
An Extensive Checklist for Building AutoML Systems

Thiloshon Nagarajah1 and Guhanathan Poravi2

1 University of Westminster, New Cavendish Street, London, UK
2 Informatics Institute of Technology, Ramakrishna Road, Colombo 6, Sri Lanka

thiloshon@gmail.com

Abstract. Automated Machine Learning is a research area which has gained a lot

of focus in the recent past. But the required components to build an autoML sys-

tem is neither properly documented nor very clear due to the differences and the

recentness of researches. If the required steps are analyzed and brought under a

common survey, it will assist in continuing researches. This paper presents an

analysis of the components and technologies in the domains of autoML, hyperpa-

rameter tuning and meta learning and, presents a checklist of steps to follow while

building an AutoML system. This paper is a part of an ongoing research and the

findings presented will assist in developing a novel architecture for an autoML

system.

Keywords: AutoML, Hyperparameter, Meta-learning, Algorithm-Selection.

1 AutoML

The umbrella term AutoML coined from ‘Automated Machine Learning’ [1] refers to

the large scale automation of a wide spectrum of the machine learning process beyond

the traditional model-creation such as data pre-processing, meta-learning [2–5], feature

learning, model searching, hyperparameter optimization [6], training [7–9], workflows

generation [9–12], data acquisition and reporting. These black-box learning machines

gained popularity after ChaLearn initiated AutoML competitions [1] in 2015. Started

as a ‘benchmark for automated machine learning systems that can be operated without

any human intervention’ the challenge focused on automating hyperparameter tuning

and model selection for classification learnings.

Even though there were many promising systems emerged from these competitions

and recently we have been introduced to some commercial level AutoML systems by

Google [13] and H2O.ai [14], the majority of the concepts and researches are in very

early stages [15]. Researchers have used varieties of statistical theories like regulariza-

tion, Bayesian priors [16], Minimum Description Length (MDL), Structural Risk Min-

imization (SRM) and genetic programming while further researches are required to find

the best suiting techniques that are generic and works consistently. In this paper, the

different components that are required to build an autoML system and the technologies

available to develop those are explored.

j
Text Box
The 1st Interdisciplinary Workshop on Algorithm Selection and Meta-Learning in Information Retrieval (AMIR), 14 April 2019, Cologne, Germany. Editors: Joeran Beel and Lars Kotthoff. Co-located with the 41st European Conference on Information Retrieval (ECIR). http://amir-workshop.org/

In section 2, we present the methodology we used to conduct this survey and collect

data. Section 3 covers the architecture designs proposed by researchers. Section 4 co-

vers the preprocessing techniques that can be automated. Section 5 deals with algorithm

selection and meta learning methods to find best candidate algorithms. Section 6 covers

hyperparameter optimization techniques used in this domain and their reviews. Section

7 covers how to automate the evaluation of models to choose the best one. Section 8

deals with how to benchmark the developed autoML system and in the last chapter

conclusion is provided.

2 Methodology

We started gaining domain knowledge with a literature survey in the domain of autoML

systems. We came across 48 such primary studies and identified the different ap-

proaches used for autoML in the available work. We short listed techniques used by the

available work in order to achieve hyperparameter optimization, meta learning and al-

gorithm selection. These techniques were selected to be discussed in this paper, accord-

ing to the majority of use.

3 AutoML Architecture

Throughout the researches on the autoML domain, the final goal has always been to

automate the entire pipeline of the machine learning. However, it has proved to be a

difficult task as a whole. Thus several work has been conducted in automating at least

some part of machine learning, with the intention of putting all these together at the

end. Liu [17], realized this limitation and came up with two categories to differentiate

this.

1. Narrow AutoML deals with partial automation or concentration of autoML systems,

that is mainly fueled by commercial needs.

2. Generalized AutoML aims to automate the entire process, which would lead way to

Artificial General Intelligence and is predominantly seen in academic researches.

According to him, even though most of the work available are narrow autoML, it is

eminent to achieve pivotal progresses in generalized autoML. The same concept has

been covered by Guyon et al [1] as well, who termed these two categories as semi-

automated and fully-automated autoML. With this understanding, more focus is given

to generalized autoML in this paper.

