
Feature Engineering and Explainability with
Vadalog: A Recommender Systems Application

Jack Clearman1, Ruslan R. Fayzrakhmanov2, Georg Gottlob2,3 and Yavor
Nenov2, Stéphane Reissfelder2, Emanuel Sallinger2,3, and Evgeny Sherkhonov2

1 Meltwater Group
2 University of Oxford

3 TU Wien

1 Introduction

Vadalog [2] is an extension of Datalog that features existential rules and a rich
set of functions, libraries, and methods for connecting to external data sources,
which make it a powerful tool for building advanced industrial AI applications
[1]. Vadalog forms the core of an ongoing research collaboration between the
University of Oxford and the media intelligence company Meltwater, that aims
at a recommender system for the most relevant insights about companies from
outside data, including Meltwater’s repository of millions of news articles. In
this application paper, we demonstrate various aspects of such a recommender
system in the movies domain, and show how Vadalog can be used for feature
engineering and the computation of explainable recommendations.

Recommender Systems assist users in choosing the most relevant items they
may be interested in, thus reducing the experienced information load. The typ-
ical methods used in recommender systems are based on the analysis of items
the user has already selected and are usually limited to “low-level” features, i.e.,
metadata associated with an item. However, such methods are not able to pro-
vide suitable recommendations in the absence of discriminative low-level features
or the presence of non-trivial combinations of features which capture discrepancy
between liked and disliked items. In this paper, we approach this problem by
building a new set of high-level features that can capture domain knowledge and
non-trivial factors that influence user’s decision in choosing movies. Vadalog is
well suited for computing such high-level features, by having support for: (1)
aggregation, for computing features such as total revenue of movies, (2) graph
traversal for computing properties on the co-starring graph, (3) integration of
various data sources for unified access to multiple sources, such as IMDB and
RottenTomatoes, and (4) existential rules used in the computation of recommen-
dations for new users. Furthermore, declarativeness of Vadalog allows developing
high-level features rapidly (usually, a few hours per feature from conception to
deployment) and easily maintaining the resulting programs. Finally, we demon-
strate how to build an explainable ranking of recommendations, thus allowing
Vadalog not only to provide explanations at reasoning level, i.e., why a partic-
ular high-level feature has a certain value, but also explanation at the machine
learning level, i.e., why there is a particular ranking of items.



40 Clearman et al.

feature(User, "AwardWinningCast", Movie, Score) :-

user(User),

hasAwardWinningActor(Movie, Person, Award),

awardScore(Award, AwardScore),

Score = max(AwardScore).

hasAwardWinningActor(Movie, Person, Award) :-

crew(Movie, PersonID, "Cast"),

hasWonPrestigiousAward(Person, Award).

hasWonPrestigiousAward(Person, "Oscars") :-

oscarsAward(Nomination, Person, Movie, Year).

hasWonPrestigiousAward(Person, "BAFTA") :-

baftaAward(Nomination, Person, Movie, Year).

@input("oscarsAward").

@bind("oscarsAward", "postgres", "awards", "oscars").

@input("baftaAward").

@bind("baftaAward", "postgres", "awards", "bafta").

(a) Award Winning Cast

feature(User, "HighlyRatedDirector", Movie, Score) :-

user(User),

crew(Movie, Person, "Director"),

directorWithHighRating(Person, Score).

directorWithHighRating(Person, AvgRating) :-

crew(Movie, Person, "Director"),

imdbRating(Movie, Rating),

AvgRating = avg(Rating),

AvgRating > 8.5.

(b) Highly Rated Director

feature(User, "Co-Production", Movie, Score) :-

coProduced(User, LikedMovie, Movie, Hop),

scoreTable(Hop, Score).

coProduced(User, Movie, Movie, 0) :-

user(User),

likedMovie(User, Movie).

coProduced(User, Movie, Movie2, NewHop) :-

coProduced(User, Movie, Movie1, Hop),

produced(Producer, Movie1),

produced(Producer, Movie2),

Movie1 != Movie2,

Hop < 4,

NewHop = Hop + 1.

(c) Co-Production

Fig. 1: High-Level Features

Due to space limitation we do not provide preliminaries for syntax and se-
mantics of Vadalog and refer the reader to [2] for details. Note that in the
below constructed programs negation and aggregate functions are restricted to
be stratified.

2 High-Level Features

We consider data closely resembling IMDB, the largest movie industry database.
The relation crew(Movie, Person, Role) represents crew members with their role
in the production, imdbRating(Movie, Rating) represents the movies’ ratings, pro-
duced(Producer, Movie) represents the production studio, and oscars(Nomination,
Person, Movie, Year) as well as bafta(Nomination, Person, Movie, Year) are external
data sources providing the Oscars resp. BAFTA award information. We assume
that the common attributes Person and Movie in the latter two relations have
been appropriately linked via a custom Vadalog program. Additionally we use re-
lations user(User), likedMovie(User, Movie), ratedMovie(User, Movie, Rating) and
friend(User1, User2) to provide users, their liked movies, the rating a user has
given to a movie and the pairs of friends.

