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Abstract

Recently lens-like definitions of multidirectional transformations have
appeared [2], encompassing both a “propagation” form (in the style
of [5]) and a “wide span” form (in the style of [6]). These “multiary
lenses” raise a number of new challenges that are addressed in this pa-
per. First, in common with classical symmetric lenses, they need to
be studied modulo equivalence relations that factor out differences in
hidden data and declare two lenses to be equivalent if their observ-
able behaviours correspond. Then, modulo those equivalence relations
the precise relationship between the propagation style lenses and the
wide span lenses needs to be established. All of this is carried through
here. But more significantly, the compositions of multiary lenses pro-
posed to date have suffered various limitations: well-behaved amend-
ment lenses don’t necessarily compose to give well-behaved amendment
lenses; technical conditions on model spaces can interfere with composi-
tion; junction conditions needed to be introduced because certain kinds
of compositions of multiary lenses might not always be defined; and in
any case, composition of multiary lenses comes with unusual challenges
and can’t be expected to form a category structure since when there
are more than two data sources there are not even single notions of
domain or codomain for multiary lenses. In this paper we introduce
a class of asymmetric amendment lenses called spg-lenses (stable put-
get lenses) which is more general than well-behaved amendment lenses,
but is closed under composition, and we show how to use spg-lenses
to capture, via wide spans, a wide class of mutidirectional transfor-
mations which compose well and form a well-known and long-standing
structure, a multicategory — a multicategory of multiary lenses.

1 Introduction

Bidirectional tranformations have always been intended to, in concert, support multiple interacting systems,
and a great many example such systems have been in operation for many years. Indeed, it’s likely that the
majority of systems using bidirectional transformations involve more than two systems, and in some cases they
were operating before the term “bidirectional transformation” was coined. Now, finally, with the recent Dagstuhl
meeting on Multidirectional Transformations and Synchronisations, and the paper of Diskin et al on Multiple
Model Synchronisation with Multiary Delta Lenses [2], the detailed careful analysis of multiary lenses has begun.
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This paper is a contribution to that work. Originally it began as an analysis of some examples of wide spans
of d-lenses and how they might interact, but some of those results have been saved for a future paper as the
theoretical nature of those wide spans and their “compositions”, let us call them linkages for now, took on more
importance, and since the introduction by Diskin and his colleagues of amendment lenses promised substantial
generalisations, but also some serious complications.

Among the most serious complications, Diskin and his colleagues had needed to introduce so-called junction
conditions because apparently reasonable linkages among their multiary delta lenses might not lead to well-
defined multiary delta-lenses. But on an even more basic level, the question of what linkages one might expect
to have between multiary lenses, and how they might be organised and managed algebraically, needs to be
considered. Traditional binary lenses, whether asymmetric or symmetric, form the arrows of categories [7], but
multiary lenses don’t have an obvious notion of domain or codomain. When a multiary lens has n > 2 external
facing systems, and a change in one can in principle affect all the others, the lens starts to seem more like a
component with n ports each of which can variously at different times deliver both input and output, and as we
know from electronics, haphazardly connecting ports is a dangerous activity.

The paper begins by analysing a simplification and generalisation of amendment lenses, called here aa-lenses,
and exploring their composability. We identify a new and promising class of aa-lenses which we call spg-lenses
because they are in Diskin et al’s terminology Stable and satisfy the PutGet condition. These spg-lenses are
closed under composition, but are a very general class of amendment lenses, being more general than well-behaved
amendment lenses (which is not to imply that they are ill-behaved!), and are thus a promising building block for
more complex structures including multiary lenses.

We then study n-wide spans of spg-lenses, beginning with n = 2, to see how they might support a “composi-
tion” analogous to symmetric lens composition. As Diskin et al discovered, (wide) spans of amendment lenses
don’t necessarily compose. We organise the linkages among wide spans by requiring that each wide span have
an identified leg, herein assumed without loss of generality to be the leftmost leg, which is a closed aa-lens, and
show that linkages of the left leg of one wide span with any non-left leg of another wide span do indeed result in
a new “composite” wide-span of aa-lenses, again with closed leftmost leg. We should remark that this identified
closed leftmost leg is not a loss of generality — one can consider any n-wide span of aa-lenses that might arise
in any application, and if it doesn’t have any closed leg one can simply adjoin a lens, possibly even an identity
lens, to use as the closed leftmost leg. If it helps, the reader may like to think of the identified leftmost leg as a
lens which gives access to the head of the span so that compositions can be carried out.

We should also emphasise that the closed leftmost leg does not have any implications for how the n-wide
span operates as a multiary lens — any one of the legs, including, but not only, the leftmost leg, might suffer a
modification of state, and as in bidirectional transformations, or multidirectional transformations when n > 2,
the other legs will have their state updated to restore synchronisation.

But what of the algebraic structure that these multiary lenses and their linkages should exhibit? As noted
above, it can’t be merely a category since there is no consistent notion of domain and codomain. Instead, as the
title of the paper suggests, these multiary lenses, consisting of wide spans of spg-lenses with closed left leg, form
a well-known and long standing algebraic structure known as a multicategory [9]. The multicategory structure
captures succinctly and precisely the wide range of possible compositions of multiple multiary lenses, and all of
them are well-defined.