An autoML system will need to automate all the parts of machine learning in its ar-

chitecture. Das and Cakmak [18] came up with a requirement list that reflects this. It

had moving and interconnected components of machine learning that needs to be auto-

mated including feature preprocessing, feature selection, model selection and hyperpa-

rameter optimization. They defined all the required components to achieve, full auto-

mation as follows,

Table 1. Components in modal AutoML Architecture [18]

Phases Components Methods

Data

Sources

Historical data Databases, Flat files

Real-time data Streaming data, Data providers (API)

Data

Processing

Clean, format, quality

check

Find, replace, modify, delete

Ensure accuracy and consistency

Feature

transformations

Encoding, indexing, scaling, assembling,

expanding, normalizing, binarization

Feature selection
Backward/forward elimination,

vector slicing, chi-squared selection

Model

Training

Algorithm selection Supervised, unsupervised, semi-supervised

Evaluation Cross validation, performance metrics

Hyperparameter

Optimization
Optimal hyperparameter settings

Versioning Model and pipeline versioning

Deployment

Workload type Online, batch, streaming deployments

Monitoring Handling model performance decay

Continuous learning Re-training model as new data comes

Though this covers all major aspects of machine learning, few important steps like

train/test splitting, models ensembling and reporting are missed in this list. Most of the

architectures proposed in autoML domain (AutoWeka, Hyperopt-Sklearn, Auto-

Sklearn, TPOT, H2O.ai) contains at least some subset of these components. Olson et al

proposed an architecture [48] where these systems are arranged into different engines.

Addition to visualization and graph engines that offers insights which are not listed in

the above list, they also added a ‘Human Engine’, which takes human inputs for mainte-

nance of the autoML system. With this understanding of architecture, let’s analyze how

each component can be developed.

4 Automated preprocessing

Raw data used in machine learning is often unclean, skewed and noisy. Cleaning data

and feature transformations have proven to improve accuracy of machine learning sys-

tems substantially. Thus the first step of an AutoML system is data preprocessing. The

following section covers some important preprocessing steps that can be automated at

least to certain extent.

Data transformation. For numerical data, some of the common processes to automate

are,

 scaling - standardization and normalization

 missing values imputation - using global constant, using mean / median, using indi-

cator variable, predicting the most probable value or simply removing record

 outlier detection: univariate - interquartile range and filtering, ‘Winsorizing’ or trim-

ming: multivariate - one class SVM, Local Outlier Factor (LOF) and isolation forest

 binning – equal width binning, equal frequency binning; log and power transfor-

mations

 identifier detection

For categorical variables, some of the common processes are,

 encoding - label encoding, one-hot encoding, frequency-based encoding, target

mean encoding, binary encoding, hash encoding

 replacing missing values with the mode

Additionally, for other data types such as text or video, several other preprocessing

techniques like tokenization, normalization or substitution are available. An interesting

point to note is that, tree based supervised models such are random forests are able to

handle feature or data abnormalities by themselves, whereas non-tree based supervised

learning algorithms, are much sensitive to abnormalities.

Feature selection. Some of the feature selection that can be done before creating a

model are as follows,

 Identifying highly correlated variables and treating them

 Excluding features with low variance or univariate feature selection

 Recursive feature elimination - Measuring information gain for the available set of

features and choosing the top N features accordingly

 Dimensionality reduction with PCA - transforming the data in the high-dimensional

space to a space of fewer dimensions.

And, if we are to do feature selection after creating baseline model,

 Using linear regression and selecting variables based on p values

 Using stepwise selection for linear regression and selecting the important variables

 Feature selection using random forest - Using random forest and selecting the top N

important variables

 Feature generation - It is also possible to generate new features from the intrinsic

data with techniques such as numerical feature generation, pairwise feature creation,

categorical feature creation, temporal feature creation, etc.

These preprocessing steps can improve efficiency and accuracy of the subsequent

machine learning workflows. Several of these preprocessing can be decided to be used

based on simple statistical metrics. For example, multi-collinearity between features

can be found with Pearson’s Correlation Coefficients. These variables can be treated

with stepwise regression or principle component analyses. Such automatic decision-

execution pairs can help build a powerful autoML system.

5 Automated Algorithm Selection and Model Initiation

Next step is to automatically find candidate algorithms suitable for the dataset. The

categories of machine learning algorithms that needs to be considered are as follows,

Table 2. Types of Machine Learning

Machine Learning

Supervised Learning
Regression Algorithm

Classification Algorithms

Unsupervised Learning

Semi supervised Learning

Reinforcement Learning

Transfer Learning

There are other aspects data scientists worry about in algorithm selection, such as com-

putational complexity, differences in training and scoring time, linearity versus non-

linearity, etc. and it’s useful if these are to be considered while automating. The main

quantitative techniques in this paradigm can be categorized as rules-based and meta-

learning. The following section discusses these techniques.

