
Concolic Testing of Full-Stack JavaScript
Applications

Position Paper

Maarten Vandercammen
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
Maarten.Vandercammen@vub.be

Laurent Christophe
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
Laurent.Christophe@vub.be

Wolfgang De Meuter
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
Wolfgang.De.Meuter@vub.be

Coen De Roover
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
Coen.De.Roover@vub.be

Abstract—Recent years have seen the rise of so-called full-stack
JavaScript web applications, where both the client and the server
side of the web application are developed in JavaScript. Both
sides communicate with each other via asynchronous messages,
as enabled by e.g., WebSockets.

Traditionally, automated whitebox testing of web applications
involves testing both sides of the application in isolation from
each other. However, this approach lacks a holistic overview of
the entire web application under test. This leads to inaccuracies
in the types of program bugs that are reported by the tester, and
makes it more difficult for developers to understand how the
behaviour of the client may affect the behaviour of the server,
and vice versa. An interesting side-effect of the evolution towards
full-stack applications is that a single automated tester can be
developed that observes the execution of both parts of the system
simultaneously, thereby remedying the aforementioned issues. In
this paper, we examine the benefits and design challenges in
employing such a holistic approach towards testing full-stack
applications, and we demonstrate STACKFUL, the first concolic
tester for full-stack JavaScript applications.

Index Terms—Automated testing, Concolic testing, Full-Stack
JavaScript applications

I. INTRODUCTION

The World Wide Web is increasingly composed of dy-
namic web applications, such as online spreadsheets, chat
applications, and file sharing services. They are defined by
their heavy reliance on user interactions and their event-driven
nature. These web applications can usually be divided in
a client and a server side component. JavaScript has long
been a very attractive implementation language for building
the client side of these applications, but since the advent of
Node.js and its associated ecosystem, JavaScript is becoming
an increasingly attractive choice for developing the server side
of the web application as well. Web applications where the
entire technology stack is implemented in JavaScript are called
full-stack web applications. In these applications, the client
and the server often communicate with each other by using
JavaScript libraries such as WebSocket or Socket.IO.

The dynamic nature of JavaScript, featuring e.g., prototype-
based inheritance, dynamic code evaluation, and dynamic
property creation and deletion, makes it difficult to statically

verify the correctness of programs. In order to detect program
errors, developers therefore often rely either on manually
written tests or on automated testing tools that can find these
bugs for them.

Traditionally, automated whitebox testing tools test the
client and server side of the application in isolation from
each other. In this paper, we assert that the lack of a global
overview of the behaviour of the application is detrimental
to the accuracy of the bug reports and to the programmer’s
comprehension of how program bugs that are reported by
the tester may arise in practice. As an example, consider an
application where users fill in some input forms, and where
the data is then sent to the server. The client side of this
application could check whether the entered data is correct:
for example, when creating a new account for a website, a user
may be required to enter their e-mail address. The client could
check whether the entered string indeed refers to a valid e-
mail address by matching the string against a regex. However,
when testing the server of such an application in isolation
from the client, the tester is unaware of the fact that the e-
mail address passed in the registration form has already been
verified by the client, and may incorrectly assume that invalid
e-mail strings are possible, thereby leading the tester to flag
superfluous program errors.

Fortunately, the advent of full-stack applications has made
it possible to test both sides of the application simultaneously,
using the same testing tool, thereby making it possible to
alleviate these issues. Until now however, this advantage has
not yet been exploited by existing tools. In this paper, we
give a brief overview of STACKFUL, a concolic tester for full-
stack JavaScript applications, where the tester observes the
execution of both sides of the web application simultaneously.

