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Abstract. Automated Machine Learning is a research area which has gained a lot 

of focus in the recent past. But the required components to build an autoML sys-

tem is neither properly documented nor very clear due to the differences and the 

recentness of researches. If the required steps are analyzed and brought under a 

common survey, it will assist in continuing researches. This paper presents an 

analysis of the components and technologies in the domains of autoML, hyperpa-

rameter tuning and meta learning and, presents a checklist of steps to follow while 

building an AutoML system. This paper is a part of an ongoing research and the 

findings presented will assist in developing a novel architecture for an autoML 

system.  
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1 AutoML 

The umbrella term AutoML coined from ‘Automated Machine Learning’ [1] refers to 

the large scale automation of a wide spectrum of the machine learning process beyond 

the traditional model-creation such as data pre-processing, meta-learning [2–5], feature 

learning, model searching, hyperparameter optimization [6], training [7–9], workflows 

generation [9–12], data acquisition and reporting. These black-box learning machines 

gained popularity after ChaLearn initiated AutoML competitions [1] in 2015. Started 

as a ‘benchmark for automated machine learning systems that can be operated without 

any human intervention’ the challenge focused on automating hyperparameter tuning 

and model selection for classification learnings. 

Even though there were many promising systems emerged from these competitions 

and recently we have been introduced to some commercial level AutoML systems by 

Google [13] and H2O.ai [14], the majority of the concepts and researches are in very 

early stages [15]. Researchers have used varieties of statistical theories like regulariza-

tion, Bayesian priors [16], Minimum Description Length (MDL), Structural Risk Min-

imization (SRM) and genetic programming while further researches are required to find 

the best suiting techniques that are generic and works consistently. In this paper, the 

different components that are required to build an autoML system and the technologies 

available to develop those are explored. 

j
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In section 2, we present the methodology we used to conduct this survey and collect 

data. Section 3 covers the architecture designs proposed by researchers. Section 4 co-

vers the preprocessing techniques that can be automated. Section 5 deals with algorithm 

selection and meta learning methods to find best candidate algorithms. Section 6 covers 

hyperparameter optimization techniques used in this domain and their reviews. Section 

7 covers how to automate the evaluation of models to choose the best one. Section 8 

deals with how to benchmark the developed autoML system and in the last chapter 

conclusion is provided. 

2 Methodology 

We started gaining domain knowledge with a literature survey in the domain of autoML 

systems. We came across 48 such primary studies and identified the different ap-

proaches used for autoML in the available work. We short listed techniques used by the 

available work in order to achieve hyperparameter optimization, meta learning and al-

gorithm selection. These techniques were selected to be discussed in this paper, accord-

ing to the majority of use.  

3 AutoML Architecture 

Throughout the researches on the autoML domain, the final goal has always been to 

automate the entire pipeline of the machine learning. However, it has proved to be a 

difficult task as a whole. Thus several work has been conducted in automating at least 

some part of machine learning, with the intention of putting all these together at the 

end.  Liu [17], realized this limitation and came up with two categories to differentiate 

this. 

1. Narrow AutoML deals with partial automation or concentration of autoML systems, 

that is mainly fueled by commercial needs. 

2. Generalized AutoML aims to automate the entire process, which would lead way to 

Artificial General Intelligence and is predominantly seen in academic researches. 

According to him, even though most of the work available are narrow autoML, it is 

eminent to achieve pivotal progresses in generalized autoML. The same concept has 

been covered by Guyon et al [1] as well, who termed these two categories as semi-

automated and fully-automated autoML. With this understanding, more focus is given 

to generalized autoML in this paper.  

An autoML system will need to automate all the parts of machine learning in its ar-

chitecture. Das and Cakmak [18] came up with a requirement list that reflects this. It 

had moving and interconnected components of machine learning that needs to be auto-

mated including feature preprocessing, feature selection, model selection and hyperpa-

rameter optimization. They defined all the required components to achieve, full auto-

mation as follows, 



 

Table 1. Components in modal AutoML Architecture [18] 

Phases Components Methods 

Data  

Sources 

Historical data Databases, Flat files 

Real-time data Streaming data, Data providers (API) 