5.1 Rules Based

In rules based systems, we try to mimic how a data scientist manually does algorithm

selection, which is a mixture of initial exploration of the dataset and his experience.

Certain characteristics of the dataset and the domain of the dataset can suggest the pos-

sible candidates of algorithms to build machine learning experiments with. A rules sys-

tem can be implemented to reflect these characteristics with the help of many cheat

sheets of algorithms publicly available in the internet. For example, Scikit Learn python

package has a map [19] to help its users find the best classifier available in its package.

Rules Based Machine Learning is a “method that identifies, learns, or evolves 'rules' to

store, manipulate or apply” [20] for decision making mechanisms. Set of rules in the

format {IF 'condition' THEN 'result'} makes up this rules system or knowledge base. In

autoML space, characteristics can be modelled as conditions and algorithms as results.

For example, in python language, Skope-rules is used to perform RBML. Under RBML,

Learning Classifier Systems [21] uses genetic algorithm for discovery component and

usual machine learning classifiers as learning component.

Case Based Reasoning [22] solves new problems, based on the solutions of the past

identical problems. It follows a four step method of retrieving, reusing, revising and

retaining. Rule induction is a term to denote general area of ML where formal rules are

extracted based on set of observations. In autoML landscape, all of these techniques

can help build a rules system that can suggest algorithms based on the dataset properties

and the domain the data is from.

5.2 Meta Learning

With metalearning (Machine Learning for meta-learning) [23, 24], we try to gain in-

sights from the metadata of the machine learning experiments. Results of each model

training is stored along with its dataset and performance details and used in the future

runs. There has been substantial interest in the meta learning space in the recent past

and many autoML systems (TPOT, Auto-Sklearn) have integrated these.

The first step in any meta learning solution is creating a meta-database. OpenML [25]

is one such prominent database available now. These databases will contain information

about datasets such as number of features, number of records, correlation of features,

number of missing values, information about models such as algorithms, hyperparam-

eter spaces and also performance information such as running time and accuracy. These

metadata can be learned with machine learning algorithms and best algorithm settings

can be predicted for new datasets [26, 27]. It can also be used to suggest the initial

hyperparameter settings to start modelling. Feurer et al [27] in their research gathered

140 datasets from OpenML repository and created instantiation settings based on meta-

features using Bayesian optimization (SMAC with cross-validation) that checks empir-

ical performance for that dataset. Then, meta-features of new dataset are stripped and

compared with L1 distances of offline datasets gathered before, to choose 25 nearest

datasets and their parameter space. Optimization is then done starting from these ini-

tializations to get high model accuracies.

5.3 Graphical Methods

Algorithm selection is almost always backed by visualizing the dataset in graphical

methods. These Exploratory Data Analysis (ETA) methods can be done in conjunction

with other statistical methods. This helps one understand data beyond the statistical

modelling or hypothesis testing procedures. The only issue with these methods are that

these cannot be automated. This is done solely with the supervision of a human com-

ponent. But viewing these in the AutoML system as part of the configuration step or

report generation step will give additional insight to the user. The following table gives

an overview of such exploratory methods.

Table 3. Graphical ETA methods

Method Description Used To

Ordina-

tion

Mainly used in data clustering, groups

similar multivariate objects near each

other and dissimilar objects farther. Most

common ordination technique is Principle

Component Analysis (PCA).

Very common and

widely used.

Median

polish

Uses the medians of the rows and columns

to iteratively fit model for the data.

Not sensitive to outliers

but very simple method.

Box plot Used in numerical data to depict quartiles

and variabilities outside quartiles.

To find spread, skew-

ness and outliers in the

data

Histogram Used in numerical data to accurately de-

pict distribution of the data. It represents

the probability distribution of continuous

variables, but is limited to a single variable

per graph.

Find density of distribu-

tions and one of seven

tools of quality control

[28].

Run Chart Used in time series data to display data in

time sequence. Used as univariate graph-

ical method.

Validate univariate data

assumptions and find

anomalies / outliers

over time.

Scatter

Plot

Drawn in Cartesian coordinates to com-

pare two variables of the data. It is possible

to add more dimensions in terms of color

codes or point shapes.