II. BACKGROUND

We first give some background information on concolic
testing. Concolic testing [1], [2] is a technique for performing
automated testing of programs. The goal of the tester is
to iteratively explore all feasible paths in a program by
manipulating the values of non-deterministic parameters to

1



1 function twice(v){
2 return v * 2;
3 }
4 function f(x, y){
5 var z = twice(y);
6 if(z==x) {
7 if(x > y + 10) {
8 throw new Error();
9 }

10 }
11 }
12 var x = Math.random();
13 var y = Math.random();
14 f(x,y);

2*y == x

x > y+10

Error

 No 
error

False: 
2*y != x

True: 
2*y == x

False: 
2*y == x  ^ 
x <= y+10

True: 
2*y == x  ^ 
x > y+10

 No 
error

Fig. 1. A program and its symbolic execution tree, based on Figure 1 of [5]

the program, such as program arguments, user input, random
numbers, values that are read from files etc. [3], [4]. To this
end, the concolic tester simultaneously performs concrete and
symbolic execution. In each iteration, the concrete execution
steers the tester towards a certain program path and reports any
program error it might encounter, while the symbolic execution
gathers constraints on the program’s execution so the tester
may visit other program paths in subsequent iterations.

We illustrate the working of a concolic tester via the
JavaScript program depicted in Figure 1. In this program,
the variables x and y receive a random value. They are
symbolically represented as the input parameters x and y.
Suppose that in the first iteration, the concolic tester randomly
assigns the values 3 to x and 5 to y. These values cause the
condition on line 6 to be false, and the program terminates
without reporting an error. Simultaneously with this concrete
execution, the tester also collects the symbolic representation
of the conditional predicate that was encountered on line 6
in the form of a so-called path constraint, i.e., 2y 6= x.
After completing this iteration, the tester attempts to explore
another path, such as the path leading to the if statement
on line 7. To do this, the tester negates the path constraint,
resulting in the constraint 2y = x and feeds this new constraint
to an SMT solver, which solves it by assigning values to
x and y, e.g., 2 and 1. The concolic tester re-executes the
program and assigns the values 2 to x and 1 to y. Concrete
execution reaches the if-statement on line 7, then takes the
(non-existent) else-branch there, and the program terminates
again without an error. Meanwhile, the symbolic execution
gathered the path constraint 2y = x ∧ x <= y + 10. The
tester uses this path constraint to generate a new constraint
by negating the last conjunct of the constraint, resulting in
2y = x ∧ x > y + 10, and feeds the new constraint into
a solver. The solver outputs e.g., the values 30 and 15 for
x and y. A new iteration is started with these values, and
concrete execution reaches line 8, at which point the tester
can report the error encountered there. As no new branches
were encountered by the tester during this last run, the tester
concludes that it has explored all feasible program paths and
concolic testing terminates. In general, for realistic programs
with a large or even infinite number of possible program
paths, concolic testing is terminated either when its given time
budget is exceeded, or when the desired code coverage level
is reached. Figure 1 also shows the symbolic tree that can be
constructed from the path constraints.

Fig. 2. The Calculator motivating example.

III. MOTIVATING EXAMPLE

In this section, we introduce a simple, full-stack web appli-
cation that demonstrates how performing concolic testing in a
full-stack context enables more accurate reporting of program
errors than concolic testing that is performed on a per-process
basis. Figure 2 depicts the client side of a simple online
calculator where users may enter simple arithmetic expressions
of the form n1 op n2, where n1 and n2 are numbers, and op
is an arithmetic operator. When the user presses the button
labelled =, the expression is sent to the server where its result
is calculated. Afterwards, the server sends back this result to
the client, which in turn shows the number to the user.

Part of the source code for the client side is listed in
Figure 3. The client connects with the server by creating a
new WebSocket (line 2). Afterwards, it registers separate
event handlers for a mouse click on each individual button.
Importantly, the event handler for the button labelled = calls
the compute function (line 13). The client represents the
arithmetic expression as an object input (line 16) containing
three fields left, op, and right. compute checks whether
the expression that was entered is a valid arithmetic expression
and, if the user intents to perform a division, that the right
operand is not zero. If either check fails, the function shows
an appropriate error message to the user (line 19 and line 21).
Otherwise the function sends the input via the web-socket over
to the server (line 24). Finally, the client registers a callback
for messages from the server (line 27). The server sends these
messages to the client whenever it has completed a calculation.
The result parameter of this callback represents the result
of this calculation. Upon receiving such a message, the client
simply shows the result to the user (line 29).

