
Autoencoders for Next-Track-Recommendation

Michael Vötter, Eva Zangerle, Maximilian Mayerl, Günther Specht
Databases and Information Systems

Department of Computer Science
University of Innsbruck, Austria

{firstname.lastname}@uibk.ac.at

ABSTRACT
In music recommender systems, playlist continuation is the
task of continuing a user’s playlist with a fitting next track,
often also referred to as next-track or sequential recommen-
dation. This work investigates the suitability and applicabil-
ity of autoencoders for the task of playlist continuation. We
utilize autoencoders and hence, representation learning to
continue playlists. Our approach is inspired by the usage of
autoencoders to denoise images and we consider the playlist
without the missing next-track as a noisy input. Particu-
larly, we design different autoencoders for this specific task
and investigate the effects of different designs on the overall
suitability of recommendations produced by the resulting
recommender systems. To evaluate the suitability of rec-
ommendations produced by the proposed approach, we uti-
lize the AotM-2011 and LFM-1b datasets. Based on those
datasets, we show that n-grams are a well performing alter-
native baseline to kNN. Fruther, we show that it is possible
to outperform a kNN as well as an n-gram baseline with our
autoencoder approach.

1. INTRODUCTION
Recommender systems are applicable to a broad spectrum

of domains. The music domain is one such application area,
where one specific task is next-track music recommendation.
Next-track music recommender systems are recommender
systems that aim to find a fitting continuation (next-track)
for a given playlist. In general, a playlist is an ordered list of
music tracks, where the order is based on time, which means
that the first track in the list is expected to be listened first,
followed by the second track and so on. In other words, a
playlist is a time series of tracks.

Multiple different approaches have been proposed for the
playlist continuation task. As mentioned in [7], these ap-
proaches are based on a broad spectrum of techniques such
as Markov models, collaborative filtering, content similarity
as well as hybrids of them. Another traditional approach to
compute next-track recommendations is a nearest neighbor

31st GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 11.06.2019 - 14.06.2019, Saarburg, Germany.
Copyright is held by the author/owner(s).

search as used in multiple other papers [5, 8, 10].
In the field of music recommendation, deep learning ap-

proaches are usually used to include additional features such
as textual information [1] or content features [18] in the rec-
ommendation process. In contrast, only a few approaches
such as [9] directly apply neural network approaches to the
playlist continuation task. To fill this gap, we propose a
novel autoencoder-based approach that directly applies neu-
ral network-based representation learning on the playlist
continuation task. The simplest form of an autoencoder
is a neural network with a dense input layers and a dense
output layer which is trained in an unsupervised manner.
Our approach is inspired by the successful application of au-
toencoders for image denoising [19]. We consider the input
playlist (that has to be continued) as a noisy version of the
resulting playlist, where a next-track is added as a contin-
uation. We argue that representation learning methods are
more suitable to take advantage of the features contained in
the playlist structure than e.g., kNN because representation
learning methods are specifically designed to learn an effec-
tive representation and hence features [2]. To the best of
our knowledge, this is the first time that autoencoders are
utilized for the playlist continuation task, while the closest
related tasks, where autoencoders were used successfully, are
collaborative filtering tasks [15, 16, 21].

With this work, we investigate the general applicability
of autoencoders for the playlist continuation task. We re-
port the effects of different parameter settings on the overall
suitability of recommendations produced by the system and
answer the following research questions:

• RQ1: How can playlists be vectorized for an autoen-
coder?

• RQ2: Is there an alternative baseline to kNN that
better utilizes the order of tracks in a playlist?

• RQ3: Which autoencoder design produces competi-
tive results for the next-track music recommendation
task?

In [10], Kamehkhosh and Jannach propose to use hand-
crafted playlists to evaluate next-track music recommender
systems. Inspired by that, we use the AotM-2011 dataset
as well as the LFM-1b dataset to evaluate the suitability of
recommendations produced by our approach. Our experi-
ments show, that the resulting autoencoder approach pro-
duces competitive recommendations compared to the kNN
baseline.