Find correlation in data

and is one of seven tools

of quality control.

Parallel

Coordi-

nates

Used to visualize high dimension geome-

try and multivariate data. It is closely re-

lated to time series graphs but it doesn’t

have any time variables, thus do not have

natural order.

Find relationship be-

tween dimensions.

Targeted

projection

pursuit

Used in very complex data to find features

or patterns of interest.

Find ‘interestingness’ in

data and as feature se-

lection method

Now that we have analyzed several algorithm selection methods, the following table gives a

summary of these techniques grouped under its three types.

Table 4. Comparison of algorithm selection methods

Technique Advantage Disadvantage Used researches

Rules-

based

Follows strict method-

ology. Easily interpret-

able. Mimics common

human process.

Not intelligent nor

adaptable.

-

Meta-

learning

Automated and adapta-

ble. Makes use of past

learnings and data

High processing power

required. Proper dataset

and periodical update is

required.

Hyperopt-Sklearn,

AUTO-SKLEARN

Graphical

Methods

Very intuitive and hu-

man explainable

Non automatable and

requires subject exper-

tise

PennAI, H2O,

Cloud offerings like

GoogleML and Az-

ureML

5.4 Model Selection

After algorithm selection, the machine learning model and its features to learn will be

customized. There are few quantitative methods data scientists use manually that can

be automated as discussed below.

Akaike information criterion (AIC) / Watanabe–AIC (WAIC) calculates the rela-

tive quality of models for a dataset compared to other models, thus can be used for

model selection [29]. It uses the amount of information lost by the model as the param-

eter of quality. It is very common and widely used.

Bayesian information criterion (BIC) [30] is very similar to AIC but is based on like-

lihood function. Model with smaller BIC value is considered the best. BIC cannot han-

dle high dimension model selection tasks and at times, is less effective than AIC [29].

Focused information criterion (FIC) is yet another method for selecting best model

among possible competitors. Model with the best estimated precision is chosen. Unlike

AIC or BIC, FIC [30] doesn’t find overall fitness of models, rather, on the parameter

of primary interest that gives different estimates in all candidates.

Mallows's Cp calculates fit of regression models, where a model with best subset of

predictors among predictor variables, available for some outcome is chosen. Small

value of Cp is considered to be more precise. Cp only works well in large sample sizes

and can’t handle complex collection of models.

Stepwise Regression (SR) chooses each feature in the dataset incrementally and finds

accuracy of the models [33]. By following this for every feature, it chooses the set of

features that increases accuracy of the models and removes others. This can be used as

a feature selection mechanism. Typically, AIC, BIC, FDR or Mallows's Cp is used as

the selection criterion. Stepwise regression if often criticized as data dredging and bi-

ased as it works on the data itself and favored over by ensembles.

6 Automated Hyperparameter optimization

In the entire machine learning landscape there are two types of parameters.

 Model parameters that are learned by the algorithm while learning, thus does not

need to be automated

 Hyperparameters that needs to be set before beginning of the learning, thus needs to

be automated

Optimizing the hyperparameter is a function with the objective of minimizing

the loss / cost of the algorithm, which in turn helps keep balance between the model

bias and variance. This is essential in getting a low cross-validation error at the end of

the experiment. While automating machine learning process, it is also expected to au-

tomate tuning or optimizing hyperparameters that best fits the dataset. In the following

section analysis of hyperparameter optimization techniques are provided.

6.1 Simple Search Approaches

The most trivial techniques of hyperparameter tuning is grid search and randomized

search.

Grid Search. Grid search expects few set of values as parameter space and tries all

combinations of these values to learn in brute force manner. Search will be guided by

a metric, which is often cross validation error of the training data or evaluation on the

test data. Grid search suffers from curse of dimensionality, because even when there

are two hyperparameters and five distinct values of these parameters, it requires twenty-

five times of modelling and evaluation. Besides, there is no feedback or adjustment

mechanism, thus the algorithm is highly unintelligent.

Random Search. Random search [31] is very similar to grid search and does pretty

much the same, but in a random combination of hyperparameters. It is proved to out-

perform Grid search, but performs poorly in real cases as there is not adjustment or

feedback in the learning process based on the results of previous learning.

Because of the limitations of simple search approaches came a second technique called

‘Sequential Model based global Optimization’ (SMBO) [32, 33].