We next demonstrate how Vadalog can be used to build a number of high-
level features in the movies domain. Here we show only those that are aimed
at demonstrating the (combinations of) three main use cases mentioned above:
integration of various data sources, aggregates, and graph traversal. All feature
values are stored in a predicate with the following signature: feature(User, Fea-
tureName, Movie, Score), where User is the user ID and Score is the value of the
feature FeatureName for each movie.
Award Winning Cast. Often one of the factors in choosing a movie is whether
the movie features a star cast. A cast member is usually considered a “star” if
they have won a prestigious award such as an Oscars or BAFTA award. Such a



Feature Engineering and Explainability with Vadalog 41

high-level feature is described in Figure 1a, where awardScore stores predefined
scores for each type of award. The first rule generates a score for a given user and
a movie if the movie has a cast member that has won an award. This is encoded
in the predicate hasAwardWinningActor defined in the second rule. The need for
max is justified by the fact that the input movie can have multiple actors with
different awards, but we assign the best resulting score. The rules for hasWon-
PrestigiousAward integrate two different data sources: the Oscars and BAFTA
datasets. In particular, the last four lines declare how external datasources (in
this case PostgreSQL tables) are bound to predicates.

Highly Rated Director. Another possible factor for choosing a movie is
whether the movie’s director has a good track record. This can be modelled by
choosing directors whose average movie ratings exceeds a certain threshold. This
is formalised in Figure 1b where the predicate directorWithHighRating stores all
directors with their high average ratings. This feature computation demonstrates
the need for aggregate queries, such as average rating. Other similar features can
be built using aggregates, e.g., the producer’s total revenue of all movies they
produced and average sentiment about the movie in the social media.

Co-Production. This feature captures the following intuition: a producer re-
lated to a movie liked by a user is likely to produce movies that the user will
like as well. Assume that we have a list of movies that the user has already
liked, which we refer to as a seed list. Based on this list we can build relative
features, i.e., their values are relative to the seed list. Our feature builds on the
co-production relation: two movies are in the relation if they were produced by
the same producer or a company. The co-production relation can then be transi-
tively closed and the feature value reflects how “far” a movie is from the seed list
in the resulting relation. This is formalised in Figure 1c, where the last two rules
demonstrate a (limited depth) recursive definition of the predicate coProduced.
Similarly, other relative features such as Co-direction and Co-starring can be
computed by traversing the corresponding relations.

Cold start. The relative features above assume that a given user has a set of
movies they liked. This information however is not available for new users who
have not liked any movies yet. This problem is known as “cold start” in Recom-
mender Systems. One way to overcome this is by creating “placeholder” movies
that have attributes such as Producer or Actor that are populated by most pop-
ular producers and actors from movies liked by the user’s friends. Vadalog is
particularly suitable to model such a situation as it supports existential quan-
tifiers. The rules are shown in Figure 2a, where the first two compute the most
featured actors and the top rated directors from the movies that the user’s friends
have liked. Then the next rule creates the placeholder movies for a user in case
they have not liked any movie. In particular, the variable Movie is existentially
quantified. The last rule defines an extended relation likedMovieExt that stores a
placeholder movie for a user that has not liked any movie yet as well as known
liked movies for each user.



42 Clearman et al.

topOccuringCastMembers(User, Person) :-

friend(User, User1),

likedMovie(User1, Movie),

crew(Movie, Person, "Cast"),

Occurrence = count(Movie),

occThreshold(User, Threshold),

Occurrence > Threshold.

topRatedDirectors(User, Person) :-

friend(User, User1),

ratedMovie(User1, Movie, Rating),

crew(Movie, Person, "Director"),

AvgRating = avg(Rating),

rateThreshold(User, Threshold),

AvgRating > Threshold.

likedMovieExt(User, Movie),

cast(Movie, Cast),

crew(Movie, Director, "Director") :-

user(User),

topOccuringCastMembers(User, Cast),

topRatedDirectors(User, Director) .

not likedMovie(User, _).

likedMovieExt(User, Movie) :- likedMovie(User, Movie).

(a) Cold Start

trained(User, Trained) :-

trainingData(User, Features, Label),

Trained = ml:train(User, Features, Label).

predictedRankingScore(User, Movie, RankingScore) :-

trained(User, Trained),

movieFeatures(User, Movie, Features),

RankingScore = ml:predict(User, Features).

(b) Training and Predicting

modifiedScore(User, Movie, Feature, FeatureIndex, ModifiedScore) :-

trained(User, Trained),

movieFeatures(User, Movie, Features),

sampleValues(Feature, FeatureIndex, Value),

ModifiedFeatures = col:setAt(Feature, FeatureIndex, Value),

ModifiedRankingScore = ml:predict(User, ModifiedFeatures).

minModifiedScore(User, Movie, MinModifiedScore) :-

modifiedScore(User, Movie, Feature, FeatureIndex, ModifiedScore),

MinModifiedScore = min(ModifiedScore).

explainedRanking(User, Movie, RankingScore, ProminentFeatures) :-

predictedRankingScore(User, Movie, RankingScore),

minModifiedScore(User, Movie, MinModifiedScore),

modifiedScore(User, Movie, Feature, FeatureIndex, MinModifiedScore),

movieFeatures(User, Movie, Features),

ProminentFeatures = list(Feature) .