The remaining sections of this paper are organized as fol-
lows. First, related work will be discussed in Section 2. Af-
terwards, in Section 3, we describe the algorithm to convert a
playlist into a corresponding vector and present our autoen-
coder approach. Following that, the experimental setup to
evaluate our approach by comparing it with a kNN baseline
is described in Section 4. Thereafter, we present the results
in Section 5 and finally draw a conclusion in Section 6.

2. RELATED WORK
This section gives an overview of next-track music recom-

mendation approaches.
We consider the playlist continuation task to be a special

case of the more general task of playlist generation. Ac-
cording to Bonnin and Jannach [5], the preconditions for
a playlist generation task are a background knowledge base
and target characteristics for the resulting playlist. Based on
that, a sequence of tracks (playlist) best fitting the charac-
teristics needs to be found. The playlist generation problem
may be converted to the playlist continuation problem by
considering all playlists/sessions as the background database
and using a target characteristic that describes a fitting track
given a playlist to be continued.

Sedhain et al. [15] introduced an autoencoder approach
for collaborative filtering. They report that their approach
outperforms current state-of-the-art methods such as matrix
factorization and neighborhood methods. Zhang et al. [21]
use an autoencoder as part of a hybrid collaborative fil-
tering framework able to produce personalized top-n rec-
ommendations and rating predictions. For their proposed
Semi-AutoEncoder approach, they removed the restriction
that the input and output layer must be of the same dimen-
sionality and choose to make the input layer wider than the
output layer. This allows to feed the autoencoder with addi-
tional feature vectors. In [9], Jannach and Ludewig compare
a recurrent neural network (RNN) approach with a kNN ap-
proach for the task of session-based recommendations. Their
findings show, that the RNN approach is inferior but they
believe that further research will probably lead to better
RNN configurations that are able to outperform the kNN
approach. Nevertheless, this shows that kNN is a strong
baseline to compare against.

Jannach et al. [8] present multiple extensions to the kNN
approach, which they compare to a kNN baseline. They
propose to take additional measures into account with a
weighted sum. By using the social tags that are assigned
to tracks by Last.fm1 users, they take content similarities
into account. Further, they suggest using numerical features
such as tempo, loudness and release year. Additionally, they
state that it is possible to take long-term content-based user
profiles into account.

The evaluation approach presented by McFee and Lanck-
riet [12] supports our assumption that playlists and their
tracks contain enough information to find fitting next-tracks
for a given playlist. They come up with the idea to consider
playlist generation as a natural language modeling problem
instead of an information retrieval problem. Therefore, they
consider a playlist to be equivalent to a sentence in a natural
language and tracks to be equivalent to words. Further, they
show how techniques known from natural language process-
ing can be used to evaluate playlist generation algorithms.

1https://www.last.fm/

[5, 1, 3, 7, 4]→


(1, 0, 1, 1, 1, 0, 1) binary

(2, 0, 3, 5, 1, 0, 4) order(
2
5
, 0, 3

5
, 5
5
, 1
5
, 0, 4

5

)
normalized-order

Figure 1: Playlist to encoding transformation.

3. METHODS
In this section, the proposed recommendation approach

based on an autoencoder is presented. First, we will explain
how playlists are converted into a vector, which is necessary
to use them as an input for the autoencoder. Afterwards, the
structure and implementation details of the autoencoder are
presented in Section 3.2. This includes the general training
procedure used and a modified autoencoder layout to over-
come overfitting by simulating the continuation task during
training.

3.1 Vector Encoding of Playlists
Playlists are usually represented as an ordered lists of

tracks. In the special case of the playlist continuation task,
the playlist used as input for the algorithms is often referred
to as “history”. This history can be considered a list of past
listening events.