6.2 Heuristic Search

Sequential Model based global Optimization. In scenarios where the evaluation of

fitness function is expensive and costly, these model-based systems evaluate fitness

with a surrogate that is cheaper to calculate [34]. Among other options, Expected Im-

provement (EI) has turned out to be a good candidate for the surrogate fitness function.

The concept is to use objective functions like Gaussian process to choose good hy-

perparameter values and then sequentially update values based on results. This makes

use of the results of the previous iteration to find better hyperparameter values to try in

the next iteration, thus, is considered smart.

Bayesian-based hyperparameter optimization is one of SMBO technique that is

widely used in the autoML systems. Bayesian optimization is proved to work much

better than other alternatives, as it is able to reason about the quality of runs before they

even start. It has been proven Gaussian process [16] based BO [Spearmint [35]] to per-

form better on low-dimension data and tree based BO to perform better on high dimen-

sion data [27]. Within tree based systems, random forest based SMAC (Sequential

Model-based Algorithm Configuration) works better than another high performing sys-

tem, TPE (Tree-structured Parzen Estimator). SMAC is also faster as it uses cross val-

idation fold wise and removing poor parameter settings early in the optimizations.

Building on top of Bayesian optimization, there has been other advancements as

well. For example, the concept of meta-learning has been used to build the initial model

for BO to optimize. By referring to the meta data of the hyperparameters and their per-

formance on past similar datasets, new parameter spaces are developed that are more

likely to fit well. Other than BO, there are Random Online Aggressive Racing (ROAR)

as well.

6.3 Evolutionary Optimization

In evolutionary optimization [34], evolutionary algorithms follow a process inspired by

biological concept of evolution. It first creates a random hyperparameter population as

much as one hundred. It starts evaluating these and gets their fitness functions. Based

on these relative fitness values, parameters are ranked. Worst performing tuples of pa-

rameters are replaced by new ones generated through crossover and mutation. This is

repeated until the performance is not improved. Though mainly used in deep learning

tasks, these have started to be used in typical machine learning as well.

In the recent times, there has been interests in developing techniques out of this

standard scope, to achieve hyperparameter optimization. Genetic programming [36],

transfer learning [37] and reinforcement learning [38] are some of the techniques used.

Genetic programming is mainly used in neural networks and SVMs. Bandit-based ap-

proaches have been developed which uses small subsets of data to find settings space

to try on complete data, making the process much more efficient.

7 Automated Evaluation

Typically, a model evaluation can contain statistical methods as well as the business

rules specific for the problem. While the statistical methods are general to all learning

problems, business rules will be tailor made to the question at hand. Even though busi-

ness rules can be skipped in the autoML system, it is essential to automate the statistical

evaluation techniques. Along with it, there can also be other processes like refining

models, re-training, and deployment to be automated.

The following table gives an overview of few evaluation metrics that is used while

training models.

Table 5. Training evaluation metrics

Description

Advantage / Limitation Used if

Hold-Out Validation: In a dataset with independently and identically distributed

(IID) records, a small subset of random records is held out for validation. Model

training is done with the large portion and the evaluation metrics are calculated with

the smaller potion. A common practice is to subset 20% as validation set.

 Very easy to subset, but since validation is done on

the smaller subset, generalization error can be less reli-

able and higher variance.

If the dataset is big

enough to break into

subsets.

Cross-Validation / Out-of-Sample Testing: In this method, dataset is first divided

into k number of folds. Iteratively we consider each fold as the held-out validation

set and training is done on the rest of the folds. The overall performance is the aver-

age of all k folds.

Much better metric than hold out validation. Can even

be used in hyperparameter tuning to calculate perfor-

mance of tuples.

If the dataset is very

small or computer power

is limited.

The following table gives an overview of few evaluation metrics that is used while

testing models in regression tasks.

Table 6. Regression evaluation metrics

Root Mean Square Error (RMSE / MSE): The most commonly used metric. It is

defined as square root of the average squared distance between the actual score and

the predicted score. In other words, sample standard deviation between predicted and

observed values. It gives us the sense of how far the predictions were from actual

values. Lower the RMSE better the model.

Very common and widely used. Always

Mean Absolute Error (MAE): Similar to RMSE, but the absolute values of dis-

tances are taken. Thus all the individual differences are weighted equally which

makes it a linear score.

Easy to interpret and understand than RMSE. More

robust to outliers.

If interpretation is im-

portant.