The paper is organised as follows. In Section 2 we set out the basic definitions required based on work of
Diskin et al [2], but generalised in an important way (the removal of K as discussed below). Section 3 defines
the composition of aa-lenses, studies some of its properties, and identifies spg-lenses as a particularly general
class of aa-lenses that is closed under composition and has desirable behaviours (while not being “well-behaved”
under the definition presented in [2]). In Section 4 we establish operations for converting between propagation
style multiary lenses and wide spans of aa-lenses, and in Section 5 we define the equivalence relations that are
appropriate to each style and show that the conversion operations are well-defined for equivalence classes. The
operations in fact establish a bijection between the two styles of multiary lenses. Once we have seen that, we can
concentrate on either style and results we establish can be carried across to the other. For the remainder of the
paper we focus on the wide-span approach to multiary lenses, and in Section 6 we establish composites for a pair
of wide spans with closed left legs and prove that these composites can be calculated on arbitrary representatives
of equivalence classes. We are then in a position to use those composites to explore the algebraic structure of
multiary lenses and in the following section we show how it forms a multicategory. The final sections include a
discussion of some of the observations that follow from the work presented here and draw conclusions.
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2 Background

We begin with some background. The following definitions are close to those of Diskin et al [2] with the important
difference that in this paper model spaces, and the aa-lenses that are the arrows between them, do not have
compatibility relations K so that a model space is simply a category. The reasons for excluding K, and the
implications of so doing, will be dealt with briefly in Section 8. We also include here a brief review of Diskin
et al’s n-ary symmetric lenses, which involve n-ary multimodel spaces, and in those multimodel spaces we will
likewise omit K.

Denote the set of objects of a category A by |A|. In the context of n-ary symmetric lenses i will always be
an integer between 1 and n.

Definition 1 An n-ary multimodel space (n ≥ 2 ) M = (A,R, δ) consists of the following data:
(i) An n-tuple of categories A = (A1, . . . ,An)
(ii) A set R whose elements are called (consistent) corrs
(iii) A function δ : R // |A1| × . . .× |An| called the boundary function.
A consistent multimodel is a pair (R, (A1, . . . , An)) (with Ai an object of Ai) such that δ(R) = (A1, . . . , An) =
(δ1R, . . . , δnR). For consistent multimodels (R, (Ai)), (R

′, (A′i)). a multimodel update is an n-tuple of morphisms
(u1, . . . , un) : (A1, . . . , An) // (A′1, . . . , A

′
n).

Notice that a corr and the boundary function determine a consistent multimodel, so we can just dispense with
the (Ai) in the notation, as is implicit below.

Definition 2 An n-ary symmetric lens L = (M, p) is an n-ary multi model space, M, and an n-tuple p =
(p1, . . . , pn) of operations as follows. For a consistent multimodel (R, (A1, . . . , An)) and morphism ui : Ai

//A′i,
pi returns:
(i) A consistent multimodel (R′′, (A′′1 , . . . , A

′′
n)) with R′′ denoted pR

i (ui)
(ii) An amendment uai : A′i

//A′′i denoted pR
ii(ui)

(iii) A multimodel update (u′1, . . . , u
′
n) : (A1, . . . , An) // (A′′1 , . . . , A

′′
n) such that u′i = uai ui and, when j 6= i, the

j-th component u′j is denoted pR
ij(ui).

Call an update ui R-closed when pR
ii(ui) = idA′

i
. The lens L is called closed if all updates are R-closed for all R.

For consistency with earlier work we might have written the operations pi(R, ui), and pii(R, ui), pij(R, ui)
and that would avoid superscripts which complicate the reading and sometimes clash with primes. But for ease
of comparison with [2] we have retained their notation.

Definition 3 An n-ary symmetric lens L = (M, p) is called well-behaved if it satisfies the following conditions:
(Stability): For all j, pR

ij(idAi
) = idAj

and pR
i (idAi

) = R

(Reflect2): For j 6= i, pR
ij(u

a
i ui) = pR

ij(ui)
(Reflect3): uai ui is R-closed

Notice that stability for a well-behaved n-ary symmetric lens means a trivial update propagates trivially. The
Reflect conditions mean respectively that an amendment “completes” its update, and that a completed update
needs no amendment. There is no (Reflect1) because in [2] it requires that an amendment lie in the relation K
with its update, but the relation K is omitted here.

Definition 4 A well-behaved lens is (weakly) invertible if each pi satisfies the following law:
(Invert): For j 6= i, pR

ij(pR
ji(pR

ij(ui))) = pR
ij(ui)

The n-ary symmetric lenses, and their basic properties, have been introduced because they correspond well to
some workers’ intuitions of multiary transformations. Diskin et al [2] study both them, and what are essentially
n-wide spans of asymmetric amendment lenses. In this paper we concentrate primarily on these latter structures,
and we begin to define them now.

The following is derived from Diskin et al’s asymmetric lenses with amendments but we exclude the so-called
compatibility relations K, and call the resulting simplification (and generalisation) aa-lenses.

Definition 5 An aa-lens L = (A,B, g, p), often abbreviated to just (g, p) when there is little risk of confusion,
consists of categories A and B sometimes called the base and view model spaces respectively, with g : A //B
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a functor called the Get and p = {pA | A ∈ A} a family of operations as follows: to every view update
v : g(A) //B′, pA returns a pair (pAb (v) : A //A′′, pAa (v) : B′ //B′′) such that B′′ = g(A′′).
A view update v : g(A) // B′ is called closed if pAa (v) = idB′ . If all view updates are closed we call L a closed
aa-lens.

The requirements for a well-behaved aa-lens based on [2] follow.

Definition 6 An aa-lens is L = (A,B, g, p) is called well-behaved if the following hold for A ∈ A and v :
g(A) //B′:
(Stability): pAb (idg(A)) = idA

(Reflect0): B′ = g(X) for some X ∈ A implies pAa (v) = idB′

(Reflect2): pAb (pAa (v)v) = pAb (v)
(PutGet): pAa (v)v = g(pAb (v))

There is no (Reflect1) property since we are following [2] and that condition involves the compatibility relation
which we omit — in [2] it says that v and its amendment pAa (v) need to be a pair related by the compatibility
relation K. In a sense we treat all composable pairs of arrows as compatible.

As noted in [2] (PutGet) and (Reflect2) imply the (weak) invertibility above and (PutGet) and (Reflect0) imply
the closure required by (Reflect3) in Definition 3.

An aa-lens defines a well behaved, invertible 2-ary symmetric lens whose base updates (the updates in A) are
closed. A closed aa-lens which also satisfies a PutPut law is exactly the same thing as an asymmetric delta lens
[1].

