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Abstract:	The research concerns a task of comparing and assessing test-
ing graphs in context of system level self-diagnosis. System level self-
diagnosis aims at diagnosing systems composed of units, with the require-
ment that they are able to test each other by exchanging information 
through available links. A set of tests performed in a system can be repre-
sented as a testing graph. The obtained testing graph can be assessed 
based on the quality of diagnosis that it allows to achieve. In the research, 
we suggest the method allowing different testing graphs to be assessed and 
compared. The method uses the characteristic numbers. We have shown 
how such numbers can be computed. 
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1 Introduction 

Research in the area of system level self-diagnosis started in the late 60s of the last 
century. Since that time there has been done a great amount of research. Achieve-
ments in theoretical research gave impulse to practical implementation and enabled a 
broadening of the application domains of system level self-diagnosis. Initially, system 
level self-diagnosis was applied in complex multiprocessor systems and then it gradu-
ally spread to distributed systems, different types of networks, multi-agent systems [1, 
2, 3, 4] etc. There are four main issues, which form the context of system level self-
diagnosis [5].  

The first issue is the system testing assignment that defines the possible set of tests 
among the system units. The second issue is the assumptions underlying the diagnosis 
algorithms. Particularly, these assumptions tackle the possible faulty sets and the test 
results. These assumptions have direct impact on achievable quality of diagnosis (i.e., 
correctness and completeness). 



The third issue is the organization of test performance. It concerns the tasks of test 
scheduling, test repetition, test performing (random or deterministic), etc. The fourth 
issue relates to the problem of determining the unit(s), which will perform a diagnosis 
algorithm and/or will provide environment with the information about system state. 

Usually, the first and second issues are considered together, and they can be 
viewed as theoretical ground of system level self-diagnosis.  In the theory of system 
level self-diagnosis, three main problems were formulated. They are characterization, 
diagnosability and diagnosis problems [6].  

The characterization problem (i.e., the problem of testing assignment) was the first 
one which was considered in context of system level self-diagnosis. The work of Pre-
parata at al. [7] studied the requirements to the system testing assignment. In this 
research, the authors have introduced the diagnosability measure which, to a great 
extent, depends on the system testing assignment. Particularly, in this research, they 
proved that for correct diagnosis of at most t faulty units there must be satisfied the 
following two requirements: a system must have n units, where 2 1n t  ; each sys-
tem unit must be tested by at least t distinct other units. When these requirements are 
not satisfied correct diagnosis is not guaranteed. Nevertheless, there is a probability 
(sometimes great enough) that in this case it is also possible to achieve correct diag-
nosis. In this research, we suggest new diagnosability measure which allows compar-
ing system testing assignments and evaluating the formed testing graphs obtained 
after performing a set of tests. 

2 Formal problem statement 

System level self-diagnosis is based on the results of tests performed by system units. 
System units test each other either according to predefined schedule or randomly.  

One of the ways of how to express a testing assignment consists in presenting it as 
a testing graph. Testing graph is a basis for a model of test performance. This model 
can be used for simulation of tests execution and obtaining a syndrome. Syndrome is 
an input for a diagnosis algorithm (see Fig. 1). 

 

 
 

Fig.1. The role of task of evaluation of testing assignment 
 
Different testing assignments, T  (i.e., testing graphs) allow obtaining different 

credibility of diagnosis result (i.e., probabilities of correct diagnosis result, CTP  ). To 
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predict the credibility of possible diagnosis results it is needed to evaluate the avail-
able testing graph. It can be expressed as CTT P .  The problem of computing a 

credibility of diagnosis results consists in determining the function f, where 

 crP f T . Characteristic numbers kC  can be used for computing f .    

3 Literature review 

 
System level self-diagnosis (SLSD) was introduced by Preparata at al. [7] and has 
been deeply investigated in literature. There are four main issues that form the context 
of SLSD [8]. The first issue is the testing assignment that defines the possible set of 
tests among the system units. The second issue is the assumptions underlying the 
diagnosis algorithms. The third issue is the organization of tests performance. The 
fourth issue relates to the problem of choosing the diagnostic nucleus. The first and 
second issues can be considered as theoretical ground of SLSD. In the theory of 
SLSD, three basic problems were formulated [6, 9]. These are characterization prob-
lem, diagnosability problem and diagnosis problem.  The problem of testing assign-
ment (i.e., characterization problem) was the first task that was considered in context 
of SLSD. The work of Preparata at al. [7] determined the requirements to the testing 
assignment of a system. Diagnosis problem concerns the task of determining a fault 
set from an allowable family, for a given testing assignment, fault model, and syn-
drome [8]. 