R Squared (R2): R2 tells how the selected independent variables explain variability

in the dependent variables. Simply said, it tells how close the data are to the fitted

regression line, which is also known as coefficient of determination. The higher R

Squared means model fits well.

Doesn’t necessarily tell if the model is bad or good.

Just gives the relationship.

In exploratory analysis.

The following table gives an overview of few evaluation metrics that is used while

testing models in classification tasks.

Table 7. Classification evaluation metrics

Accuracy: Tells how often classier makes correct prediction. Calculated as the ratio

of number of correct predictions among total predictions.

Very simple and widely used. For simple metric.

Confusion Matrix: Shows a detailed breakdown of correct classifications in classes.

Presented as table of ground truth labels and predictions.

More detailed than accuracy, thus can diag-

nose issues in dataset.

For metric breakdown of indi-

vidual classes.

Logarithmic Loss: Used when the classifier gives numeric probability as output

instead of class. It is considered as soft measurement as it contains details of how

incorrect or how correct a prediction is and not just if it is correct.

More tolerant to confidence values. If output is numeric probability.

Area Under the Curve: Shows the sensitivity of classifier by plotting the rate of

true positives to the rate of false positives. Used mainly in binary classification.

Greater the AUC means it’s a better model.

Hard to interpret For binary classifications

8 Benchmarking AutoML systems

Once an autoML system is developed, it will have to be benchmarked against existing

systems and manual procedures. Though it won’t be a component of the system itself

and not required to be automated, it helps evaluate the built system. The following sec-

tion discusses three researchers and their benchmarking methods.

Thronton et al [39] in their system Auto-WEKA, used 21 prominent bench mark

datasets including 15 from the UCI repository with 70%-30% train-test splitting. Intel

Xeon X5650 six-core processors, at 2.66GHz were used with RAM limit of 3GB for

classification datasets to mimic typical data scientist settings. Bootstrap sampling and

cross validation were used to choose best setting.

Feurer [27] in his project used 140 binary and multiclass classification sets with more

than 1000 data points from OpenML. These datasets were of varied types like text, digit,

gene, telescope and advertisement. He used balanced classification error rate instead of

standard classification error since the data sets had imbalanced class distribution. Train-

ings were done on multiple controlled schemes like, with and without meta learning

and, with and without ensembles. When testing a dataset, meta-data of only 139 other

datasets were used according to leave-one-dataset-out method.

Allen et al [40] in their benchmarking project used mean squared error and weighted

F1 score for regression and classification tasks. They choose 57 classification and 30

regression OpenML datasets. As the process was pretty extensive with as much as

10,440 compute hours, they opted for an amazon web service distributed setup. Aver-

age of several different pairwise comparisons with different seed values were consid-

ered as the final performance score.

9 Future Avenues and Conclusion

This paper presented the steps to build an automated machine learning system starting

from data preprocessing to model deployment. The different methods and technologies

available to develop these systems and their review were also discussed. From the find-

ings, it is clear the algorithm selection and feature preprocessing components require

more refinement from research community while hyperparameter tuning and meta

learning spaces are explored actively. More technologies and statistical concepts unex-

plored in the autoML systems will make up the majority of future efforts while the

knowledge of previous efforts need to be accumulated as knowledge hubs or meta da-

tabases. So far most of the researches are in the Python and Java languages while sta-

tistical languages like R can open up more options to explore. Since execution of mul-

tiple model trainings can take up high computational power, autoML systems needs to

explore distributed task offloading mechanisms actively.

With this knowledge of the autoML components, and how they can be improved, we

hope to come up with an architectural style in near future, towards an efficient auto-

mated machine learning system.

References

1. Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Tin Kam Ho,

Macia, N., Ray, B., Saeed, M., Statnikov, A., Viegas, E.: Design of the 2015 Cha-

Learn AutoML challenge. Presented at the July (2015).

2. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter tun-

ing. Proceedings of the 30th International Conference on International Conference

on Machine Learning. 28, II–199--II–207 (2013).

3. Kim, J., Lee, S., Kim, S., Cha, M., Lee, J.K., Choi, Y., Choi, Y., Cho, D.-Y., Kim,

J.: Auto-Meta: Automated Gradient Based Meta Learner Search. 32nd Conference

on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

(2018).

4. Sun-Hosoya, L., Guyon, I., Sebag, M.: Algorithm Recommendation with Active

Meta Learning. IAL 2018 workshop, ECML PKDD, Sep 2018, Dublin, Ireland.

