C-37, 1988. pp.388-397 (1988)

12. Meyer, G., Masson, G.: An efficient fault diagnosis algorithm for symmetric multiple
processor architectures. IEEE Trans. Comput., Vol.C-27, 1978. pp.1059-1063 (1978)

13. Fujiwara, H., Kinoshita, K.: Some existence theorems for probabilistically diagnosable
systems. IEEE Trans. on Comp. Vol.C-27, No.4, 1981. pp.297-303 (1981)

14. Bianchini, R., Buskens R.: An adaptive distributed system-level diagnosis algorithm and
its implementation. In the 21st International IEEE Simposium on Fault-tolerant Comput-
ing. New York (USA), 1991, pp.222-229 (1991)

15. Mashkov, V., Barabash, O.: Self-checking and self-diagnosis of module systems on the
principle of walking diagnostic kernel. Engineering Simulation, Vol.15, 1998, pp. 43-51
(1998)

16. Jarrah, H., Sarkar, N., Gutierrez, J.: Conparison-based system-level fault diagnosis proto-
cols for obile ad-hoc networks: A survey. Journal of Network and Computer Applications.
Vol. 60, 2016, pp. 68-81 (2016)

17. Weber, A., Kutzke, A., Chessa, S.: Energy-aware test connection assignment for the self-
diagnosis. J Braz Comput Soc. Vol. 18, 2012, pp. 19-27 (2012)

18. Bezanson, J., Karpinski, S., Shah, V., Edelman, A.: Julia: A Fast Dynamic Language for
Technical Computing. 2012, ARXIV (2012)

19. Savage, C.: A Survey of Combinatorial Gray Codes. SIAM Review [online]. 1997, 39(4),
605-629 (1997) [cit. 2016-04-16].

20. Anderson, S.: Bit Twiddling Hacks [online] (2005)
htps://graphics.stanford.edu/~seander/bithacks.html

21. AMD64 Architecture Programmer's Manual Volume 3: General Purpose and System In-
structions3 . AMD. 2011. pp. 204–205, (2011)