A further condition considered by Diskin [personal communication] is
(Reflect0*): If v = g(w) for w an arrow with domain A of A then pAa (v) = idB′ .

3 The Category of spg-Lenses

We now consider the composition of aa-lenses.

Definition 7 Let L = (A,B, g, p) and L′ = (B,C, h, q) be aa-lenses. Their composite aa-lens is L′L =
(A,C, k, r) where k = hg and the composite Put r is defined as follows. If w : hg(A) // C ′, then

rAb (w) = pAb (q
g(A)
b (w)) and rAa (w) = h(pAa (q

g(A)
b (w))) · qg(A)

a (w). See the diagram, where v = pAa (q
g(A)
b (w)):

g(A) B”

A

g(A)

A A”A”

B”

hg(A) C ′′′

g(A)

hg(A)

g(A) B”B”

C ′′′

A A”
pA
b (q

g(A)
b (w)) //

g(A) B′
q
g(A)
b (w) // B′ B”

v //

hg(A) C ′
w
// C ′ C ′′

qg(A)
a (w)

//

B′

C ′′C ′′ C ′′′
h(v)
//

The lens L = (A,A, idA, pA) where for u : A // A′, we have (pA)Ab (u) = u and (pA)Aa (u) = idA′ is the
identity for the just defined composition, and the reader can easily verify that the composition is associative.
Thus there is a category whose objects are model spaces and whose morphisms are aa-lenses. It generalises the
category of (asymmetric) delta lenses.

Proposition 8 Here are a selection of conditions which are preserved by composition.

• If L and L′ satisfy Stability then so does L′L.

• If L and L′ are closed then so is L′L.

• If L and L′ satisfy Reflect0 then so does L′L.

• If L and L′ satisfy Reflect0* then so does L′L.
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• If L and L′ have identity amendments for identities, then so does L′L.

• If L and L′ satisfy PutGet then so does L′L.

Proof. The proofs all involve routine verifications which we omit.

Note however that if L and L′ satisfy Reflect2, it does not apparently follow that L′L does so. Indeed it seems
that even if L and L′ are well-behaved then the composite need not satisfy Reflect2. This means that we do
not have a category of well-behaved aa-lenses. Instead a convenient category of aa-lenses has as arrows those
aa-lenses which satisfy Stability and PutGet.

Definition 9 An aa-lens L is called an spg-lens if it satisfies the properties Stability and PutGet. The category
of such lenses is denoted spg-lens.

If spg-lenses make up the most convenient category of aa-lenses, we are going to be interested in symmetric
spg-lenses — those that arise as equivalence classes of spans of spg-lenses. However, it seems that spans of
arbitrary spg-lenses can’t be assumed to compose in the usual way, analogous to spans of d-lenses [8]. Instead
after a fairly extensive analysis of the kinds of properties of aa-lenses that “pullback” over certain kinds of
aa-lenses, we restrict our attention to certain spans, those with closed left legs.

Proposition 10 There is a composite as shown below for spans in the category spg-lens with a closed left leg.

Proof. Consider two spans of spg-lenses with heads S and T shown in the diagram and suppose that the
lenses (g, p) and (g′, p′) are both closed. Let U be the pullback in cat of h and g′, with k and m the pullback
projections.

S T

U

S

(k,r)

yysss
sss

s U

T

(m,s)

%%KK
KKK

KK

S

Y
(h,q) %%KK

KKK
KKS TT

Y
(g′,p′)yysss
sss

sS

X

(g,p)

yysss
sss

s T

Z

(h′q′)

%%KK
KKK

KK

We define r and s making the pairs (k, r) and (m, s) spg-lenses. Since U is a pullback in cat, we may suppose
without loss of generality that its objects are compatible pairs of objects, one each from S and T, and that its
arrows are compatible pairs of arrows, one from each of S and T. In each case “compatible” means that applying
h to an object or arrow from S, and g′ to an object or arrow from T, results in the same object or arrow of Y.

The Put r takes an object (S, T ) of U and an arrow α : k(S, T ) = S // S′ of S and returns r
(S,T )
b (α) an

arrow of U with domain (S, T ) and an amendment r
(S,T )
a (α) in S with domain S′. Let r

(S,T )
b (α) = (α, p′Tb (h(α)))

and let r
(S,T )
a (α) = ids′ . To see that (k, r) is an spg-lens, note first that it is stable since h is a functor and

(g′, p′) is stable, and secondly it satisfies PutGet by construction. Furthermore, (k, r) is closed by construction
(all amendments are identities).

The definition of s is a little longer because its amendments are not as trivial. The Put s takes an object

(S, T ) of U and an arrow β : m(S, T ) = T // T ′ and returns s
(S,T )
b (β) an arrow of U with domain (S, T ) and

an amendment s
(S,T )
a (β) in T with domain T ′. Let qSa (g′(β)) = b say and define s

(S,T )
a (β) = p′T

′

b (b) = b̃ say.

Finally, let s
(S,T )
b (β) = (qSb (g′(β)), b̃β). To see that (m, s) is an spg-lens, it is stable by an argument parallel

to the argument for (k, r) noting that amendments for identities are identities, and again it satisfies PutGet by
construction.

The resulting span with head U from X to Z is again a span of spg-lenses and its left leg is closed since
spg-lenses compose and closed spg-lenses compose to give closed spg-lenses.

We remind the reader that compositions like this are analogous to span composition in a category with
pullbacks. However, U need not be the pullback in the category whose arrows are aa-lenses. It is a pullback in
cat, and we have just given canonical constructions on the projection functors to make them into aa-lenses. To
emphasise this distinction, while conserving the analogy, we sometimes refer to U along with (k, r) and (m, s)
as a “pullback” — the inverted commas remind us that it is not in fact a pullback in spg-lens.
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4 Wide Spans of spg-Lenses and n-ary Symmetric Lenses

In the following sections we will be studying a generalisation of a span of lenses. An n-wide span of lenses is a
tuple L = (A, (Bi, gi, pi)i≤n) of lenses with a common domain A. We will mostly be considering aa-lenses.