Part of the server side code for this example is listed in Fig-
ure 4. The code creates a WebSocket server instance (line 2),
and makes this instance listen to incoming connections from
clients (line 3). When a new client connects, the corresponding
callback is triggered (lines 3-22) with the socket through which
the client is connected to the server passed as an argument
to the callback. The server registers a callback (line 5) on
the socket to listen for messages coming from the client that
contain the expression to compute. When the client sends such
a message, the server retrieves the left and right operand, as
well as the operator (line 7). The result is computed from these
three elements (lines 9-20), and sent back to the client via the
web-socket (line 21). Importantly, the server throws an error
when it detects a division by zero (line 15) or when it does
not recognize the operator to be applied (line 19).

2



1 // Connect with the server via a WebSocket
2 var ws = new WebSocket(’ws://localhost:3000’);
3 document.getElementById("0").addEventListener("click",
4 function (e) { // User clicked the button labelled ’0’
5 clickDigit(0); // The clickDigit function is elided
6 })
7 document.getElementById("+").addEventListener("click",
8 function (e) { // User clicked the button labelled ’+’
9 clickOperator("+");//The clickOperator function is elided

10 })
11 document.getElementById("=").addEventListener("click",
12 function (e) { // User clicked the button labelled ’=’
13 compute();
14 })
15 ... // Register event handlers for other buttons
16 var input = {left:0, op:"", right:0}; // Arithmetical exp
17 function compute() {
18 if (! isValidExpression(input)) {
19 resultElement.innerHTML = "Expression is invalid";
20 } else if (input.op === "/" && input.op === 0) {
21 resultElement.innerHTML = "Cannot divide by zero";
22 } else {
23 // Send the expression to the server
24 ws.send(input);
25 }
26 }
27 ws.onmessage = function(result) {
28 // Receive computation result from server
29 resultElement.innerHTML = result; // Show result to user
30 }

Fig. 3. Part of the client side code for the Calculator example.

1 // ... Setting up the server
2 var ws = new require(’ws’).Server({port: 3000});
3 ws.on("connection", function(socket) {
4 // A new client has connected
5 ws.onmessage = function(msg) {
6 // Receive input from client
7 var left = msg.left, op = msg.op, right = msg.right;
8 var result;
9 switch (op) {

10 case "+": result = left + right; break;
11 case "-": result = left - right; break;
12 case "*": result = left * right; break;
13 case "/": result =
14 if (right === 0) {
15 throw new Error("Dividing by zero");
16 }
17 result = left / right; break;
18 default:
19 throw new Error("Unknown operator");
20 }
21 socket.send(result); // Send the result back to the client
22 })

Fig. 4. Part of the server side code for the Calculator example.

A. Testing the Calculator

Traditional concolic testing would test both sides of the
application in isolation from each other. A traditional tester
examining the client should be able to exercise the event
handlers registered for all of the buttons, and even the callback
for receiving server messages (lines 27-30). This callback
could be exercised either by mocking the server and generating
messages containing random result values, or by actually
requiring the testing setup to run a server besides the client
process under test. In either case, a traditional concolic tester
should be able to achieve 100% line coverage for the client.

When testing the server side, the tester could again opt to
exercise the compute callback by mocking these messages.
As the server is being tested in isolation from the client, the
tester does not have any information on the contents of the
message, and can therefore only assume that the message may
contain any operand and operator. This would lead the tester
to falsely conclude that the errors on lines 15 and 19 are

feasible when in fact they can never occur in practice, as the
client checks the appropriate condition. Just as with the client,
a traditional concolic tester should hence be able to achieve
100% line coverage, but, importantly, it will also report these
two errors even though these discoveries are actually false
positives. The problem here is that the tester is not aware
of the restrictions imposed upon the client’s message by the
conditions checked by the client on lines 18 and 20.

IV. OVERVIEW

In this section, we provide an overview of STACKFUL and
detail how STACKFUL considers the execution of both sides
of the web applications. STACKFUL is implemented in the
ARAN-REMOTE dynamic analysis platform [6]. This platform
is specifically geared towards developing and applying dy-
namic analyses of distributed JavaScript processes. ARAN-
REMOTE instruments each of the processes in a distributed
application with both generic ARAN-REMOTE code, as well
as instrumentation code that is specific to the analysis, in our
case the concolic testing process, that is being applied. At run
time, ARAN-REMOTE spawns a central analysis process that
regulates the execution of the application.