12 (2018).

5. Yang, C., Akimoto, Y., Kim, D.W., Udell, M.: OBOE: Collaborative Filtering for

AutoML Initialization. arXiv:1808.03233 [cs, stat]. (2018).

6. Guyon, I., Sun-Hosoya, L., Boulle, M., Es, H.J.: Analysis of the AutoML Chal-

lenge series 2015-2018. 46 (2018).

7. Costa, V.O., Rodrigues, C.R.: Hierarchical Ant Colony for Simultaneous Classi-

fier Selection and Hyperparameter Optimization. In: 2018 IEEE Congress on Evo-

lutionary Computation (CEC). pp. 1–8. IEEE, Rio de Janeiro (2018).

8. de Sá, A.G.C., Freitas, A.A., Pappa, G.L.: Automated Selection and Configuration

of Multi-Label Classification Algorithms with Grammar-Based Genetic Program-

ming. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., and

Whitley, D. (eds.) Parallel Problem Solving from Nature – PPSN XV. pp. 308–

320. Springer International Publishing, Cham (2018).

9. Wever, M., Mohr, F., Hüllermeier, E.: Automated Multi-Label Classification

based on ML-Plan. arXiv:1811.04060 [cs, stat]. (2018).

10. Gil, Y., Yao, K.-T., Ratnakar, V., Garijo, D., Steeg, G.V.: P4ML: A Phased Per-

formance-Based Pipeline Planner for Automated Machine Learning. Proceedings

of Machine Learning Research 1:1–8, 2018 ICML 2018 AutoML Workshop. 8

(2018).

11. Mohr, F., Wever, M., Hüllermeier, E.: ML-Plan: Automated machine learning via

hierarchical planning. Machine Learning. 107, 1495–1515 (2018).

12. Wever, M., Mohr, F., Hullermeier, E.: ML-Plan for Unlimited-Length Machine

Learning Pipelines. ICML 2018 AutoML Workshop. 8 (2018).

13. Le, Q., Zoph, B.: Using Machine Learning to Explore Neural Network Architec-

ture, https://ai.googleblog.com/2017/05/using-machine-learning-to-explore.html,

(2017).

14. AutoML: Automatic Machine Learning, http://docs.h2o.ai/h2o/latest-stable/h2o-

docs/automl.html, (2018).

15. Bogatinovski, J.: Automating machine learning for structured output prediction.

25 (2018).

16. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian Optimization of Ma-

chine Learning Algorithms. arXiv:1206.2944 [cs, stat]. (2012).

17. Liu, B.: A Very Brief and Critical Discussion on AutoML. arXiv:1811.03822 [cs].

(2018).

18. Das, S., Cakmak, U.M.: Hands-on automated machine learning: a beginner’s guide

to building automated machine learning systems using AutoML and Python.

(2018).

19. Scikit-learn: Choosing the right estimator, https://scikit-learn.org/stable/tuto-

rial/machine_learning_map/index.html.

20. Weiss, S.M., Indurkhya, N.: Rule-based Machine Learning Methods for Func-

tional Prediction. arXiv:cs/9512107. (1995).

21. Urbanowicz, R.J., Moore, J.H.: Learning Classifier Systems: A Complete Intro-

duction, Review, and Roadmap. Journal of Artificial Evolution and Applications.

2009, 1–25 (2009).

22. Agnar, A., Enric, P.: Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches. AI Communications. 39–59 (1994).

23. Feurer, M., Springenberg, J.T., Hutter, F.: Initializing Bayesian Hyperparameter

Optimization via Meta-Learning. AAAI’15 Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence. 1128–1135 (2015).

24. Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technol-

ogies. Artificial Intelligence Review. 44, 117–130 (2015).

25. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science

in machine learning. ACM SIGKDD Explorations Newsletter. 15, 49–60 (2014).

26. Komer, B., Bergstra, J., Eliasmith, C.: Hyperopt-Sklearn: Automatic Hyperparam-

eter Configuration for Scikit-Learn. PROC. OF THE 13th PYTHON IN SCIENCE

CONF. (SCIPY 2014). 7 (2014).

27. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:

Efficient and Robust Automated Machine Learning. NIPS’15 Proceedings of the

28th International Conference on Neural Information Processing Systems. 2,

2755–2763 (2015).