We next consider two constructions relating n-ary symmetric lenses to n-wide spans of aa-lenses.
For the first construction, we begin with a stable n-ary symmetric lens M = (M, p) with multimodel space

M = ((Ai),R, δ) and propagation operations pi. The domain and codomain of an arrow u are denoted d0(u)
and d1(u) respectively.

We construct an n-wide span LM of spg-lenses (LM )i : S //Ai (similar to a construction in [8]). The first
step is to define the head S of the span. The set of objects of S is defined to be the set R of corrs of M . The
morphisms of S are defined as follows:
For objects (corrs) R and R′, let S(R,R′) = {(ui) | d0ui = δi(R), d1ui = δi(R

′)} (where we write, as usual,
S(R,R′) for the set of arrows of S from R to R′). Thus an arrow of S may be thought of as a formal tuple
of arrows (ui : δi(R) // δi(R′)) where ui is an arrow of Ai. Composition is inherited from composition in Ai

component-wise, or more precisely, for (ui) ∈ S(R,R′) and (vi) ∈ S(R′, R′′) we define:

(vi)(ui) = (viui)

in S(R,R′′). The identities are tuples of identities. It is immediate that S is a category.
Next define the spg-lens (LM )i = (gi, pi) where gi : S //Ai on objects is δi, and on arrows is gi((uj)j≤n) = ui.

The Put for (LM )i has as amendment pRi,a(α : gi(R) //Ai) = pR
ii(α), and has as base Put an arrow of S:

(pRi,b(α : gi(R)) //Ai)j = pR
ij(α) for j 6= i

(pRi,b(α : gi(R)) //Ai)i = pR
ii(α)α

which is indeed an arrow of S from R to R′′ = pR
i (α).

Lemma 11 LM is an n-wide span of spg-lenses.

Proof. The gi are evidently functorial. We need to show that pi satisfy the definition of spg-lens. This follows
immediately from the stability of the n-ary symmetric lens M and the construction.

For the construction in the other direction, we begin with an n-wide span L of spg-lenses. Let Li = (gi, pi)
where gi : S //Ai.

Construct the n-ary symmetric lens ML = (M, p) with consistent corrs R = |S|, with δi(S) = gi(S) and with
pi defined as follows for α : gi(S) //A′i:
• pS

i (α) = d1(pSi,b(α))

• pS
ii(α) = pSi,a(α)

• pS
ij(α) = gj(p

S
i,b(α)) for j 6= i.

Lemma 12 ML is a stable n-ary symmetric lens.

Proof. We have defined all of the required parts of the pi and stability follows from the stability of the component
spg-lenses.

5 Equivalence Relations for Lenses and Spans

We are going to need equivalence relations for n-ary symmetric lenses and for n-wide spans of spg-lenses. The
idea is that equivalent lenses/spans have the same update behaviour.

Definition 13 Let L1 = (M, p) and L2 = (N, q) be n-ary symmetric lenses with M = (A,R1, δ1) and N =
(A,R2, δ2) (so they have the same base categories but different corrs).
We say L1 ≡n L2 if and only if there is a relation σ from R1 to R2 with the following properties:
1. σ is compatible with the δi’s, i.e. R1σR2 implies δiR1 = δiR2
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2. σ is total in both directions, i.e. for all R1 in R1, there is R2 in R2 with R1σR2 and conversely.
3. If R1σR2 (so δiR1 = δiR2) and ui : Ai

//A′i is an arrow of Ai then pR1
i (ui)σqR2

i (ui) and pR1
ij (ui) = qR2

ij (ui)
for j = 1, . . . , n (so they have the same Put behaviour and amendments).

Notice that σ is an equivalence relation. Condition 3 implies that the codomains for all pR1
ij (R1) are the same

as the codomains for all qR2
ij (R2).

Lemma 14 The equivalence relation ≡n is generated by relations σ, as in the definition, which are surjective
functions.

Proof. To see that ≡n is generated by such surjections, consider L1 ≡n L2 by σ and construct the span
tabulating σ:

R1
oo Q //R2

Notice that each leg of the span is a surjection because of totality of σ in both directions. It is easy to construct
a lens with corrs Q equivalent to both L1 and L2 by those surjections.

Definition 15 Let L1 = (S1, (Ai, gi, pi)i≤n) and L2 = (S2, (Ai, g
′
i, p
′
i)i≤n) be n-wide spans of spg-lenses with

the same feet. We say L1 is E-related to L2 if and only if there is a functor Φ : S1
// S2 such that

(E1) g′iΦ = gi, i = 1, . . . , n
(E2) Φ is surjective on objects, and
(E3) If ΦS1 = S2, then for ui : gi(S1) = g′i(S2) //A′i, we have p′i,a(ui) = pi,a(ui) and p′S2

i,b (ui) = ΦpS1

i,b(ui).

Condition (E3) says first that the amendments, which are arrows of Ai, agree, and secondly that the Put
behaviours correspond by Φ.

Definition 16 Let ≡spg be the equivalence relation on n-wide spans of spg-lenses which is generated by E-
relatedness.

Proposition 17 With the notation of the constructions above, for n-ary symmetric lenses M = (M, p) and
N = (N, q) with M ≡n N , we have LM ≡spg LN .

Proof. Suppose M = (A,R1, δ1) and N = (A,R2, δ2) are equivalent by σ relating R1 and R2. Without loss
of generality, by Lemma 14, it suffices to assume σ is a surjective function. Suppose the wide spans constructed
from M and N have heads S1 and S2 respectively. We will define a functor Φ : S1

// S2 with σ as its object
function. On an arrow of S1, that is a tuple u = (ui) of arrows with each ui an arrow of Ai, define (Φ(u))i = ui.
Notice that Φ satisfies (E1) and (E2) by construction. For (E3), condition 3 of the definition of ≡n guarantees
that the required equations hold (both Puts yield the very same tuple of arrows as, respectively, an arrow of S1

and an arrow of S2).