Server

Client 1 Client 2 Client 3

Full-Stack
Application

Central
Analysis
Process

Test Executor

Test
Selector

Path
Constraints

Input Values &
Event Sequences

WebSocket
communication

Fig. 5. The architecture of STACKFUL.

The architecture of STACKFUL is depicted in Figure 5.
Components that are specific to the application under test are
shown in orange, while components that belong to STACKFUL
are shown in blue. The full-stack application under test is
divided in a server process and one or more client processes.
Both kinds of processes are instrumented by ARAN-REMOTE,
which applies both generic ARAN-REMOTE instrumentation,
e.g., to enable the resulting processes to communicate with the
central analysis process, and concolic testing-specific instru-
mentation, e.g., to perform symbolic execution simultaneously
alongside the concrete execution. The instrumented server
code is executed as a regular Node.js process, while the
instrumented client code is loaded by a browser, such as Fire-
fox or Chrome. The client and server processes continuously
communicate with each other by emitting Socket.IO messages.

A. Symbolic Execution

For the sake of brevity, we omit the details of how the code
resulting from the instrumentation performs the symbolic
execution. Conceptually, the generated code wraps every
computed value in the application in a tuple containing
the concrete value and a corresponding representation of

3



Clicked ‘0’ Clicked ‘/’ Clicked ‘0’ Clicked ‘=’ input.op == “/“

input.right == 0

No error

True

True

. . .
. . .

False
False

Full-stack approach

msg.op == “/“

msg.right == 0

Error

True

True

. . .
. . .

False
False

Testing server individually

Fig. 6. A path leading to a division-by-zero warning on the client (top), and a
path leading to a division-by-zero error on the server side (bottom left), with
the superfluous error that is reported (bottom right).

the symbolic value. In the Calculator application, when the
client sends the input object over to the server, STACKFUL
also wraps this object’s constituent fields. When the server
extracts the fields from input, the server’s instrumented
code therefore has access to the symbolic representation
of the input, and can use these symbolic values for the
remainder of the symbolic execution of the application. As
an example, suppose that an uninstrumented client would
transmit the object {left:42, op:"+", right:5} , then the
instrumented client would actually transmit:
{ left: { conc:42, symb:SymInt(42)},
op: {conc:"+",symb:SymString("+")},
right: {conc:5,symb:SymInt(5)} .

The server would then respond with a tuple of the form:
{conc: 47, symb: SymArithExp(SymInt(42), SymOp("+"),

SymInt(5)}
A concolic tester that lacks a holistic overview of both

sides of the Calculator application would not be able to
string together the symbolic values of both the client and the
server. For example, when testing the client program, the tester
would be incapable of symbolically representing the server’s
result value as the result of symbolically computing the
result of the left and right operand. The only feasibly
way of symbolically representing the server’s result, would be
as a generic symbolic input parameter. Figure 6 shows how
STACKFUL handles the Calculator example. When running
STACKFUL with the holistic approach, it finds a path that leads
to a division-by-zero operation (e.g., when the user presses the
0, /, 0, and = buttons), but this only leads to the warning that
is printed by the client (line 21), instead of an actual error. In
the bottom half of the figure, STACKFUL does not use the
holistic approach but instead tests the server individually: it
reports a superfluous division-by-zero error on the server side.

B. Concolic Tester

STACKFUL consists of the test executor, itself composed
of the client, server, and analysis processes, and the test
selector. The test selector maintains the symbolic execution
tree and suggests new program paths to explore. To this end,
the selector suggests concrete values for the symbolic input
parameters encountered in the path constraints, as well as
sequences of events to play out by the client and server pro-
cesses. The test executor is responsible for actually executing
the application and following the prescribed path. To build up
a holistic overview of the application’s execution, the client
and server processes communicate synchronously with the

central analysis process (depicted as dotted lines in Figure 5).
Specifically, this communication is tasked with the goals of
recording program behaviour and enforcing program paths.

