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Abstract. Datalog and Answer Set Programming (ASP) are powerful
languages for rule-based querying and constraint solving, respectively.
We have developed Possible Worlds Explorer (PWE), an open source
Python-based toolkit that employs Jupyter notebooks to make working
with Datalog and ASP systems easier and more productive. PWE can
parse output from different reasoners (Clingo and DLV) and then run
analytical queries over all answer sets or “possible worlds” (PWs), e.g.,
to calculate relative frequencies of atoms across PWs or to hierarchically
cluster PWs based on user-defined complexity and similarity measures.
PWE also has support for well-founded Datalog models (from DLV) and
temporal models that use a special state argument. Using simple Python
functions, generic as well as user-definable presentation and visualization
formats can be easily created, e.g., to display all PWs (world views), the
unique three-valued well-founded model (partial views), and temporal
models (timelines and time series). We provide containerized versions of
PWE that can be run in the cloud or locally. We hope that in this way
Datalog and ASP can be made more accessible for a wider audience.

1 Introduction

Datalog has a long and rich history in database foundations and theory [1,15,22],
and has seen a recent resurgence in academia and industry [14,16,19,25,28].3

Answer Set Programming (ASP) shares some common roots with Datalog and
evolved from the stable model semantics [13] of logic programs with non-stratifed
negation and disjunction in rule heads. The availability of ASP solvers such as
DLV [23,2] and Clingo [12,11], among others, has facilitated new extensions and
applications in KR and ML; see, e.g., [9,8] and the various surveys on theory
and practice of ASP [10,5,12,24,7].

Despite the significant interest and considerable capabilities for advanced ap-
plications, declarative querying and problem solving with Datalog and ASP have
not found wider adoption among general programmers and data and information
scientists, and all too often remain an “experts only” domain.

3 See also the “Datalog 2.0” workshop series [26,3], documenting this resurgence.
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Python, on the other hand, is one of the most popular and fastest growing
programming languages in recent years [29]. Some of the reasons for this include
its gentle learning curve (from beginner to expert), the comprehensive package
support for data science and machine learning (e.g., Pandas, Matplotlib,
Scikit-Learn, etc.), and a very active, ever-growing community of users. These
and other factors have made Python the de-facto programming language for data
science and tool integration.

We have developed Possible Worlds Explorer (PWE) [17], an open source,
Python-based toolkit that aims to bring together the best of both worlds in order
to serve a wide audience of users. In particular, the goals of PWE are to:

(i) empower traditional user groups, i.e., not yet experienced with declarative
problem solving, to explore problems and their Datalog/ASP solutions in a
familiar, interactive user environment (Jupyter notebooks);

(ii) empower Datalog and ASP experts to be more productive by being able to
seamlessly mix and match declarative rules from different rule engines and
solvers (e.g., Clingo and DLV) with procedural code (implementing, e.g.,
analytical queries over and visualizations of possible worlds); and

(iii) allow both groups of users to easily create and share executable knowledge
artifacts as Jupyter notebooks [21].

We continue to improve and extend the functionality of the PWE toolkit [17],
along with a growing repository of introductory PWE notebooks [18]. To further
lower the barrier to entry, PWE and notebooks can be deployed in cloud-based
environments, i.e., WholeTale [6] and Binder [20], so that users can execute
the notebooks without having to install any software and dependent packages.

The remainder of the paper is organized as follows: In Section 2, we describe
the PWE architecture and discuss its components. In Section 3, we present a
few introductory examples for declarative problem solving with PWE. These
are meant to provide a first illustration of the power of logic-based declarative
problem solving4 for novices, and to introduce some capabilities of Python-based
notebooks (e.g., visualizations of PWs) to Datalog/ASP experts not familiar
with Jupyter notebooks. In Section 4, we briefly summarize and conclude.