Proposition 18 With the notation of the constructions above, for n-wide spans L and K of spg-lenses with
L ≡spg K, we have ML ≡n MK .

Proof. Suppose L and K are given by spg-lenses Li = (gi, pi) where gi : S // Ai, and Ki = (hi, qi) where
hi : T // Ai. Without loss of generality, it suffices to assume that L ≡spg K are equivalent by a functor
Φ : S // T satisfying conditions (E1)-(E3). The corrs of ML are the objects of S and the corrs of MK are
the objects of T. Let the relation σ be the object function of Φ. We need to show that σ satisfies conditions
1-3 of Definition 13. By (E1) Φ commutes with the Gets so σ is compatible with the δ’s (condition 1). Since
Φ on objects is a surjective function, σ is total on both sides (condition 2). For condition 3, suppose SσT , so
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Φ(S) = T , and α : Ai
//A′i is an arrow of Ai. Then for j 6= i, in the notation of the construction, and writing

q for the propagation constructed using q

qT
ij(α) = hj(q

T
i,b(α)) by definition

= hj(Φp
S
i,b(α)) by hypothesis

= gj(p
S
i,b(α)) by Φ commutes with Gets

= pS
ij(α) by definition

For the amendments, qT
ii(α) = qTi,a(α) = pSi,a(α) = pS

i,i(α). And finally, the resulting corrs are related since

qT
i (α) = d1(qTi,b(α)) by definition

= d1(ΦpSi,b(α)) by hypothesis

= Φ(d1(pSi,b(α))) = ΦpS
i (α) by functoriality and definition

So condition 3 is satisfied.

The two constructions between n-ary symmetric lenses and n-wide spans of spg-lenses are closely related.
Indeed, one composite of the two constructions is actually the identity. The other is, up to ≡spg equivalence, the
identity (up to equivalence because when we start and end with a wide span, the arrows of the head are replaced
by the formal sequences described above).

Proposition 19 With the notation of the constructions above, for any n-ary symmetric lens M ,

M = M(LM )

and for any n-wide span L of spg-lenses Li = (gi, pi) where gi : S //Ai,

L ≡spg L(ML)

Proof. For the first equation, by inspection, the corrs and δ’s of MLM
are those of M . Further, it is easy to see

that the propagations of MLM
are identical to those of M .

For the second, the equivalence, notice first that the head of the original wide span, L, is included by an
identity on objects functor into the head S of the wide span L(ML). Using the notation of the construction, the
functor sends an arrow s of S to the tuple of arrows (gis). Call that functor Φ. It certainly commutes with
the Gets (by construction) and it is identity on objects, and so certainly surjective on objects, so Φ satisfies
conditions (E1) and (E2). To see that it also satisfies condition (E3), and so provides the equivalence required,
it suffices to recall that every Put in L(ML) is obtained from the n different Gets of the corresponding Put in L,
and so Φ carries the latter Put to the former Put, as required.

Corollary 20 The constructions define a bijection between ≡n equivalence classes of n-ary symmetric lenses
and ≡spg equivalence classes of n-wide spans of spg-lenses.

The remainder of this paper will focus on n-wide spans of spg-lenses.

6 The Wide Span Composites

We are now going to use the composite of spans defined in Proposition 10 to define several composites of suitable
wide spans of spg-lenses. The composites will take place over a single foot common to both spans. Each wide
span will have a specified closed leg, its left-most leg, and the composites will be defined using the closed left-most
leg of the second wide span.

We will denote an n-wide span L with the left-most leg, (g1, p1) : S //A1 assumed to be closed as follows.
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S

A1

(g1,p1)

zzvv
vv
vv
vv
vv
vv
vv

S

A2

(g2,p2)

��2
22
22
22
22

S

A3

(g3,p3)

&&MM
MMM

MMM
MMM

MMM
MMM

MS

An

(g2,pn)

++VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VV

. . .

When we define one of the composites of two such wide spans L and M say, we will compose (as in Proposi-
tion 10) across the left-most leg of the right span M and the i-th leg (i > 1) of the left span L and call it the
i-composite. See the diagram below in which (to avoid clutter) the legs of the left span after position i are not
shown.

S

A1

(g1,p1)

zzvv
vv
vv
vv
vv
vv
vv

. . .

S

A2

(g2,p2)

��2
22
22
22
22

S

Ai = A′1

(gi,pi)

&&MM
MMM

MMM
MMM

MMM
MM

. . .

T

Ai = A′1

(g′
1,p

′
1)

zzvv
vv
vv
vv
vv
vv
v

T

A′2

(g′
2,p

′
2)

��2
22
22
22
22

T

A′3

(g′
3,p

′
3)

&&MM
MMM

MMM
MMM

MMM
MMM

T

A′n′

(g′
n′ ,p

′
n′ )

++VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VV

. . .

U

S

(k,r)

zzvv
vv
vv
vv
vv
vv
vv

U

T

(m,s)

&&MM
MMM

MMM
MMM

MMM
MMM

M

Suppose that all the lenses are spg-lenses and that the two left-most legs, (g1, p1) and (g′1, p
′
1), are closed.

Proposition 10 shows that (m, s) is an spg-lens and that (k, r) is a closed spg-lens, and so (g1, p1)(k, r) is a closed
spg-lens by Proposition 8. That last proposition also ensures that all of the other n + n′ − 3 composites are
spg-lenses.

The following definition makes the details of the i-composite precise by specifying all the indices, but the
reader may simply focus on the diagram in which the resulting wide span is made evident noting only that the
legs ending at Ai and A′1 do not appear in the composite.