There have been developed many algorithms allowing to identify a fault set 
uniquely (when some assumptions are made about the faulty units). The main task 
while developing these algorithms is to reduce their complexity. Among the most 
efficient algorithms there could be named algorithm proposed by Dahbura and Mas-

son [10] which has  2 5.O N  time complexity and  3O t E   algorithm suggested 

by Sullivan [11]. Both algorithms were developed for t-diagnosable systems under the 
symmetric invalidation model and when permanent fault are allowable only. There 
are many special classes of t-diagnosable systems that support more efficient diagno-

sis techniques than above mentioned ones, and this is reason to believe that an  O E  

diagnosis solution exists for all t-diagnosable systems. Preparata et al. defined the 
.D t  structure in which unit iu   tests uj if and only if  modj i m n  , where 

1 2, , ,m t  . Meyer and Masson [12] gave  O nt ) solution to the case of 1  . 

In real complex systems, units are not necessarily homogeneous and can operate 
under different conditions. Therefore, units can have different levels of their reliabil-
ity. This fact can be accounted for by assigning probabilities to the unit states. Prob-
abilistic approach to system level self-diagnosis doesn’t deal with such problems as 
t -diagnosability and testing assignment. Among the first who investigated the prob-
abilistic algorithms were H. Fujiwara and K. Kinoshita [13]. Probabilistic algorithms 
are based on the computing of the posterior probabilities of system unit states, upon 
which the decision about the system state is made. 



4 Testing graph 

Tests in a system can be performed: 
- either in accordance with a preset schedule (i.e., defined a priori) 
- or in an adapted manner when, at the beginning, the tests are performed in accor-

dance with defined a priori testing assignment.  
Once a unit is diagnosed as fault free, the tests it performs are considered reliable, 

and therefore, any other units should only be tested ones by this fault-free unit to cor-
rectly determine its status. Thus, the testing assignment is adapted such that units 
diagnosed as fault-free perform all the testing in the system [14]: 

- or entirely randomly (i.e., from the beginning to the end of testing); 
- or adaptively randomly.  
At the beginning, all units are engaged in tests performing. Tests are performed 

randomly. Once a test reset takes the value of 1, the units participated in this test (so-
called suspected pair) should only be tested by other system units (i.e., should not 
perform tests on other units). The choice of each pair of units for testing is performed 
randomly. 

Testing graph is a convenient form for presenting the tests performed in a system.  
Testing graph is a directed graph  ,G V E .  Each vertex iv V   of G  repre-

sents unit iu  and edge ije E  represents the test which is performed by unit iu  on 

unit ju .  

Having obtained the testing graph, we can investigate the diagnosis properties 
which this graph possesses. Based on these diagnosis properties, it is possible to com-
pare different testing graphs and find the best one from a certain criteria. 

It is easy to show that diagnosis result depends on number of faulty units. Let t  be 
the total number of faulty units that are allowable in the system. For some values of 
t , it is always possible to construct the testing graph, which will ensure the correct 
and full diagnosis whichever syndrome is obtained.  

Syndrome is a set of test results. Test result is represented by binary variable ijr , 

such that 1ijr   if unit ju  has not passed the test, and 0ijr   otherwise.  

Correct diagnosis means that the detected faulty units are indeed faulty units. Full 
diagnosis means that every faulty unit is identified.  

For the testing graphs that ensure unique diagnosis [5] of at most t faulty units (so 
called t-diagnosability) the following conditions should be satisfied [7]: each vertex of 
the graph should have at least t incoming edges and there should not be multiple edg-
es. 

For example, a testing graph may satisfy the requirements for t-diagnosability for 

1t   and for 2t  , but fails to be t-diagnosable for 3t  . The maximum value of t  
for which a testing graph is t-diagnosable is denoted as maxt . Many t-diagnosable 

testing graphs (for maxt t ) can exist. Thus, the task arises to determine those testing 

graphs which have the least number of edges for providing t-diagnosability. 
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Definition: Testing graph is t-optimal if it contains minimal number of edges and 
at the same time it ensures t-diagnosability.  

For the value maxt t , t-optimal testing graph could be simply named as optimal. 