To use playlists as an input for autoencoders it is necessary
to convert the ordered list into a vector representation. We
propose three different ways to determine the value of each
dimension of the generated playlist vector, as presented in
the following. An example of all three encodings is shown
in Figure 1.

Binary Encoding is the simplest encoding and it is inspired
by the (one-hot) vector encoding used in [9]. Each track
t in the playlist is converted to the corresponding one-hot
encoded track vector ~vtt where all dimensions, except the
one assigned to the track (index t), are set to 0 while the
dimension with index t is set to 1. After that, the playlist
vector ~p is computed by ~p =

∑
i
~vti. Note, that the ordering

information of the playlist is lost.
Order Encoding is a modified version of the Binary En-

coding and includes ordering information. We propose to
use the track’s index i in the playlist as the value of the di-
mension t assigned to the track. Therefore, the track vector
encoding contains 0 for all dimensions except of the dimen-
sion with index t, to which the value i is assigned. To obtain
a playlist vector ~p, all track vectors are summed up.

Normalized-Order Encoding is an extension to Order En-
coding and takes the length of a playlist into account. The
playlist vector ~p is normalized by the number of tracks con-
tained in the corresponding playlist, which reduces the ef-
fects of the playlist length on the encoding.

3.2 Autoencoders for Playlist Continuation
Autoencoders are an unsupervised learning method used

for representation learning [19]. In its simplest form, an
autoencoder is a neural network with one input layer, one
hidden layer and one output layer, where the input layer is
fully connected to the hidden code layer which again is fully
connected to the output layer.

In contrast to a representation learning task, where the
decoder is removed after the training phase to get the code
as an output of the network, we use the whole network



Figure 2: Training workflow for the autoencoders.

to compute recommendations. Recommendations are com-
puted based on the following procedure: Given a playlist
that should be continued with a fitting next-track as an in-
put, it is necessary to convert this playlist to a vector. Af-
terwards, this vector encoded playlist is used as an input for
the trained network that produces an output vector repre-
sented by the output layer. The output vector holds rating
values for all tracks (number of dimensions of the vector)
contained in the dataset, which was used to train the net-
work. This output vector is then converted to a prioritized
list of tracks by creating a list of indexes (track id’s) or-
dered by their corresponding value in the vector. The index
with the highest value is the first in the list while the index
with the lowest value is last. Further, all tracks contained
in the input playlist are removed from this prioritized list
to get next-track recommendations differing from the tracks
contained in the input playlist. Mostly, it is necessary to
compute a given number of possible continuations. This is
achieved by chopping off the list after the given number of
tracks.

Using Keras2, we implemented an autoencoder in Python.
Our implementation allows to set the number of epochs, the
hidden code layer activation function, the output layer acti-
vation function and the used loss function. The input layer
size equals the output layer size and is determined auto-
matically base on the dataset. Further, we decided to auto-
matically adapt the code layer size based on the input size
divided by 40, which is a result from preliminary experi-
ments. Keep in mind that dense layers are used to build the
network, which means that all nodes of one layer are con-
nected to each node of the neighboring layers. Our network
consists of one input layer followed by a filtering layer that
removes the last track of the input during training. This
filtering layer is followed by an optional dropout layer with
0.5 dropout rate that can be disabled. This layer is then
followed by a hidden code layer and an output layer.

To train the neural network, a training set is used, which
consists of an input and the expected output, which are
both the same for autoencoders. The autoencoder learning
method is depicted in Figure 2. To train an autoencoder-
based on the previously introduced playlist vectors, it first
is necessary to create an autoencoder with an input/output
layer size fitting the dimensionality of the playlist vectors in
the dataset. The training process is further configured to
use 1

64
of the total number of playlists the training set as

2https://keras.io/

its batch size and uses Adam as an optimizer because pre-
liminary experiments showed that these settings work well
and that they show similar performance compared to other
parameter choices.