Definition 21 The i-composite of the two wide spans of spg-lenses shown above and in which (g1, p1) and (g′1, p
′
1)

are closed is defined to be the wide span MiL with head U and closed left-most leg (g1, p1)(k, r) : U //A1. The
feet are Bj, for j ≤ n + n′ − 2 where Bj = Aj, for j < i, Bj = Aj+1, for i < j < n, and Bj = A′j−n+2, for
n ≤ j < n+n′−2. The lenses are obtained by renumbering similarly and composing: (hj , qj) = (gj , pj)(k, r), for
j < i, (hj , qj) = (gj+1, pj+1)(k, r), for i < j < n, and (hj , qj) = (g′j−n+2, p

′
j−n+2)(m, s), for n ≤ j < n+ n′ − 2.

Our next goal is to show that we can compose ≡spg classes of wide spans by composing representatives of
each class. For that it suffices to show that the equivalence is a congruence for the i-composites just defined.

Definition 22 An n-wide span of spg-lenses L = (S, (Ai, gi, pi)i≤n) is called a multiary lens if (g1, p1) is closed.

Proposition 23 Suppose that L = (S, (Ai, gi, pi)i≤n), M = (T, (Bi, hi, qi)i≤(̄n)) and M ′ = (T′, (Bi, h
′
i, q
′
i)i≤(̄n))

are multiary lenses. Further, suppose that Φ : T //T′ is a functor satisfying conditions E1-E3 so that M ≡spg

M ′, and that L and M (and so also L and M ′) have a wide span composite over some Ai as in Definition 21.
Then the two wide span composites are equivalent, that is MiL ≡spg M

′
iL.

Proof. The diagram below shows some of the lenses in the wide spans L, M and M ′ chosen to include all those
that are required to construct representative parts of the composite wide spans. To avoid clutter the other lenses
have been omitted.

The top composite span (MiL) of spg-lenses has head U, the pullback (in cat) of gi and h1. Similarly the
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pullback U′ is the head of the bottom span composite (LM ′).

Ai = B1 Bj

T

Ai = B1

(h1,q1)

����
��
��
��

T

Bj

(hj ,qj)

��?
??

??
??

?

Ai = B1

T′

__

(h′
1,q

′
1) ??

??
??

??
Ai = B1 BjBj

T′

??

(h′
j ,q

′
j)��

��
��
�

S Ai = B1
(gi,pi)

//SA1
(g1,p1)
oo

U T
(m,s) //

U′ T′
(m′,s′)

//

U

S

(k,r)

����
��
��
��

U′

S

(k′,r′)

__????????

T

T′

Φ

��

U

U′

Φ′

��

In order to show the claimed equivalence, we construct a functor Φ′ : U //U′. Since h′1Φm = gik, the universal
property of the pullback U′ can be used to define Φ′.

Since U and U′ are pullbacks of functors, their objects can be taken to be pairs of objects from S and
T, respectively S and T′. Similarly, their arrows can be taken to be pairs. Also k and m, respectively k′

and m′ can be taken to be projections. We can now explicitly describe the action of Φ′ on an arrow of U as
Φ′(u0, u1) = (u0,Φu1).

It remains to show that Φ′ satisfies E1-E3.

For E1, g′xk
′Φ′ = gxk since k′Φ′ = k by the construction of Φ′. Similarly, we have h′xm

′Φ′ = h′xΦm = hxm
by the construction of Φ′ and the fact that h′xΦ = hx.

For E2, an object of U′ is a pair of objects from S and T′. Now Φ′ is the identity on its first component and
Φ, which is surjective on objects, on its second component, hence Φ′ is surjective on objects.

Condition E3 considers both parts of a Put and here we will consider the amendment part in detail. The
other part is routine and similar to the proof found in [8].

Suppose U is an object of U and U ′ = Φ′(U). Required to show that the amendment for the Put along
(hj , qj)(m, s) into U is the same as the amendment for the Put along (h′j , q

′
j)(m

′, s′) into U ′. In both cases
the amendment is obtained, according to Definition 7, by composing an amendment from the lens (hj , qj)
(respectively (h′j , q

′
j)) which we will call a (respectively a′) with hj (respectively h′j) applied to an amendment

for the lens (m, s) (respectively (m′, s′)) which we will call b (respectively b′). Explicitly,

a = qmU
ja (β)

a′ = q′m
′U ′

ja (β)

b = hj(s
U
a (qmU

jb (β)))

b′ = h′j(s
′U ′

a (q′m
′U ′

jb (β)))

We will show that a = a′ and b = b′, so that of course the amendments ba = b′a′ as required.

a = a′ :

a = qmU
ja (β) by definition

= q′ΦmU
ja (β) by E3 for Φ

= q′m
′U ′

ja (β) by construction of Φ′ and U ′ = ΦU

b = b′ : First, let τ = qmU
jb (β) : mU // T1, say, be the Put of β into mU and correspondingly, let τ ′ =
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q′m
′U ′

jb (β) : m′U ′ // T ′1 be the Put of β into m′U ′ and note that Φτ = τ ′ since m′U ′ = m′Φ′U = Φm′U ′. Then

b = hj(s
U
a (qmU

jb (β))) by definition

= hj(s
U
a (τ))

= hj(q
T1

1b (pkUia (h1(τ)))) by Proposition 10

= h′j(Φq
T1

1b (pkUia (h1(τ)))) by E1 for Φ

= h′j(q
′T ′

1

1b (pkUia (h1(τ)))) by E3

= h′j(q
′T ′

1

1b (pk
′U ′

ia (h′1(Φτ)))) since h′1Φ = h1 and k = k′Φ′

= h′j(q
′T ′

1

1b (pk
′U ′

ia (h′1(τ ′))))

= h′j(s
′U ′

a (τ ′))

= h′j(s
′U ′

a (q′m
′U ′

jb (β)))

= b′

as required.

Proposition 24 Suppose that L = (S, (Ai, gi, pi)i≤n), L′ = (S′, (Ai, g
′
i, p
′
i)i≤n) and M = (T, (Bi, hi, qi)i≤m)

are multiary lenses. Further, suppose that Φ : S //S′ is a functor satisfying conditions E1-E3 so that L ≡spg L
′,

and that L and M (and so also L′ and M) are composable over some Ai. Then the two wide span composites
are equivalent, that is MiL ≡spg MiL

′.