The number of edges of t-optimal testing graph can be easily computed as follows: 
l tN  (1) 

Thus, the number of edges of optimal testing graph is equal to: 
1

2max

N
l t N N

     
 

(2) 

Whichever testing graph that contains more than l edges is considered as redun-
dant testing graph. It is also possible for the given value t to construct instances of 
testing graphs which provide certain diagnosis properties, e.g., capability to detect 
certain number of faulty units. For example, testing graph (see Fig. 1.a) is t-optimal 
for 1t   since it provides unique diagnosis of any faulty unit, and it has minimal total 
number of edges which is needed for such diagnosis. 

 
 

Fig. 2. Optimal testing graphs 

Testing graph in Fig. 1.b has 2t   and provides unique diagnosis of any two 
faulty units. Moreover, this graph is optimal since maxt t .  

All testing graphs depicted in Fig. 2 provide unique diagnosis of the same number 
of faulty units (particularly, 1t  ) but have different total number of edges. 

 

 

Fig. 3.  Examples of the testing graphs with 1t   



5 Assessment of testing graphs 

The method suggested by Preparata et al. [7] for assessing testing graphs does not 
allow comparing the testing graphs and determining more precisely their diagnosis 
properties. Only parameter t and its maximum value are taken into account. Besides 
parameter t, there also exist further criteria for evaluating diagnosis properties of test-
ing graphs, which make it possible to assess and compare the testing graphs.   
For example, to each testing graph there could be assigned the value of probability, 
which will reflex the fault detection property of testing graph [15, 16, 17]. It can be a 
probability that a syndrome (obtained after performing all tests, which are depicted in 
testing graph) is sufficient to detect all possible faulty units, PFD. It is only assumed 
that a fault-free unit is always able to detect a faulty unit (i.e., test covering is 100% ). 
This probability can be also interpreted as probability that a system is fault-free when 
obtained syndrome contains only zero test results.  

The probability PFD can be calculated as a sum of probabilities of the events when 
a fault-free units test all the other units. In the testing graph, it means that vertices 
which correspond to the fault-free units have edges directed to all remaining vertices. 

The computation of these probabilities can be explained with help of a simple ex-
ample. Let the testing graph be the one as shown in Figure 3. 

 

Fig. 4. Exemplary testing graph 

For this testing graph there is seven  32 1    possible combinations of faulty-

free units.  
The combination without faulty-free unit occurring with probability 3

UP , where UP  

is probability of unit faulty state (it is assumed that all system units have the same 
probability), is irrelevant because empty set of fault-free units cannot test the other 
system units.    

More useful are three situations with one fault-free unit. In Fig. 4, this faulty-free 
unit is depicted by white vertex: 

 

Fig. 5. Exemplary situations with one faulty free unit 
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Each of these situations occurs with probability   21 U UP P , but only one of them 

corresponds the condition that fault-free units test all the other system units.  Two 
other situations do not allow to perform correct diagnosis of system units.  

The probability of all satisfactory situations with one fault-free unit is: 

    2
1 1 1U UP A P P    (3) 

The probability of each situation with two faulty-free units is  2
1 U UP P . There 

are three such situations (see Fig. 5): 
 

 

Fig. 6. Situations with two fault-free units 

In the first situation, fault-free units 1u  and 2u  test the remaining unit   (i.e., unit 

3u ). Therefore its probability  2
1 U UP P   should be considered as one of the sum-

mands for computing probability FDP . In a similar way, the probability of the second 

situations (units 1 3,u u  test unit 2u ) should be taken into account. The third situation 

(units 2u , 3u  are fault-free) does not guarantee correct diagnosis of the remaining 

units (and, therefore, it is not a summand for computing probability FDP ). 

The probability of all satisfactory situations with two faulty free units is: 

   2

2 1 2U UP A P P     (4) 

Now, there is only one situation left. Particularly, the situation when all units are 
faulty-free. This case also leads to correct diagnosis. The probability of this situations 

is  3
1 UP   and it is always included in computing probability FDP  regardless of 

testing assignment: 

   2

2 1 UP A P   (5) 

The total probability PFD can be generally expressed by the following sum: 

   
1 1

1
N N

k N k
FD k u U k

k k

P P A P P C

 

     
 

(6) 

where kC  is the number of options to choice the subgraph with k  vertices from 

which all the remaining vertices are achievable ( NC is always 1). 

For the considered testing graph 1 1C   (only one subgraph is satisfactory for cor-

rect diagnosis) and 1 2C   (two subgraphs are satisfactory). Therefore, the total prob-

ability is: 



     2 221 1 1 2 1FD U U U UP P P P P P         (7) 

For given 0 1.UP  , we receive 0 9.FDP  . 