2 Possible Worlds Explorer: System Overview

PWE is a Python-based open-source toolkit with several components that aim
to make interacting with ASP and Datalog systems easier, and to provide users
with features and conventions that allow them to analyze potentially large sets
of possible worlds (answer sets). We employ Jupyter notebooks5 as the preferred
user interface for PWE, since notebooks can interleave an explanatory narrative
with code snippets and inline visualizations. In this way, PWE notebooks of-
fer both an interactive problem solving and exploration environment, and can

4 many more can be found in [10,5,12,24]
5 https://jupyter.org/

https://jupyter.org/
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Fig. 1. Possible Worlds Explorer (PWE): an ASP solver (e.g., Clingo, DLV) generates
answer sets (PWs). PWE can then query across all PWs and visualize, rank, and cluster
them based on user-defined distance and complexity functions. A Jupyter notebook
deployment of PWE provides a user-friendly, interactive user interface.

be seen as reproducible, computational artifacts that are shareable, browsable,
and re-executable [18,6]. The PWE components can be accessed in conventional
scripts and interactive notebooks, like any other Python library. We provide a
comprehensive set of Python modules with many functions as part of our PWE
library. We also provide a command-line interface for users who prefer to use the
command-line. The following are some key components of PWE:

ASP/Datalog Wrappers. PWE currently includes wrappers for Clingo [12,11]
and DLV [23,2]. The PWE wrappers provide users with a “pythonic” interface
to these engines. Python strings can be used as ASP rules to be evaluated by
the underlying reasoners. This also allows users to easily generate rule instances
based on a parameterized problem. For example, the well-known Towers of Hanoi
problem is parameterized by the number of disks and pegs. PWE uses Antlr6-
based parsers to read the outputs of the wrapped systems and load them into
Pandas7 DataFrame objects. Another PWE feature is the support for 3-valued,
well-founded models [30] output by DLV – see Section 3.2 for an example. Our
system also contains extension points so users can add special annotations as
comments in logic programs, which then can be detected by PWE. Attribute
names, e.g., can help users better understand complex relational schemas, so

6 Another Tool for Language Recognition: https://en.wikipedia.org/wiki/ANTLR
7 Python Data Analysis Library: https://pandas.pydata.org/

https://en.wikipedia.org/wiki/ANTLR
https://pandas.pydata.org/
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users can include schema annotations of the form

% schema R(A1, . . . , An)

indicating that relation R has attributes A1, . . . , An. These user-declared names
for attributes Ai can then be used as column names in Pandas DataFrames.

Similarly, the PWE annotation

% temporal R(. . . , T, . . .)

identifies, via the special symbol “T”, the argument position in a relation R that
should be treated as containing a temporal or state identifier. This argument
position can then be used by other PWE modules for time-series based analysis.

Query Tool. PWE can query across all possible worlds, e.g., to find unique
features, or to intersect or union all PWs. In particular, PWE can access and
work with brave and cautious consequences of ASP programs.

Distance Tool. Often a natural question we want to answer when analyzing
sets of PWs is: How similar or different are PWs to each other? Using this tool,
users can find the distance between any two PWs based on their shared (or
unique) facts, or by defining a new distance metric.

Visualization Tool. This module allows users to visualize individual solutions
or the whole solution space. Some built-in visualizations, including clustering,
dendrograms, and 2D distance mapping, all use the distance matrix generated by
the distance tool. Users can also easily define their own visualization functions.
PWE also includes some basic visualizations for time-series based answer sets,
so users can see how states “evolve” over time within each PW.

Complexity (World Feature) Calculation Tool. This tool allows users to
define a metric to be calculated for each PW, which then can be used to rank
PWs. For example, in the stable marriage problem [8], a fairness metric can be
defined to find the PW which is fairest for both groups.

Time-Series Module. PWE has some built-in support for ASP problems that
are time-series based, e.g., the classic Towers of Hanoi puzzle. The temporal

annotation mentioned above allows users to indicate which argument holds the
state identifier. PWE can then group and display answers by state, in order, etc.