C. Recording Program Behaviour
The client and server processes continuously communicate

to the analysis process all information that is relevant for
determining which program paths are available. This includes
information obtained via the symbolic execution, such as
symbolic condition predicates that a re encountered. However,
in event-driven programs such as web applications, a path
constraint must contain not only the symbolic conditional
predicates that were encountered, but also the sequence of
events that were triggered, as e.g., clicking button A before
clicking button B results in a different execution path than if
the reverse were to happen. To discover all feasible program
paths, STACKFUL therefore not only records the various
conditional predicates that were encountered in each process,
but also keeps track of the various event handlers that were
triggered, such as the mouse click events for the buttons in the
Calculator application. Furthermore, as STACKFUL works on
full-stack applications, it builds up a holistic overview of the
complete application’s execution. It is not sufficient to record
the various event handlers and symbolic conditions that are
encountered for one particular process, but the tester must
build up a global path constraint that incorporates conditions
and events from every process of the application under test.

D. Program Path Enforcement
The central analysis process continuously communicates

with the client and server processes to ensure that they follow
the program path that was prescribed by the test selector for
the current iteration. To enforce a particular program path,
the analysis process transmits the appropriate concrete value
for a symbolic input parameter whenever such a parameter is
encountered by the client or server processes. Furthermore,
the analysis regulates which events must be fired, and in
which order. To ensure that no race condition can arise while
executing the application, the analysis only fires an event
if the event handler for the previously fired event has been
terminated.

V. CONCLUSION AND FUTURE WORK

We have proposed a novel approach for automatically
testing full-stack JavaScript programs via concolic testing.
This approach has the advantage of symbolically representing
values more precisely, as values that are the result of handling
user input in e.g., the client are precisely represented in the
server, thus enabling the tester to filter out more superfluous
errors. A prototype of this approach is implemented in STACK-
FUL. In the future, we aim to first extend STACKFUL with
support for string operations, and having STACKFUL’s test
selector employ search strategies for selecting program paths
that more closely follow the state of the art [7] [8] [9]. After-
wards, we can commence a proper evaluation of STACKFUL
to consider the advantages and disadvantages of this holistic
approach for real-world full-stack JavaScript applications.

4



REFERENCES

[1] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing
engine for c. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, ESEC/FSE-13, pages
263–272, New York, NY, USA, 2005. ACM.

[2] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed
automated random testing. SIGPLAN Not., 40(6):213–223, June 2005.

[3] Ting Chen, Xiao-song Zhang, Shi-ze Guo, Hong-yuan Li, and Yue
Wu. State of the art: Dynamic symbolic execution for automated test
generation. Future Generation Computer Systems, 29(7):1758–1773,
2013.

[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
ACM Comput. Surv., 51(3), 2018.

[5] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
Three decades later. Commun. ACM, 56(2):82–90, February 2013.

[6] Laurent Christophe, Coen De Roover, Elisa Gonzalez Boix, and Wolf-
gang De Meuter. Orchestrating dynamic analyses of distributed processes
for full-stack javascript programs. In Proceedings of the 17th ACM SIG-
PLAN International Conference on Generative Programming: Concepts
and Experiences, GPCE 2018, Boston, MA, USA, November 5-6, 2018,
pages 107–118, 2018.

[7] Guodong Li, Esben Andreasen, and Indradeep Ghosh. Symjs: automatic
symbolic testing of javascript web applications. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22,
2014, pages 449–459, 2014.

[8] Hideo Tanida, Tadahiro Uehara, Guodong Li, and Indradeep Ghosh.
Automatic unit test generation and execution for javascript program
through symbolic execution. In The 9th International Conference on
Software Engineering Advances (ICSEA2014), 2014.

[9] Koushik Sen and Gul Agha. Automated systematic testing of open dis-
tributed programs. In Fundamental Approaches to Software Engineering,
9th International Conference, FASE 2006, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2006,
Vienna, Austria, March 27-28, 2006, Proceedings, pages 339–356, 2006.

5