This setup allows to compare different parameter config-
urations of an autoencoder where the basic structure of the
used neural network, which can be seen in the center part
of Figure 2, remains the same.

4. EXPERIMENTS
In this section, we present the setup used for the con-

ducted experiments to evaluate the suitability of recom-
mendations produced by the autoencoder-based approach
in comparison to a kNN baseline. In Section 4.1, we intro-
duce the used datasets. Thereafter, in Section 4.2 the kNN
baseline recommender is introduced. Followed by an expla-
nation of the n-gram baseline in Section 4.3, continued by
the overall experimental setup in Section 4.4.

4.1 Datasets
To evaluate the recommender systems, we aim for datasets

that are based on user interaction such as listening logs
and playlists because next-track music recommender sys-
tems must satisfy the needs of users. Along the lines of
previous work [12, 13, 4, 5, 8, 7, 9], we use datasets based
on the data gathered from the two music platforms Last.fm3

and Art of the Mix4.
Based on the LFM-1b dataset [14] gathered from Last.fm,

listening sessions were extracted by Jacob Winder in [20].
These sessions are created by assuming that two listening
events of a single user belong to the same listening session
if there are no more than 30 minutes between them. The
resulting sessions are further filtered. All successive occur-
rences of the same track are merged into one occurrence.
After doing so, all sessions of length one are dropped.

This results in approximately 62 million sessions which we
filtered further. In a first step, a session chunk containing
the first 3 million sessions with a minimum length of three
was created. This chunk shows a high number of different
tracks. Reducing the number of tracks contained in a dataset
is an important step to keep the size of the resulting neural
network low enough to train it in reasonable time. This
was achieved by dropping all playlists that contain rarely
occurring tracks. We dropped all playlists containing tracks
with 840 or fewer occurrences.

Further, we use the AotM-2011 dataset [13] provided as a
Python pickle export5 by Vall et al. [17], as the AotM dataset
is often used in literature. Instead of using their split, we
merged the training and test set and used five-fold cross-
validation, as we also applied five-fold cross-validation on the
LFM-1b based dataset. The AotM-2011 dataset contains far
fewer playlists and far more tracks than the LFM-1b based
datasets (see Table 1). This leads to a playlists/track ratio
of 0.220 which is substantially smaller than the ratio of the
LFM-1b based datasets.

4.2 Baseline kNN Recommender Systems
A k-Nearest Neighbors (kNN) approach [5] is used as on of

the baseline for our experiments. We have chosen kNN as it

3http://www.last.fm
4http://www.artofthemix.org
5https://git.io/fhNfZ



Table 1: Detailed dataset description.

Dataset Playlists Tracks Playlists/Track

LFM-1b 20,824 2,673 7.790

AotM 2,715 12,355 0.220

has been used for the playlist continuation task in multiple
other papers such as [5, 8, 7, 10].

The basic idea behind kNN is to find k different items that
are the nearest neighbors of a given item. Neighborhood
of items in general is defined based on a distance-function,
which allows to take different properties into account. Fur-
ther, it is necessary to get to a conclusion from those k
neighbors which can, for example, be done with a majority
vote [11].

In [10], a binary cosine similarity is used as the distance-
function. We run a grid search with k’s of 10, 20, 50, 100,
200 and 300. We further include the three different ranking
functions cosine similarity, item-item similarity and tf-idf
similarity defined by the kNN implementation of the implicit
Python package6 (version 0.3.8) in the grid search.

4.3 Baseline N-Gram Recommender System
N-grams are a common statistical model in natural lan-

guage processing. This technique is for example used in [3]
for word predictions. Instead of using sequences of words
in sentence, we use sequences of tracks in a playlist. The n
parameter specifies the number of successive tracks that are
taken into account by the model.

Therefore, the simplest model is a unigram model (n = 1)
which only counts track occurrences in playlists.