(c) Ranking Explanation

Fig. 2: Cold Start, Learning, Training, and Explanations.

3 Explainable Ranking
In this section, we show how Vadalog can be used to perform explainable ranking
of movies based on their precomputed features. For each user we perform the
following steps: training a machine learning ranking model; use the trained model
to rank all movies; and, finally, perform feature value analysis to compute a
tailored explanation for the ranking of each movie. We next provide more detail
for each of the these steps.
Setting. Let the predicate movieFeatures(User, Movie, Features) contain all fea-
ture values computed for each user and movie. Concretely, each movie has one
entry in movieFeatures, Features is the list of feature values for that movie. Fur-
thermore, assume that we have computed a relation trainingData(User, Features,
Label), which contains the training data for each user. The trainingData contains
two types of records. For each user and for each movie that they liked, the re-
lation associates the feature vector of the movie with label 1. Furthermore, for
each user and each movie from a predefined set of sample movies, the relation
associates the feature vector of the movie with label 0. Thus, labels 1 and 0
represent positive and negative examples respectively.
Training And Prediction. We use a machine learning regression model to
perform ranking of movies based on their features. The regression model takes
as input the feature values of a movie and produces a ranking score, which we
then use to rank all movies. The Vadalog system exposes several open-source
machine learning libraries, such as Weka4, that can seamlessly be used during
reasoning. We use a separate instance of the regression model for each user. To
train an ML model, we invoke a dedicated aggregate function ml:train, as shown
in the first rule of Figure 2b. The first argument of ml:train is the identifier of the
trained model (in our case the user), the second argument is the input vector,

4https://www.cs.waikato.ac.nz/∼ml/weka/

https://www.cs.waikato.ac.nz/~ml/weka/


Feature Engineering and Explainability with Vadalog 43

and the third argument is the value to be learned. Next we can use the trained
model to compute a user-specific ranking of all movies. To this end we use the
library function ml:predict, which takes the identifier of the trained model and
the input feature vector to produce the model prediction, as shown in the second
rule of Figure 2b.
Ranking Explanation. We next show how one can use Vadalog to produce
explanations about the rank of each individual movie. We adapt an approach
described in [3]. The goal is to identify for each movie the feature that has
the highest contribution to its position in the ranked list, and consequently
report the explanation of its computation to the user. To identify the most
prominent feature for the rank of a given movie, we first identify a range of
interesting values (e.g. minimum, maximum, average, etc.) for each feature. For
each such value, we compute a modified ranking score for the given movie by
replacing its original value with the selected one. The feature that gives the
lowest modified ranking score is then used as an explanation for the movie’s rank.
Assume we have precomputed with Vadalog the interesting feature values in
relation sampleValues(Feature, FeatureIndex, Value), where Feature is the feature
name, FeatureIndex is the index of the feature in the movie’s feature vector, and
Value is a value to be used for computing the modified scores. Computing the
minimal modified scores for a movie is then performed using the trained model,
as shown in the first rule in Figure 2c, which makes use of the collections function
col:setAt(Vector, Index, Value) which returns the result of replacing the value at
position Index in Vector with Value. Finally in the last two rules, we identify for
each movie the features yielding the lowest modified scores, and collect those in
a list using the list aggregate.

4 Conclusion
In this application paper we reported on how a Recommender System can be
rapidly developed using Vadalog. As part of ongoing work, since the obtained
explainable recommender system is agnostic to the underlying machine learn-
ing model, we intend to perform an evaluation of our approach using different
models. We believe our approach is useful in the scenarios when explanation of
recommendation is crucial. The transparency of such a system also enables users
to give feedback, incorporation of which in our model is future work.
Acknowledgements. This work is supported by the EPSRC programme grant
EP/M025268/1 VADA, the WWTF grant VRG18-013, and the EU Horizon 2020
grant 809965.

References

1. L. Bellomarini, R. R. Fayzrakhmanov, G. Gottlob, A. Kravchenko, E. Laurenza,
Y. Nenov, S. Reissfelder, E. Sallinger, E. Sherkhonov, and L. Wu. Data science
with Vadalog: Bridging machine learning and reasoning. In Proc. MEDI, 2018.

2. L. Bellomarini, E. Sallinger, and G. Gottlob. The Vadalog system: Datalog-based
reasoning for knowledge graphs. PVLDB, 11(9):975–987, 2018.

3. M. ter Hoeve, A. Schuth, D. Odijk, and M. de Rijke. Faithfully explaining rankings
in a news recommender system. CoRR, abs/1805.05447, 2018.


	Feature Engineering and Explainability with Vadalog: A Recommender Systems Application