Data  

Processing 

Clean, format, quality 

check 

Find, replace, modify, delete 

Ensure accuracy and consistency 

Feature  

transformations 

Encoding, indexing, scaling, assembling, 

expanding, normalizing, binarization 

Feature selection 
Backward/forward elimination,  

vector slicing, chi-squared selection 

Model  

Training 

Algorithm selection Supervised, unsupervised, semi-supervised 

Evaluation Cross validation, performance metrics 

Hyperparameter  

Optimization 
Optimal hyperparameter settings 

Versioning Model and pipeline versioning 

Deployment 

Workload type Online, batch, streaming deployments 

Monitoring Handling model performance decay 

Continuous learning Re-training model as new data comes 

 

Though this covers all major aspects of machine learning, few important steps like 

train/test splitting, models ensembling and reporting are missed in this list. Most of the 

architectures proposed in autoML domain (AutoWeka, Hyperopt-Sklearn, Auto-

Sklearn, TPOT, H2O.ai) contains at least some subset of these components. Olson et al 

proposed an architecture [48] where these systems are arranged into different engines. 

Addition to visualization and graph engines that offers insights which are not listed in 

the above list, they also added a ‘Human Engine’, which takes human inputs for mainte-

nance of the autoML system. With this understanding of architecture, let’s analyze how 

each component can be developed. 

4 Automated preprocessing 

Raw data used in machine learning is often unclean, skewed and noisy. Cleaning data 

and feature transformations have proven to improve accuracy of machine learning sys-

tems substantially. Thus the first step of an AutoML system is data preprocessing. The 

following section covers some important preprocessing steps that can be automated at 

least to certain extent. 

Data transformation. For numerical data, some of the common processes to automate 

are, 

 scaling - standardization and normalization 

 missing values imputation - using global constant, using mean / median, using indi-

cator variable, predicting the most probable value or simply removing record 

 outlier detection: univariate - interquartile range and filtering, ‘Winsorizing’ or trim-

ming: multivariate - one class SVM, Local Outlier Factor (LOF) and isolation forest 



 binning – equal width binning, equal frequency binning; log and power transfor-

mations 

 identifier detection 

For categorical variables, some of the common processes are,  

 encoding - label encoding, one-hot encoding, frequency-based encoding, target 

mean encoding, binary encoding, hash encoding 

 replacing missing values with the mode 

Additionally, for other data types such as text or video, several other preprocessing 

techniques like tokenization, normalization or substitution are available. An interesting 

point to note is that, tree based supervised models such are random forests are able to 

handle feature or data abnormalities by themselves, whereas non-tree based supervised 

learning algorithms, are much sensitive to abnormalities.  

Feature selection. Some of the feature selection that can be done before creating a 

model are as follows, 

 Identifying highly correlated variables and treating them 

 Excluding features with low variance or univariate feature selection 

 Recursive feature elimination - Measuring information gain for the available set of 

features and choosing the top N features accordingly 

 Dimensionality reduction with PCA - transforming the data in the high-dimensional 

space to a space of fewer dimensions.  

And, if we are to do feature selection after creating baseline model, 

 Using linear regression and selecting variables based on p values 

 Using stepwise selection for linear regression and selecting the important variables 

 Feature selection using random forest - Using random forest and selecting the top N 

important variables 

 Feature generation - It is also possible to generate new features from the intrinsic 

data with techniques such as numerical feature generation, pairwise feature creation, 

categorical feature creation, temporal feature creation, etc. 

 

These preprocessing steps can improve efficiency and accuracy of the subsequent 

machine learning workflows. Several of these preprocessing can be decided to be used 

based on simple statistical metrics. For example, multi-collinearity between features 

can be found with Pearson’s Correlation Coefficients. These variables can be treated 

with stepwise regression or principle component analyses. Such automatic decision-

execution pairs can help build a powerful autoML system.  



 

5 Automated Algorithm Selection and Model Initiation 

Next step is to automatically find candidate algorithms suitable for the dataset. The 

categories of machine learning algorithms that needs to be considered are as follows,  

Table 2. Types of Machine Learning 

Machine Learning 

Supervised Learning 
Regression Algorithm 

Classification Algorithms 

Unsupervised Learning  

Semi supervised Learning  

Reinforcement Learning  

Transfer Learning  

 

There are other aspects data scientists worry about in algorithm selection, such as com-

putational complexity, differences in training and scoring time, linearity versus non-

linearity, etc. and it’s useful if these are to be considered while automating. The main 

quantitative techniques in this paradigm can be categorized as rules-based and meta-

learning. The following section discusses these techniques. 