28. Tague, N.R.: The quality toolbox. ASQ Quality Press, Milwaukee, Wis (2005).

29. Burnham, K.P., Anderson, D.R.: Multimodel Inference: Understanding AIC and

BIC in Model Selection. Sociological Methods & Research. 33, 261–304 (2004).

30. Claeskens, G., Hjort, N.L.: The Focused Information Criterion. Journal of the

American Statistical Association. 98, 900–916 (2003).

31. Bergstra, J., Bengio, Y.: Random Search for Hyper-Parameter Optimization. Jour-

nal of Machine Learning Research. 13, 281–305 (2012).

32. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential Model-Based Optimization

for General Algorithm Configuration. In: Coello, C.A.C. (ed.) Learning and Intel-

ligent Optimization. pp. 507–523. Springer Berlin Heidelberg, Berlin, Heidelberg

(2011).

33. Daning, C., Hanping, Z., Fen, X., Shigang, L., Yunquan, Z.: Using Known Infor-

mation to Accelerate HyperParameters Optimization Based on SMBO.

arXiv:1811.03322 [cs, stat]. (2018).

34. Bergstra, J., Bardenet, R., Bengio, Y., Kegl, B.: Algorithms for Hyper-Parameter

Optimization. Curran Associates Inc. , USA ©2011. 2546–2554 (2011).

35. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. MIT

Press, Cambridge, Mass (2006).

36. Paris, L.: Genetic Programming/Auto-ML for One-Shot Learning. 5 (2018).

37. Quanming, Y., Mengshuo, W., Hugo, J.E., Isabelle, G., Yi-Qi, H., Yu-Feng, L.,

Wei-Wei, T., Qiang, Y., Yang, Y.: Taking Human out of Learning Applications:

A Survey on Automated Machine Learning. arXiv:1810.13306 [cs, stat]. (2018).

38. Li, Y.-F., Wang, H., Wei, T., Tu, W.-W.: Towards Automated Semi-Supervised

Learning. Association for the Advancement of Artificial Intelligence Conference

on Artificial Intelligence (AAAI-19). 33, 8 (2019).

39. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined

Selection and Hyperparameter Optimization of Classification Algorithms.

arXiv:1208.3719 [cs]. (2012).

40. Balaji, A., Allen, A.: Benchmarking Automatic Machine Learning Frameworks.

arXiv:1808.06492 [cs, stat]. (2018).

41. Cashman, D., Humayoun, S.R., Heimerl, F., Park, K., Das, S., Thompson, J.,

Saket, B., Mosca, A., Stasko, J., Endert, A., Gleicher, M., Chang, R.: Visual Ana-

lytics for Automated Model Discovery. arXiv:1809.10782 [cs]. (2018).

42. Shen, W.: DARPA’s Data Driven Discovery of Models (D3M) and Software De-

fined Hardware (SDH) Programs. In: Proceedings of the 2018 on Great Lakes

Symposium on VLSI - GLSVLSI ’18. pp. 1–1. ACM Press, Chicago, IL, USA

(2018).

43. Bergstra, J., Yamins, D., Cox, D.D.: Making a Science of Model Search: Hyperpa-

rameter Optimization in Hundreds of Dimensions for Vision Architectures. Pro-

ceedings of the 30 th International Conference on Ma- chine Learning, Atlanta,

Georgia, USA, 2013. JMLR: W&CP. 28, 9 (2013).

44. Liu, Z., Bousquet, O., Elisseeff, A., Escalera, S., Guyon, I., Jacques, J., Pavao, A.,

Silver, D., Sun-Hosoya, L., Treguer, S., Tu, W.-W., Wang, J., Yao, Q.: AutoDL

Challenge Design and Beta Tests-Towards automatic deep learning. CiML work-

shop @ NIPS2018, Dec 2018, Montreal, Canada. 7 (2018).

45. Mahpod, S., Keller, Y.: Auto-ML Deep Learning for Rashi Scripts OCR.

arXiv:1811.01290 [cs]. (2018).

46. Gijsbers, P.: Automatic construction of machine learning pipelines. 65 (2017).

47. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., Han, S.: AMC: AutoML for Model

Compression and Acceleration on Mobile Devices. 17 (2018).

48. Olson, R.S., Sipper, M., La Cava, W., Tartarone, S., Vitale, S., Fu, W.,

Orzechowski, P., Urbanowicz, R.J., Holmes, J.H., Moore, J.H.: A System for Ac-

cessible Artificial Intelligence. arXiv:1705.00594 [cs]. (2017).