Increasing the number n of the n-gram model makes it
possible to consider the previous n − 1 tracks for the pre-
diction by calculating probabilities as given in the following
equation:

Pn-gram

(
ti|ti−(n−1)

)
=

F
(
ti−(n−1), . . . , ti

)
F
(
ti−(n−1), . . . , ti−1

) (1)

where ti is the ith track in a sequence of tracks t1, t2, . . . , tn.
F (seq) is the frequency of occurrences of a given sequence
of tracks seq in the training set. Ranking the tracks by their
probabilities (highest first) allows to make predictions based
on the probabilities learned by an n-gram model.

4.4 Experimental Setup
We used scikit-learn7 to run a grid search on the parame-

ters of the approaches. To ensure that the reported results
are not bound to a specific train-test split of the datasets, we
run a five-fold cross-validation. The k-fold splitting proce-
dure of scikit-learn was used with a fixed random state (seed)
to ensure the reproducibility and comparability of the re-
sults. The metrics used for the evaluation are recall (r) and
mean reciprocal rank (mrr).

For the evaluation of all recommender systems, a two-step
process is used for each of the two presented datasets. In
the first step, each recommender system is trained using the
training data. For this purpose, a new instance of the rec-
ommender system is created for each run and then trained

6https://pypi.org/project/implicit/0.3.8/
7https://scikit-learn.org/

using the training procedure. The second step of the evalua-
tion process computes recommendations with the previously
trained recommender. Therefore, each playlist in the train-
ing set is decomposed into a history (all tracks except the
last one) and the last track [6, 10]. The history is used as
input for the recommender system, while the last track is
the expected recommendation, based on which the metrics
are computed. Recommendation tests of different length are
considered to get an impression of the effects of the recom-
mendation test length.

The autoencoder implementation presented in Section 3.2
has a high degree of freedom in terms of modifiable parame-
ters. Therefore, we decided to fix the reduction factor (code
layer size), the batch size and the optimizer. The used val-
ues were obtained from preliminary experiments. Based on
the knowledge gained from those preliminary experiments
we determined value ranges for the other parameters used
in the grid search.

5. RESULTS
In the following, we first report the recommendation suit-

ability of the different encoding types in Section 5.1. After
that, the results achieved by the n-gram baseline are shown
in Section 5.2. Finally, we compare the suitability of recom-
mendations produced by our approach on different datasets
in Section 5.3.

5.1 Encoding Type
In a first evaluation step, the recommendation suitabil-

ity of the different encoding types introduced in Section 3.1
was compared using the kNN baseline, based on the AotM
and LFM-1b datasets. Table 2 shows the results for kNN
using the item-item distance metric. We observe that the
normalized-order encoding outperforms both other encod-
ings on both datasets and for different values of k. Interest-
ingly, order encoding without normalization has a negative
effect on the performance of the kNN implementation. This
can be explained by the fact that the length of a playlist is
encoded as well. In addition, order encoding has a larger
vector space than binary and normalized-order encoding as
the values in each dimension have a bigger range. Due to
space reasons we do not include results for the cosine and tf-
idf distance metric and other values of k, as these show that
normalized-order encoding works best. Further experiments
showed, that the Autoencoders show similar behavior when
the encoding type is changed.

Based on these findings, we argue that the normalized-
order encoding should be used among the three encodings
introduced in Section 3.1, which also answers RQ1. There-
fore, we use normalized-order encoding for all further eval-
uations.

5.2 N-Gram Baseline
To evaluate the suitability of an n-gram model we de-

cided to compare a bigram (n = 2) and a trigram (n = 3)
model with the best performing kNN (found using a grid
search) configuration on each dataset. The kNN baseline
using the item-item as a distance metric with 20 neigh-
bors (kNNi20) works best on the AotM dataset while the
cosine distance with 50 neighbors (kNNc50) works best on
the LFM-1b dataset. In addition, we give the results of a
unigram (n = 1) model that always recommends the most
popular tracks.



Table 2: Impact of encoding types measured as re-
call (r) and mean reciprocal rank (mrr) of kNN.