5.1 Rules Based 

In rules based systems, we try to mimic how a data scientist manually does algorithm 

selection, which is a mixture of initial exploration of the dataset and his experience. 

Certain characteristics of the dataset and the domain of the dataset can suggest the pos-

sible candidates of algorithms to build machine learning experiments with. A rules sys-

tem can be implemented to reflect these characteristics with the help of many cheat 

sheets of algorithms publicly available in the internet. For example, Scikit Learn python 

package has a map [19] to help its users find the best classifier available in its package.  

Rules Based Machine Learning is a “method that identifies, learns, or evolves 'rules' to 

store, manipulate or apply” [20] for decision making mechanisms. Set of rules in the 

format {IF 'condition' THEN 'result'} makes up this rules system or knowledge base. In 

autoML space, characteristics can be modelled as conditions and algorithms as results. 

For example, in python language, Skope-rules is used to perform RBML. Under RBML, 

Learning Classifier Systems [21] uses genetic algorithm for discovery component and 

usual machine learning classifiers as learning component.  

Case Based Reasoning [22] solves new problems, based on the solutions of the past 

identical problems. It follows a four step method of retrieving, reusing, revising and 

retaining. Rule induction is a term to denote general area of ML where formal rules are 

extracted based on set of observations. In autoML landscape, all of these techniques 

can help build a rules system that can suggest algorithms based on the dataset properties 

and the domain the data is from. 



5.2 Meta Learning 

With metalearning (Machine Learning for meta-learning) [23, 24], we try to gain in-

sights from the metadata of the machine learning experiments. Results of each model 

training is stored along with its dataset and performance details and used in the future 

runs. There has been substantial interest in the meta learning space in the recent past 

and many autoML systems (TPOT, Auto-Sklearn) have integrated these. 

 

The first step in any meta learning solution is creating a meta-database. OpenML [25] 

is one such prominent database available now. These databases will contain information 

about datasets such as number of features, number of records, correlation of features, 

number of missing values, information about models such as algorithms, hyperparam-

eter spaces and also performance information such as running time and accuracy. These 

metadata can be learned with machine learning algorithms and best algorithm settings 

can be predicted for new datasets [26, 27]. It can also be used to suggest the initial 

hyperparameter settings to start modelling. Feurer et al [27] in their research gathered 

140 datasets from OpenML repository and created instantiation settings based on meta-

features using Bayesian optimization (SMAC with cross-validation) that checks empir-

ical performance for that dataset. Then, meta-features of new dataset are stripped and 

compared with L1 distances of offline datasets gathered before, to choose 25 nearest 

datasets and their parameter space. Optimization is then done starting from these ini-

tializations to get high model accuracies.  

5.3 Graphical Methods 

Algorithm selection is almost always backed by visualizing the dataset in graphical 

methods. These Exploratory Data Analysis (ETA) methods can be done in conjunction 

with other statistical methods. This helps one understand data beyond the statistical 

modelling or hypothesis testing procedures. The only issue with these methods are that 

these cannot be automated. This is done solely with the supervision of a human com-

ponent. But viewing these in the AutoML system as part of the configuration step or 

report generation step will give additional insight to the user. The following table gives 

an overview of such exploratory methods. 

Table 3. Graphical ETA methods 

Method Description Used To 

Ordina-

tion 

Mainly used in data clustering, groups 

similar multivariate objects near each 

other and dissimilar objects farther. Most 

common ordination technique is Principle 

Component Analysis (PCA). 

Very common and 

widely used. 

Median  

polish 

Uses the medians of the rows and columns 

to iteratively fit model for the data. 

Not sensitive to outliers 

but very simple method. 



 

Box plot Used in numerical data to depict quartiles 

and variabilities outside quartiles.   

To find spread, skew-

ness and outliers in the 

data 

Histogram Used in numerical data to accurately de-

pict distribution of the data. It represents 

the probability distribution of continuous 

variables, but is limited to a single variable 

per graph.    

Find density of distribu-

tions and one of seven 

tools of quality control 

[28]. 

Run Chart Used in time series data to display data in 

time sequence. Used as univariate graph-

ical method.   

Validate univariate data 

assumptions and find 

anomalies / outliers 

over time. 