Proof. As above, the diagram below shows some of the lenses in the wide spans L, L′ and M chosen to include
all those that are required.

The top composite span (MiL) of spg-lenses has head U, the pullback (in cat) of gi and h1. Similarly the
pullback U′ is the head of the bottom span composite (L′M).

Aj Ai = B1

S

Aj

(gj ,pj)

����
��
��
��

S

Ai = B1

(gi,pi)

��?
??

??
??

?

Aj

S′

__

(g′
j ,p

′
j) ??

??
??

?
Aj Ai = B1Ai = B1

S′

??

(g′
i,p

′
i)‘��

��
��
��

TAi = B1
(h1,q1)oo T Bj′

(hj′ ,qj′ ) //

US
(m,s)oo

U′S′
(m′,s′)

oo

U

T

(k,r)

��?
??

??
??

?

U′

T

(m′,s′)

??��������

S

S′

Φ

��

U

U′

Φ′

��

In order to show the claimed equivalence, we construct a functor Φ′ : U //U′. Since G′RΦH = FLK, the
universal property of the pullback T′ can be used to define Φ′.

The rest of the proof proceeds in parallel to that of the previous proposition and we leave it to the reader.

7 The Multi-Category of Multiary Lenses

We have defined multiary lenses above as certain wide spans of spg-lenses and noted that we may consider
composites for them when there is a matching condition on the feet. In this section we show how multiary
lenses and their composites may be organised into the structure of a multicategory, a concept first introduced by
Lambek in the 1960’s [9]. We begin with the definition of multicategory.

Definition 25 [10] A multicategory C consists of the following data and operations:
(M1) A collection of objects, C0.
(M2)A collection of multimorphisms, C1.
(M3) A source map s : C1

// (C0)∗ to the collection of finite, possibly empty lists of objects (where (C0)∗ is the
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free monoid generated by C0)
(M4)A target map t : C1

// C0.
We write f : c1 . . . cn // c to indicate the source and target of a multimorphism f .
(M5) The identity operation is a map 1(−) : C0

// C1 with 1c : c // c.
(M6) The composition operation assigns, to each f : c1 . . . cn // c and an n-tuple (fi : −→ci // ci, i = 1, . . . , n), a
composite f(f1, . . . , fn) : −→c1 . . .−→cn // c where the source is obtained by concatenating lists.

These operations are subject to the expected associativity and identity axioms.

In general, for a category with pullbacks, there is a multicategory of wide spans constructed much as we do
below. Since the category of spg-lenses (like the category of asymmetric delta lenses) does not have pullbacks,
we need to describe the multicategory structure in detail, but the idea is the same as for the case with pullbacks,
and to preserve the analogy we will write “pullback” and “wide pullback” below to mean the pullback and wide
pullback of the relevant Gets in cat, endowed with Puts in the canonical way described above for pullbacks (for
wide pullbacks the constructions can be done a pullback at a time to generate what we are calling the wide
pullback of a given collection of closed aa-lenses).

For our multimorphisms we are going to consider ≡spg classes multiary lenses. We can now define a multicat-
egory ML of multiary lenses.

An object of ML is a category.

A multimorphism f of ML is an (≡spg equivalence class of) multiary lenses.

Suppose f = [L] is a multimorphism which is the equivalence class of the multiary lens L = (S, (Ai, gi, pi)i≤n).
The source of f is A2 . . .An and the target of f is A1.

Identity: For any category A1, its identity morphism is the equivalence class of the span (so n = 2) of identity
spg-lenses from A1 to A1 The identity spg-lens is closed, so in particular the left leg of that span is closed, as
required.

Composition: Suppose that f = [L] is a multimorphism where L = (S, (Ai, gi, pi)i≤n) is a representative.
Suppose also that for 2 ≤ i ≤ n, fi = [Mi] are multimorphisms with representative multiary lenses Mi =
(Ti, (Bij , hij , qij)j≤mi) satisfying Bi1 = Ai. The composite multimorphism is denoted

f(f2, . . . , fn) : B21 . . .B2m2 . . .Bn1 . . .Bnmn
//A1

For representative multiary lenses as above, we obtain a representative of f(f2, . . . , fn) as follows. We denote
the composite of L and Mi at Ai as L ◦i Mi. Denote its head by Ui. Its left leg lens is (Ui,A1, (ki, ri)(g1, p1)).
The remaining mi − 1 legs are denoted (Ui, (Bij , kij , rij)2≤j≤mi

) where (kij , rij) = (hij , qij)(mi, si). The head
of the composite representative is the wide pullback V of the (g1, p1)(ki, ri) (which are all closed). Its left leg is
the common (closed) spg-lens from V to A1. The spg-lens from V to Bij is the composite of the projection lens
from V to Ui followed by (kij , rij) to Bij .

Consider the following diagrams showing first how we define Ui:

S
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S
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MMM
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)

++VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

V

. . .

Ui

S

(ki,ri)

zzvv
vv
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vv
vv
vv
vv

Ui

Ti

(mi,si)

&&MM
MMM

MMM
MMM

MMM
MMM
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and next, showing how we define V and the legs of the composite multiary lens, but with only U1 and U2

displayed to minimise the complexity of the diagram:
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It remains to show that f(f2, . . . , fn) is independent of the representative multiary lenses chosen.

Proposition 26 The multicomposition is well-defined independent of choice of representatives.

Proof. The independence of representatives follows immediately from Propositions 23 and 24 applied to the
diagram above.

Corollary 27 With the operations above ML is a multicategory whose multiarrows are ≡spg equivalence classes
of multiary lenses.

8 Discussion

We begin the discussion with a few words about why we have excluded from our definitions what Diskin et al [2]
call the compatibility relation K. As we understand it, K was introduced to avoid having amendments which
might, in the extreme, amend away the intended update. In formal terms, if an intended update v : g(A) //B′,
happened to be invertible, then the amendment pAa (v) might be v−1. More subtly an amendment might amend
away some part of the intended update. This could be considered undesirable, so K was introduced as a
relation on composable pairs of arrows, and could record those compositions which weren’t undesirable. Then,
an amendment lens in which an update and its amendment were K-related would be desirable.