Dataset Encoding k
r/mrr recall mrr

@1 @20 @20

AotM

binary
20 0.022 0.056 0.029

200 0.022 0.062 0.031

order
20 0.025 0.057 0.031

200 0.025 0.060 0.032

norm.-order
20 0.027 0.062 0.035

200 0.027 0.065 0.035

LFM-1b

binary
20 0.471 0.886 0.593

200 0.471 0.864 0.590

order
20 0.435 0.885 0.556

200 0.437 0.856 0.556

norm.-order
20 0.618 0.883 0.695

200 0.619 0.866 0.694

Table 3, shows that a bi- and trigram is able to outperform
a unigram model. Further, it can be seen that those n-gram
models work much better on our LFM-1b dataset variation
than on the AotM dataset. This can be lead back to the
fact that each track on average occurs in 0.22 playlists in the
AotM dataset compared to 7.79 occurrences in the LFM-1b
dataset, as stated in Table 1. Therefore, common sequences
of tracks among playlists are more likely in the LFM-1b
dataset than in the AotM dataset. We argue that this is
also the reason why the absolute values of all metrics differ
that much when comparing the results on both datasets.
Compared to both kNN baselines it can be seen that the n-
gram models work better on the LFM-1b dataset especially
for short recommendation lengths. In contrast, they are less
effective on the AotM dataset than kNN models.

It can be seen that n-gram models form a strong baseline
for the LFM-1b dataset. Note that the kNN models operate
on the normalized-order encoding while the n-gram models
utilize the track sequences directly without any encoding,
which answers RQ2.

5.3 Autoencoder Approach
In Table 3 we depict the results of our autoencoder ap-

proach in comparison to the kNN and n-gram baseline. The
results show, that it is possible to outperform a kNN base-
line on both datasets using the proposed autoencoder ap-
proach. This is especially true for longer recommendation
lengths. To give a better overview of the capabilities of our
autoencoder approach we give the results of four autoen-
coder configurations. To distinguish the different parameter
configurations of our autoencoder approach we decided to
name each configuration (AE1–AE4), where we report re-
sults. For each dataset we include results for one autoen-
coder including the dropout layer (see Section 3.2) and one
without dropout. AE1 without the dropout layer and AE2
with the dropout layer are respectively the best performing
autoencoder configurations for the AotM dataset, while AE3
(without dropout) and AE4 (with dropout) perform best on
LFM-1b according to the mrr@1. AE1 uses tanh as the
code layer and output layer activation function with cosine
proximity as the loss function and is trained over 5 epochs.
AE2 utilizes relu as the code layer activation and softmax
as the output layer activation with categorical crossentropy

Table 3: Performance of different recommender sys-
tems (RecSys) measured as recall (r) and mean re-
ciprocal rank (mrr).

Dataset RecSys
r/mrr recall mrr

@1 @5 @20 @5 @20

AotM

unigram 0.001 0.004 0.016 0.002 0.003

bigram 0.015 0.027 0.031 0.020 0.020

trigram 0.015 0.015 0.015 0.015 0.015

kNNi20 0.027 0.044 0.062 0.033 0.035

kNNc50 0.018 0.024 0.036 0.020 0.022

AE1 0.028 0.048 0.076 0.035 0.038

AE2 0.028 0.045 0.073 0.035 0.039

AE3 0.027 0.045 0.080 0.034 0.037

AE4 0.027 0.045 0.069 0.034 0.036

LFM-1b

unigram 0.004 0.014 0.046 0.008 0.011

bigram 0.748 0.841 0.881 0.784 0.788

trigram 0.727 0.771 0.775 0.746 0.746

kNNi20 0.619 0.786 0.883 0.619 0.695

kNNc50 0.635 0.799 0.869 0.635 0.708

AE1 0.391 0.684 0.806 0.500 0.515

AE2 0.619 0.788 0.848 0.686 0.693

AE3 0.650 0.795 0.849 0.708 0.714

AE4 0.647 0.806 0.855 0.711 0.717

loss and was trained over 40 epochs. AE3 and AE4 are both
trained over 40 epochs use tanh as the code layer activation
and cosine proximity as loss. While AE3 is configured with a
softmax output activation, AE4 is configured to use sigmoid
for output activation.