Let’s make some changes in this testing graph. Particularly, edges from u3 to u2 
and u1 are added, which makes testing graph 1-diagnosable (see Fig. 6). 

 

Fig. 7. Exemplary testing graph with t=1 

For this graph, 1 1C   (both units u1 and u3 test all remaining units) and 2 3C   

(all sets with two units test remaining unit). Therefore, for 0 1.UP   we receive prob-

ability 2 2 30 9 0 1 0 9 0 1 3 0 9 0 99. . . . . .FDP        . 

The graph in Figure 7 has six edges (every unit tests all remaining units). 

 

Fig. 8. Testing graph with six edges 

In this graph, number 1C  is increased up to 3 (from each vertex of the testing 

graph now it is possible to directly reach all the remaining vertices of the graph). 
Clearly, number 2C  is also equal to 3.  The value of FDP  is 0.9 ∙ 0.12 ∙ 3 + 0.92 ∙ 0.1 ∙ 

3 + 0.93 = 0.999. 
This graph has the same value t (particularly 1t  ) and provides the same 1-

diagnosability. However, from the point of probability PFD, it is evident that the 
graph in Figure 6 has better diagnosis properties  0 999.FDP    than the graph in 

Figure 5  0 99.FDP  . 

For comparing the probabilities FDP , we need to have the numbers kC , 

1 2, , ,k n   to be computed in advance. These numbers is called as characteristic 
numbers. 

Definition: Characteristic numbers 1 2, , , ,kC k n   are the numbers of choices 

of k  vertices (resp. sub-graphs) from the testing graph so that all the remaining verti-
ces of the graph are directly reachable. 
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For more complex graphs the characteristic numbers can be computed from the 
modified adjacency matrix of the testing graph. 

Adjacency matrix of a testing graph  ijM a  has the following entries: 

1

0

if unit tests unit

otherwise
i j

ij

u u
a

 


 
(8) 

Modified adjacency matrix is derived from the adjacency matrix by way of setting 
the values of 1 alongside the main diagonal. An algorithm for computing the charac-
teristics numbers for particular testing graph have to account all the combinations of 
choices a unit(s), from which all the remaining ones are directly reachable, according 
to the following expression: 

 
 

1 2
1,

k

n

k c j c j c j
c C k n j

C a a a
 

 
    

 
    

(9) 

where  , ,kC C k n  is set of all k-combination i.e. all subsets of set  1 2, , ,n  

with k  distinct element. 

6 Computation of characteristic numbers 

The effectiveness of calculation of probability FDP  for a testing assignment strongly 

depends on implementation of computation of characteristic number kC  for this test-

ing assignment. 
Modern programming languages make possible straightforward computation of 

equation 3.2. For example in Julia programming language [18], the program is almost 
identical to its mathematical form (where parameter a is a modified adjacency ma-
trix). 

function C(a::Matrix{Int}, k::Int) 
 n = size(a, 1) # size in the first = second dimension 
 return sum(prod(reduce(|, a[c,j]) for j = 1:n) 
    for c in combinations(1:n, k)) 
end 

The outer summation iterates over sequences of every k -combinations of set 
1 2, , ,n  (set is generated by range 1:n) produced by function combinations. The 
individual combination (denoted as c) is vector of integers. The computation of inner 

logical summation  
1 2 kc j c j c ja a a    of selected items in columns is provided by 

discontinuous indexing (index is vector of integers) and by reduction (folding) using 
bitwise or operation. 

This initial and naïve implementation is depicted in Figure 9 (example of compu-
tation of characteristic number 2C for system with tree units). 



 

Fig. 9. Straightforward computation of character number 

This implementation is compact but it has some shortcomings such as: 

─ effective iterator over all k-combination is not available in most programming lan-
guages (e.g. Matlab or Java); 

─ it does not use any form of parallelism (including bit-wise parallelism which is 
supported by all processors);  

─ the computation does not utilize already calculated values (outputs). 

The first two shortcomings can be eliminated by iteration over k-combinations 
which are represented by bit patterns. These patterns are formed by string of bits con-
taining k 1's and n-k 0's. Sequences of all k-combinations are special cases of combi-
natorial Gray codes [19] (generalization of commonly used and well-known Gray 
code) and they are realizable by elementary bitwise operations at processor level (e.g. 
bit complement, bitwise OR, AND and shifts). 

In our implementation we use simple generator [20] which utilizes only basic bit-
wise operations as well as operation of counting trailing zeros. This operation is often 
directly and efficiently supported by current CPUs (for example, trailing_zeros func-
tion is directly translated to BSF instruction in x86-64 platform [21] by Julia pro-
gramming language).  