Scatter 

Plot 

Drawn in Cartesian coordinates to com-

pare two variables of the data. It is possible 

to add more dimensions in terms of color 

codes or point shapes. 

Find correlation in data 

and is one of seven tools 

of quality control. 

Parallel  

Coordi-

nates 

Used to visualize high dimension geome-

try and multivariate data. It is closely re-

lated to time series graphs but it doesn’t 

have any time variables, thus do not have 

natural order.   

Find relationship be-

tween dimensions.   

Targeted 

projection 

pursuit 

Used in very complex data to find features 

or patterns of interest. 

Find ‘interestingness’ in 

data and as feature se-

lection method 

Now that we have analyzed several algorithm selection methods, the following table gives a 

summary of these techniques grouped under its three types. 

Table 4. Comparison of algorithm selection methods 

Technique Advantage Disadvantage Used researches 

Rules-

based 

Follows strict method-

ology. Easily interpret-

able. Mimics common 

human process. 

Not intelligent nor 

adaptable. 

- 

Meta-

learning 

Automated and adapta-

ble. Makes use of past 

learnings and data 

 

High processing power 

required. Proper dataset 

and periodical update is 

required. 

Hyperopt-Sklearn, 

AUTO-SKLEARN 

Graphical 

Methods 

Very intuitive and hu-

man explainable 

Non automatable and 

requires subject exper-

tise 

PennAI, H2O, 

Cloud offerings like 

GoogleML and Az-

ureML 



5.4 Model Selection 

After algorithm selection, the machine learning model and its features to learn will be 

customized. There are few quantitative methods data scientists use manually that can 

be automated as discussed below.  

Akaike information criterion (AIC) / Watanabe–AIC (WAIC) calculates the rela-

tive quality of models for a dataset compared to other models, thus can be used for 

model selection [29]. It uses the amount of information lost by the model as the param-

eter of quality. It is very common and widely used. 

Bayesian information criterion (BIC) [30] is very similar to AIC but is based on like-

lihood function. Model with smaller BIC value is considered the best. BIC cannot han-

dle high dimension model selection tasks and at times, is less effective than AIC [29]. 

Focused information criterion (FIC) is yet another method for selecting best model 

among possible competitors. Model with the best estimated precision is chosen. Unlike 

AIC or BIC, FIC [30] doesn’t find overall fitness of models, rather, on the parameter 

of primary interest that gives different estimates in all candidates.  

Mallows's Cp calculates fit of regression models, where a model with best subset of 

predictors among predictor variables, available for some outcome is chosen. Small 

value of Cp is considered to be more precise. Cp only works well in large sample sizes 

and can’t handle complex collection of models. 

Stepwise Regression (SR) chooses each feature in the dataset incrementally and finds 

accuracy of the models [33]. By following this for every feature, it chooses the set of 

features that increases accuracy of the models and removes others. This can be used as 

a feature selection mechanism. Typically, AIC, BIC, FDR or Mallows's Cp is used as 

the selection criterion. Stepwise regression if often criticized as data dredging and bi-

ased as it works on the data itself and favored over by ensembles. 

6 Automated Hyperparameter optimization 

In the entire machine learning landscape there are two types of parameters. 

 Model parameters that are learned by the algorithm while learning, thus does not 

need to be automated 

 Hyperparameters that needs to be set before beginning of the learning, thus needs to 

be automated 

Optimizing the hyperparameter is a function with the objective of minimizing 

the loss / cost of the algorithm, which in turn helps keep balance between the model 

bias and variance. This is essential in getting a low cross-validation error at the end of 

the experiment. While automating machine learning process, it is also expected to au-

tomate tuning or optimizing hyperparameters that best fits the dataset. In the following 

section analysis of hyperparameter optimization techniques are provided. 



 

6.1 Simple Search Approaches 

The most trivial techniques of hyperparameter tuning is grid search and randomized 

search.  

Grid Search. Grid search expects few set of values as parameter space and tries all 

combinations of these values to learn in brute force manner. Search will be guided by 

a metric, which is often cross validation error of the training data or evaluation on the 

test data. Grid search suffers from curse of dimensionality, because even when there 

are two hyperparameters and five distinct values of these parameters, it requires twenty-

five times of modelling and evaluation. Besides, there is no feedback or adjustment 

mechanism, thus the algorithm is highly unintelligent. 