It can be seen in the results that autoencoders outperform
both the kNN and n-gram baselines on the AotM dataset
while they are not able to outperform n-gram models on the
LFM-1b dataset. Surprisingly, AE1 works best on AotM
when trained for 5 epochs. While AE2, AE3 and AE4 reveal
similar results per dataset AE1 only produces comparable
results on the AotM dataset which answers RQ3. One pos-
sible explanation is that it overfits on the particular training
set which is tried to be prevented using a dropout layer.

In the above section, the recommendation suitability im-
pact of multiple configurations of an autoencoder were pre-
sented. Additionally, results of the best performing config-
urations on different datasets are given. The results show,
that autoencoders can be used for the playlist continuation
tasks when configured correctly.

6. CONCLUSIONS
In this work, we proposed a novel autoencoder approach

for the playlist continuation task. To use playlists as an
input for autoencoders, we introduced a procedure to encode
playlists as vectors. The evaluation shows that the proposed
autoencoder approach outperforms a basic kNN approach.
Particularly, the results show that this is the case regardless
of the playlists/track ratio of the used dataset.

This work solely focuses on determining if an autoen-
coder approach can be used for the playlist continuation
task. We showed that outperforming basic kNN is possi-
ble for datasets, that we consider small in comparison to
the amount of data given in a real-world scenario. One
possible source of improvement is the training procedure.



Autoencoders are usually trained to reconstruct the input
which we modified slightly. We introduced a filtering layer
in the training phase that removes the last track of the in-
put. This trains the autoencoder to “reconstruct” playlists
including the last track (next-track) filtered in the input.
Additionally, it would be possible to specifically designing
a loss function for the continuation task. Strub et al. [16]
present a loss function that disregards unknown values to
train autoencoders as a collaborative filtering method. Ap-
plying a similar loss function to our training procedure is
part of future work.

Additionally, a more advanced training procedure could
lead to a well performing deep autoencoder. One way of
creating a deep autoencoder would be to first train an au-
toencoder with one input and one output layer (as the ones
proposed in this work) and then use the learned code as an
input to train another autoencoder. After that, it is possible
to split the first autoencoder into the encoder and decoder
parts and insert the second autoencoder in between. The
resulting autoencoder then can be fine-tuned and extended
in the same way. This process is like the one proposed by
Vincent et al. [19], where they stack denoising autoencoders.
Using such an advanced training procedures for deep autoen-
coders is part of future work.

In addition, a user-study to evaluate the approaches should
be conducted in future work. This is important to get an
impression of the user-perceived quality of the approaches.

7. REFERENCES
[1] T. Bansal, D. Belanger, and A. McCallum. Ask the

GRU: Multi-task Learning for Deep Text
Recommendations. In 10th ACM Conf. on Rec. Sys.,
RecSys, pages 107–114, 2016.

[2] Y. Bengio, A. Courville, and P. Vincent.
Representation Learning: A Review and New
Perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8):1798–1828, 2013.

[3] S. Bickel, P. Haider, and T. Scheffer. Predicting
Sentences using N-Gram Language Models. In
Empirical Methods in NLP, 2005.

[4] G. Bonnin and D. Jannach. Evaluating the quality of
playlists based on hand-crafted samples. In 14th Conf.
of the Intl. Society for Music Information Retrieval,
ISMIR, pages 263–268, 2013.

[5] G. Bonnin and D. Jannach. Automated Generation of
Music Playlists: Survey and Experiments. ACM
Comput. Surv., 47(2):26:1–26:35, 2014.