The generator of k-combinations Gray codes in Julia has a form of iterator func-
tion. For pattern v it returns pair (v,w) where w is next patterns. 

function Base.next(c:: Combinations {Int}, v:: Int)  
 t = v | (v - 1)  



11 

 w = (t + 1) | (((~t & -~t) - 1) >> ( trailing_zeros (v) + 1))  
     return (v,w) 

end  
 
At every step of iteration over bit patterns, only relatively simple operations are 

performed. The parameter pa is a modified adjacency matrix packed as array of inte-
ger values each of which corresponds to one column of the original matrix. For exam-
ple sample matrix from Figure 5 is represented as array [6, 8, 5] i.e. [100, 110, 011] in 
binary notation. Parameter gcode is again bit pattern (integer) representing a selection 
of  modules of diagnostic graph (the so-called subgraph).  

function cover_test (pa:: Vector {Int64}, gcode :: Int64)  
   for column in pa #iteration  over packed column 
      if column & gcode == 0  
         return false  
      end  
   end  
   return true #OK subgraph covers all remaining vertices  
end 

Bitwise AND operator in this code replaces slow discontinuous indexing of the 
original code.  The reduction by logical OR is substituted by one instruction of integer 
equality (operator ==).  Product is performed by for each-loop which realizes short 
circuit evaluation (the first occurrence of zero exits loop). 

This new implementation is illustrated on Figure 10 (only one of summation is de-
picted). 

 

 

Fig. 10. Fragment of suggested computation of characteristic number C2 

Further acceleration of algorithm is possible by utilization of trivial assertion: if 
vertices of subgraph of a testing graph cover all the remaining vertices of this testing 
graph then the vertices of any graph which include this subgraph (the so-called super-
graph) also cover the remaining vertices. 

The improved algorithm computes characteristic numbers all together concur-
rently i.e. it returns vector of characteristic number  1 2, , , nc c c . 

The first tested subgraph in this algorithm contains one unit and it is represented 
by bit pattern with 1 on the leftmost position  (e.g. bit pattern 1000 for system with 



four unit). If this subgraph covers the remaining vertices (i.e. function cover_test re-
turns  value true) then c1 is incremented and its supergraphs containing 2 to n vertices 
(e.g. 1100, 1101, 1111) are taken in account in increment of values 2 , , nc c  (number 

of  subgraphs is determined by appropriate binomial coefficient). These supergraphs 
need not be consequently iterated and tested in the following phases of computation. 
Otherwise, the next subgraphs with two units represented by 1's on the leftmost posi-
tion is tested (e.g. pattern 1100). 

When all supergraphs of the first one-vertex subgraph are considered (i.e. directly 
tested or automatically included in bulk) the next one-vertex subgraph is tested (eg. 
0100). 

This implementation requires additional memory for generation of sequences of 
bit patterns but generated combinatorial Gray codes take into consideration partial 
ordering of combination by supergraph relation i.e. codes are hierarchical in some 
sense.  

Optionally the precomputed table of binomial coefficients can be used. The as-
ymptotic space complexity of algorithm is O(k) which is acceptable because k is rela-
tively small (time complexity is still exponential). The code is more complex but it is 
still usable in small devices. 

function Cvec(a:: Matrix {Int}, sorting :: Bool)  
   pa = pack(a) # packing of matrix to vector of bit patterns (i.e integer values) 
   if sorting # sort by 1’s count (i.e. by outdegree of given vertex), see next paragraph  
       sort!(pa , by= count_ones)  
   end  
   n = length (pa) # number of vertices  
   binom = binomials(n) # populating of matrix of binomials coefficients 
   p = zeros0(Int , n + 2)  #vector of indexes of the leftmost positions of ones (indexed 
from zero) 
   gc = zeros0(Int64 , n + 1) # vector of subgraph bit patterns (zero based indexing) 
   c = zeros(Int , n) # vector of characteristic numbers  (one based indexing) 
   p[0] = n + 1 # p[0] is only formal stop position  
   k = 1 # number of vertices in subgraph (= number of 1's in patterns)  
   while k > 0 
      p[k] += 1 # shift leftmost 1-bit position to the right 
      if p[k] == p[k -1] # if it is not possible  
                      p[k] = 0  
         k -= 1 # return to iteration over (k-1)-vertex subgraph  
     else  
         gc[k] = gc[k -1] | (1 << (p[k] - 1)) # bit pattern of k-vertex subgraph  
          
if cover_test (pa , gc[k])  
            c[k] += 1 # it counts this subgraph  
            for j=1:p[k]-1 # and all its super-graphs  
               c[k+j] += binom[p[k] - 1, j]  
            end  
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         else  
            k += 1 # or test next subgraph 
         end  
      end  
   end  
   return c  
end 