We have taken the view that, instead, engineers, immersed in their application environment and knowing what
is and isn’t desirable in that environment, can choose from among the lenses that the mathematics, without K,
offers.

There are further technical reasons for excluding K at this stage too. Having K as part of a model space
definition would mean that the correct K needs to be chosen in the domain of an amendment lens, and yet K
plays no role at all when it is in the domain of an amendment lens. So, apparently reasonable lenses only become
problematic when one goes to compose them with other apparently reasonable amendment lenses and finds that
their Ks are incompatible. But in many cases those incompatible Ks were never relevant to the original lenses
at all. It is better to be rid of the Ks and instead to let the user choose not to use lenses that they would
want to exclude from being legitimate lenses. Having K be part of the model spaces adds complexity to defining
composition (one of the principal challenges confronted in this paper) in ways that seem inessential.

Furthermore, when it comes to forming compositions that require “pullbacks” as in Proposition 10, K can
have more deleterious effects. In the notation presented there, compatibility relations that occur in the heads of
the spans S and T have no relevance to the four input lenses, but need to be used to define U, which in turn
may be involved in further compositions.

In short, it seems better at this stage to study aa-lenses that don’t require any extra relations K, and allow
users to choose from among them. If an aa-lens does something that a user might not want to have, and might
exclude via a judicious choice of K, that user can just choose those lenses that do not exhibit the undesirable
behaviour. This is important because what is undesirable in some applications may not be undesirable in others,
and trying to capture it as part of the lens structure, or even worse as part of the model space structure limits
possible compositions and can have severe effects on the existence of “pullback” amendment lenses.
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Another way of viewing what we are doing here in excluding K might be to say that the compatibility relation
is simply the composability relation – every composable pair is compatible.

Next a few words about our use of closed left legs.

All cospans of d-lenses that satisfy PutGet have “pullbacks”, and so can be used to define composites of
symmetric d-lenses. A natural plan on moving to aa-lenses might be to calculate similar “pullbacks”. But there
is a serious problem. As can be seen in the definition of the amendment sa in Proposition 10, the fact that (h, q) is

not closed complicates defining the amendment for its “pullback” (m, s) resulting s
(S,T )
a (β) = p′T

′

b (qSa (g′(β))) = b̃

say. But if the other leg of the cospan, (g′, p′), were also not closed, then (qSb (g′(β)), b̃β) would not necessarily
be an arrow of U and the S component would need to adjusted by a similar further amendment, which would
in turn require further adjustment of the amendment in T, potentially, ad infinitum. In short, composing across
a pair of non-closed legs can cause havoc.

Of course, which leg in a cospan is closed has no relevance for the existence of the “pullback”. But we do
need to be consistent in our choice, and we have chosen the left leg to be the closed leg.

Also of course, but worth remarking, if both legs are closed then the calculations in the proof of Proposition 10
are the same as the calculations for the usual “pullback” of d-lenses [6].

There is an interesting similarity between spans of spg-lenses with closed left leg, and the symmetric lenses
studied in the paper by Fong and Johnson [3]. Fong and Johnson study a compositional framework for supervised
learning algorithms, and note that the so-called Learners of Fong et al [4] correspond to spans of set-based lenses
whose left leg is a constant complement lens. They point out in [3] that such symmetric lenses are in fact left
leg closed aa-lenses in a unique way. This was entirely unexpected.

Finally, a remark about our construction of the multicategory of multiary lenses summarised in Corollary 27.
We have given in the preceding section a fairly explicit account of the multicategory composition of n+1 multiary
lenses because that is what’s required for a general composition in a multicategory. Meanwhile, it is worth noting
that using just the identity and associativity axioms for multicategories gives a coherence result which shows
that general multicategory compositions can always be constructed from compositions with at most two non-
identity multiarrows, that is, multiarrows of the form f(1, 1, . . . , 1, fi, 1, . . . 1) — these are in a sense the binary
multiarrow compositions. An alternative approach to obtaining Corollary 27 is to define those binary multiarrow
compositions to be the composite given in each case by Definition 21, and then appeal to the coherence result
to obtain the general multicategory compositions.

9 Conclusion

This paper has aimed to lay the foundations for work on multiary lenses, whether in the “propagation” form (in
the style of the original symmetric lenses [5]) or in “wide span” form (in the style of the spans of d-lenses of [6]).
To do that we need to have precise definitions of the equivalences that determine when two propagation style
lenses (or indeed two wide span style lenses) have the same behaviour and so should be viewed as representatives
of the same lens. Furthermore, those equivalences need to “play well” with composites and with constructions
which allow us to convert between the two styles. All that is done here, and the result is a bijection, Corollary 20,
that allows us to translate freely between the two forms.

With those foundational matters settled the paper turns to the question of how multiary lenses should be
composed, and what algebraic structure they and their composites might form. Aiming for broad generality,
we have worked with wide spans of aa-lenses, and shown how to define composites for those wide spans with
a closed left leg. Finally we demonstrate that those multiary lenses form a multicategory using the composites
calculated across their closed legs.

A final word about the title: Why the plural (Multicategories of Multiary Lenses)? We want to emphasise
that while we have isolated general classes of lenses that interact well and through their generality promise
wide applicability, we have also determined that adding many kinds of extra requirements to those lenses, for
example, that the component lenses are all closed, or that they satisfy (Reflect0) or (Reflect0*), we still obtain a
multicategory of such lenses. Furthermore, for workers who might have in mind certain compatibility relations K,
something that we have excluded from the analysis presented here, it is possible to look at submulticategories of
the multicategory of multiary lenses that contain those lenses that they consider acceptable for their application.

We especially want to emphasise that the work that began this study of multiary lenses, work which was
based on wide spans of d-lenses, is just a special case of the results finally presented here.
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