[6] S. Craw, B. Horsburgh, and S. Massie. Music
Recommenders: User Evaluation Without Real Users?
In 24th Intl. Joint Conf. on Artificial Intelligence,
IJCAI. AAAI, 2015.

[7] D. Jannach, I. Kamehkhosh, and G. Bonnin. Biases in
Automated Music Playlist Generation: A Comparison
of Next-Track Recommending Techniques. In 24th
Conf. on User Modeling, Adaptation and
Personalization, UMAP, pages 281–285. ACM, 2016.

[8] D. Jannach, L. Lerche, and I. Kamehkhosh. Beyond
”Hitting the Hits”: Generating Coherent Music
Playlist Continuations with the Right Tracks. In 9th
ACM Conf. on Rec. Sys., RecSys, pages 187–194.
ACM, 2015.

[9] D. Jannach and M. Ludewig. When Recurrent Neural

Networks Meet the Neighborhood for Session-Based
Recommendation. In 11th ACM Conf. on Rec. Sys.,
RecSys, pages 306–310. ACM, 2017.

[10] I. Kamehkhosh and D. Jannach. User Perception of
Next-Track Music Recommendations. In 25th Conf.
on User Modeling, Adaptation and Personalization,
UMAP, pages 113–121. ACM, 2017.

[11] J. M. Keller, M. R. Gray, and J. A. Givens. A fuzzy
K-nearest neighbor algorithm. IEEE Transactions on
Sys., Man, and Cybernetics, SMC-15(4):580–585,
1985.

[12] B. McFee and G. Lanckriet. THE NATURAL
LANGUAGE OF PLAYLISTS. In 12th Intl. Society
for Music Information Retrieval Conf., ISMIR, 2011.

[13] B. McFee and G. R. Lanckriet. Hypergraph Models of
Playlist Dialects. In 13th Intl. Society for Music
Information Retrieval Conf., volume 12 of ISMIR,
pages 343–348, 2012.

[14] M. Schedl. The lfm-1b dataset for music retrieval and
recommendation. In 2016 ACM on Intl. Conf. on
Multimedia Retrieval, ICMR, pages 103–110. ACM,
2016.

[15] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie.
AutoRec: Autoencoders Meet Collaborative Filtering.
In 24th Intl. Conf. on World Wide Web, WWW,
pages 111–112. ACM, 2015.

[16] F. Strub, R. Gaudel, and J. Mary. Hybrid
recommender system based on autoencoders. In 1st
Workshop on Deep Learning for Rec. Sys., DLRS,
pages 11–16. ACM, 2016.

[17] A. Vall, H. Eghbal-zadeh, M. Dorfer, M. Schedl, and
G. Widmer. Music Playlist Continuation by Learning
from Hand-Curated Examples and Song Features:
Alleviating the Cold-Start Problem for Rare and
Out-of-Set Songs. In 2Nd Workshop on Deep Learning
for Rec. Sys., DLRS, pages 46–54. ACM, 2017.

[18] A. van den Oord, S. Dieleman, and B. Schrauwen.
Deep content-based music recommendation. In
C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Sys. 26,
NIPS, pages 2643–2651. Curran Associates, Inc., 2013.

[19] P. Vincent, H. Larochelle, Y. Bengio, and P.-A.
Manzagol. Extracting and Composing Robust
Features with Denoising Autoencoders. In 25th Intl.
Conf. on Machine Learning, ICML, pages 1096–1103.
ACM, 2008.

[20] J. Winder. Session-Based Track Embedding for
Context-Aware Music Recommendation. Master’s
thesis, University of Innsbruck, 2018.

[21] S. Zhang, L. Yao, X. Xu, S. Wang, and L. Zhu. Hybrid
Collaborative Recommendation via
Semi-AutoEncoder. In Intl. Conf. on Neural
Information Processing, ICONIP, pages 185–193.
Springer, 2017.