According to the above mentioned assertion the algorithm is rather asymmetrical. 
The subgraphs which are represented by 1-bits positioned on the left side of a bit pat-
tern take advantage of the assertion on greater extent (the generator fills bit strings 
from the leftmost bit). The (one vertex) subgraph represented by the least significant 
bit does not utilize assertion anymore.  

The partial improvement consists of the sorting of vertices by out-degree values 
because the vertex with greater out-degree is better candidate for participation in sub-
graph covering all remaining vertices (i.e. should be placed on more significant bit of 
packed column). 

The efficiency of algorithms is evaluated by the time required for application of 
algorithms on random diagnostics graphs (see Figure 11). The random testing graphs 
contain approximately 2/n  edges (close to density of edges in optimal testing 
graphs). 

 

Fig. 11. Time of computation of characteristic number for different number of units 

All algorithms have exponential time complexity but their application areas are 
different. The straightforward implementation is usable only for relatively small num-
ber of units (<17 for subseconds execution times on PC range CPU). The algorithm 
using bit-level parallelism is usable to greater number of units (approximately 25). 
The algorithm with hierarchical bit patterns makes possible computation with sub-
seconds delays for system with 34 unit. The pre-sorting of vertices leads to some 
speed-up but it is in most real cases practically negligible.  



The hierarchical algorithm also depends on specific structures of testing graph (de-
tails are subject to further research). 

Figure 12 shows effectiveness of algorithms for almost maxt -optimal testing graphs 

i.e. or graphs with a large number of tests. For t-optimal testing graphs  maxt t   the 

situation may be very different. Plot in Figure  depicts the time of computation for 
simple t-optimal graphs for system with 25 units ( maxt is 12) and for both algorithms 

based on bit patterns (straightforward implementation is useless for system with 25 
units). 

 

Fig. 12. Computational time for t-optimal testing graphs 

For testing graphs with a small number of edges (tests) the simple (non-
hierarchical) algorithm is better compared to maxt  optimal testing graphs because 

iteration is simpler and short circuit evaluation of product operation is performed 
almost immediately (only two direct instruction are executed per subgraph). On other 
hand the hierarchical approach is more complicated (tens of direct instruction per 
subgraph) and it cannot utilize acceleration of bulk increments (small subgraphs do 
not cover its remaining vertices). But this acceleration outperform short-circuit for 3-
optimal graph and for nearly maxt  –optimal graphs the difference is in order of tens. 

The computation of probability PFD using equation 3.1 requires floating point unit 
because it uses multiplication of rational numbers (computation of characteristic 
number is limited to integer arithmetic with simple operation without multiplication). 
Fortunately, the relative comparison of probabilities (i.e. evaluation of testing assign-
ment) does not depend on probability of  a unit faulty state UP  (if it is assumed that 

all system units have the same probability UP ). Therefore we can choose any probabil-

ity PU from interval [0,1]. For probability 0.5 (although it is unrealistic) the equation 
3.1 is simplified to form: 

1 2

k
k
N

i

C


  

(10) 
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Comparison of probabilities for concrete system requires only (integer) summation 
of characteristic number (value 2N  is constant).  When we need to compare testing 
graphs with differed number of units the computation can be performed by way of bit 
shift operation on fixed point representation of probability values. 

7 Conclusions 

Tests performed in a system can be represented as a testing graph. Analysis of the 
obtained testing graph aims at checking whether all system units have been tested or 
whether the formed testing graph belongs to predefined subset of testing graphs. It 
depends on the value of required credibility of system self-diagnosis. Testing graph 
can be also used as input data for diagnosis algorithm. For different testing graphs the 
obtained diagnosis results will have different credibility. 

In the research, we have considered the probability that all system units can be cor-
rectly diagnosed after performing all tests. This probability can be used as a diag-
nosability measure which will allow comparing system testing assignments and 
evaluating obtained testing graphs. This probability is computed by using characteris-
tic numbers. In the research, we suggested relatively effective method for computing 
characteristic numbers and developed the algorithm (based on bitwise operations with 
integer values). Efficiency of the developed algorithm was also evaluated for different 
scenarios of testing assignments. 
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