Random Search. Random search [31] is very similar to grid search and does pretty 

much the same, but in a random combination of hyperparameters. It is proved to out-

perform Grid search, but performs poorly in real cases as there is not adjustment or 

feedback in the learning process based on the results of previous learning. 

Because of the limitations of simple search approaches came a second technique called 

‘Sequential Model based global Optimization’ (SMBO) [32, 33].  

6.2 Heuristic Search 

Sequential Model based global Optimization. In scenarios where the evaluation of 

fitness function is expensive and costly, these model-based systems evaluate fitness 

with a surrogate that is cheaper to calculate [34]. Among other options, Expected Im-

provement (EI) has turned out to be a good candidate for the surrogate fitness function.  

The concept is to use objective functions like Gaussian process to choose good hy-

perparameter values and then sequentially update values based on results. This makes 

use of the results of the previous iteration to find better hyperparameter values to try in 

the next iteration, thus, is considered smart.  

Bayesian-based hyperparameter optimization is one of SMBO technique that is 

widely used in the autoML systems. Bayesian optimization is proved to work much 

better than other alternatives, as it is able to reason about the quality of runs before they 

even start. It has been proven Gaussian process [16] based BO [Spearmint [35]] to per-

form better on low-dimension data and tree based BO to perform better on high dimen-

sion data [27]. Within tree based systems, random forest based SMAC (Sequential 

Model-based Algorithm Configuration) works better than another high performing sys-

tem, TPE (Tree-structured Parzen Estimator). SMAC is also faster as it uses cross val-

idation fold wise and removing poor parameter settings early in the optimizations.  

Building on top of Bayesian optimization, there has been other advancements as 

well. For example, the concept of meta-learning has been used to build the initial model 

for BO to optimize. By referring to the meta data of the hyperparameters and their per-

formance on past similar datasets, new parameter spaces are developed that are more 

likely to fit well. Other than BO, there are Random Online Aggressive Racing (ROAR) 

as well. 



6.3 Evolutionary Optimization  

In evolutionary optimization [34], evolutionary algorithms follow a process inspired by 

biological concept of evolution. It first creates a random hyperparameter population as 

much as one hundred. It starts evaluating these and gets their fitness functions. Based 

on these relative fitness values, parameters are ranked. Worst performing tuples of pa-

rameters are replaced by new ones generated through crossover and mutation. This is 

repeated until the performance is not improved. Though mainly used in deep learning 

tasks, these have started to be used in typical machine learning as well.  

In the recent times, there has been interests in developing techniques out of this 

standard scope, to achieve hyperparameter optimization. Genetic programming [36], 

transfer learning [37] and reinforcement learning [38] are some of the techniques used. 

Genetic programming is mainly used in neural networks and SVMs. Bandit-based ap-

proaches have been developed which uses small subsets of data to find settings space 

to try on complete data, making the process much more efficient. 

7 Automated Evaluation 

Typically, a model evaluation can contain statistical methods as well as the business 

rules specific for the problem. While the statistical methods are general to all learning 

problems, business rules will be tailor made to the question at hand. Even though busi-

ness rules can be skipped in the autoML system, it is essential to automate the statistical 

evaluation techniques. Along with it, there can also be other processes like refining 

models, re-training, and deployment to be automated. 

 

The following table gives an overview of few evaluation metrics that is used while 

training models. 

Table 5. Training evaluation metrics 

Description 

Advantage / Limitation Used if 

Hold-Out Validation: In a dataset with independently and identically distributed 

(IID) records, a small subset of random records is held out for validation. Model 

training is done with the large portion and the evaluation metrics are calculated with 

the smaller potion. A common practice is to subset 20% as validation set. 

   Very easy to subset, but since validation is done on 

the smaller subset, generalization error can be less reli-

able and higher variance. 

If the dataset is big 

enough to break into 

subsets. 

Cross-Validation / Out-of-Sample Testing: In this method, dataset is first divided 

into k number of folds. Iteratively we consider each fold as the held-out validation 

set and training is done on the rest of the folds. The overall performance is the aver-

age of all k folds. 

Much better metric than hold out validation. Can even 

be used in hyperparameter tuning to calculate perfor-

mance of tuples. 

If the dataset is very 

small or computer power 

is limited. 



 

The following table gives an overview of few evaluation metrics that is used while 

testing models in regression tasks. 

Table 6. Regression evaluation metrics 

Root Mean Square Error (RMSE / MSE): The most commonly used metric. It is 

defined as square root of the average squared distance between the actual score and 

the predicted score. In other words, sample standard deviation between predicted and 

observed values. It gives us the sense of how far the predictions were from actual 

values. Lower the RMSE better the model. 

Very common and widely used.  Always 

Mean Absolute Error (MAE): Similar to RMSE, but the absolute values of dis-

tances are taken. Thus all the individual differences are weighted equally which 

makes it a linear score. 

Easy to interpret and understand than RMSE. More 

robust to outliers.  

If interpretation is im-

portant. 

R Squared (R2): R2 tells how the selected independent variables explain variability 

in the dependent variables. Simply said, it tells how close the data are to the fitted 

regression line, which is also known as coefficient of determination. The higher R 

Squared means model fits well.   

Doesn’t necessarily tell if the model is bad or good. 

Just gives the relationship.  

In exploratory analysis. 

 

The following table gives an overview of few evaluation metrics that is used while 

testing models in classification tasks. 

Table 7. Classification evaluation metrics 

Accuracy: Tells how often classier makes correct prediction. Calculated as the ratio 

of number of correct predictions among total predictions. 

Very simple and widely used.  For simple metric. 

Confusion Matrix: Shows a detailed breakdown of correct classifications in classes. 

Presented as table of ground truth labels and predictions. 

More detailed than accuracy, thus can diag-

nose issues in dataset.   

For metric breakdown of indi-

vidual classes.  

Logarithmic Loss: Used when the classifier gives numeric probability as output 

instead of class.  It is considered as soft measurement as it contains details of how 

incorrect or how correct a prediction is and not just if it is correct.  

More tolerant to confidence values.   If output is numeric probability.  

Area Under the Curve: Shows the sensitivity of classifier by plotting the rate of 

true positives to the rate of false positives. Used mainly in binary classification. 

Greater the AUC means it’s a better model. 

Hard to interpret For binary classifications 



8 Benchmarking AutoML systems 

Once an autoML system is developed, it will have to be benchmarked against existing 

systems and manual procedures. Though it won’t be a component of the system itself 

and not required to be automated, it helps evaluate the built system. The following sec-

tion discusses three researchers and their benchmarking methods. 

Thronton et al [39] in their system Auto-WEKA, used 21 prominent bench mark 

datasets including 15 from the UCI repository with 70%-30% train-test splitting. Intel 

Xeon X5650 six-core processors, at 2.66GHz were used with RAM limit of 3GB for 

classification datasets to mimic typical data scientist settings.  Bootstrap sampling and 

cross validation were used to choose best setting.  

Feurer [27] in his project used 140 binary and multiclass classification sets with more 

than 1000 data points from OpenML. These datasets were of varied types like text, digit, 

gene, telescope and advertisement. He used balanced classification error rate instead of 

standard classification error since the data sets had imbalanced class distribution. Train-

ings were done on multiple controlled schemes like, with and without meta learning 

and, with and without ensembles. When testing a dataset, meta-data of only 139 other 

datasets were used according to leave-one-dataset-out method.  

Allen et al [40] in their benchmarking project used mean squared error and weighted 

F1 score for regression and classification tasks. They choose 57 classification and 30 

regression OpenML datasets. As the process was pretty extensive with as much as 

10,440 compute hours, they opted for an amazon web service distributed setup. Aver-

age of several different pairwise comparisons with different seed values were consid-

ered as the final performance score. 

9 Future Avenues and Conclusion 

This paper presented the steps to build an automated machine learning system starting 

from data preprocessing to model deployment. The different methods and technologies 

available to develop these systems and their review were also discussed. From the find-

ings, it is clear the algorithm selection and feature preprocessing components require 

more refinement from research community while hyperparameter tuning and meta 

learning spaces are explored actively. More technologies and statistical concepts unex-

plored in the autoML systems will make up the majority of future efforts while the 

knowledge of previous efforts need to be accumulated as knowledge hubs or meta da-

tabases. So far most of the researches are in the Python and Java languages while sta-

tistical languages like R can open up more options to explore. Since execution of mul-

tiple model trainings can take up high computational power, autoML systems needs to 

explore distributed task offloading mechanisms actively.  

With this knowledge of the autoML components, and how they can be improved, we 

hope to come up with an architectural style in near future, towards an efficient auto-

mated machine learning system.  
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