PW Import/Export Tool. This tool is for advanced users who would like
to (i) export Pandas DataFrames used by PWE to other formats (e.g., CSV,
Pickle, or SQLite) for further processing, or (ii) re-import as database facts the
possible worlds output in an earlier step. PWE can also export a unique 3-valued
well-founded model (from DLV) and then re-import it as database facts for a
subsequent Clingo step. In addition, different export schemas are available, e.g.,
“as-is”, or a triple-based generic encoding that reifies relation names as data,
thereby supporting querying and reasoning about schemas.
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3 Declarative Problem Solving by Example

In order to demonstrate the capabilities and features of PWE, we have created
several executable Jupyter notebooks which guide the user, step by step, through
a number of introductory and advanced problems. In this section we highlight a
few elements of some of these examples from our growing demo repository [18].
The repository includes an environment.yml file and a postBuild bash script
that are used to create an automated build to assemble an image to execute
PWE and the example notebooks, either locally using Conda8, or online in a
cloud-based environment such as provided by Binder [20] or WholeTale [6].

3.1 Combinatorics (Graph Coloring): Two ASP Rules Suffice

To get a first intuition of declarative problem solving, consider the following:

(a) node(1..5). e(1,2). e(2,3). e(3,4). e(4,1). e(4,5). % Database facts

(b) col(X,red) ; col(X,green) ; col(X,blue) :- node(X). % Generator

(c) :- e(X,Y), col(X,C), col(Y,C), X != Y. % Constraint

Line (a) states that we have a graph consisting of five nodes and some edges
e(x, y), forming a “square” 1-2-3-4-1 with an “appendage” 4-5. Thus line (a)
consists of a set of database facts. In contrast, a rule like the one in (b) is
written in the form “head :- body” and means that if the condition in body is
true, then the head logically follows. Here, (b) states that every node x can have
any of three colors, i.e., the semicolons “;” in the head are interpreted as logical
disjunctions “∨” and (b) thus acts as a generator of alternatives (x could be red

or green or blue). Finally, (c) is a special rule that acts as a denial constraint : it
has an empty head and states that if there is an edge e(x, y) and if x and y have
the same color c (for x 6= y), then the “current world” under consideration is
not a possible world, since neighboring nodes must always have different colors.

There are 35 = 243 different ways overall to associate one of three colors to
five nodes. If the denial constraint (c) is removed, an ASP reasoner will indeed
generate all 243 possible worlds. For a human, it is difficult to determine how
many and which of the 243 candidate solutions also satisfy the given constraint
(c), demanding different colors for neighboring nodes. ASP solvers such as DLV
or Clingo easily handle such combinatorial puzzles:

$ clingo -n0 3col.lp4

Answer: 1

col(1,blue) col(2,red) col(3,green) col(4,red) col(5,blue)

...

Answer: 36

col(1,red) col(2,green) col(3,blue) col(4,green) col(5,blue)

SATISFIABLE

Models : 36

CPU Time : 0.001s

8 https://conda.io/

https://conda.io/
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…

…

Fig. 2. Screenshots from a Jupyter notebook running PWE: the line magic in [17]

loads ASP rules into cell [18] where they can then be edited and run. In [27] a groupby

operation is used to identify the 6 PWs that use only two colors and the 30 PWs that
use all three. The visualization in [29] shows that PWs in the first group all exhibit
the same “color pattern”, i.e., PWs are the same modulo renaming of colors. PWE
rules can also be used to cluster PWs and find the equivalence classes of all patterns.

The command-line parameter −nN indicates that at most N models should
be computed; setting N=0 as above means: compute all solutions. Here there are
exactly 36 solutions among the 243 candidates, representing all valid 3-colorings
of the input graph.

Even for such a fairly small number of PWs, it is difficult for a user to relate
and compare solutions and answer simple questions such as “how many PWs
use only two colors?” or “what PWs use all three colors?”, etc.

With the analysis and visualization capabilities of PWE running within a
Jupyter notebook, the limitations of traditional, “spartan” command-line inter-
faces can be easily overcome: Fig. 2 shows different cells of a demo notebook,
highlighting how “meta-analyses” can be performed across all solutions in PWE.

The visualizations in Fig. 3 illustrate how PWE can be used to find further
structure in a set of possible worlds. The heat map in the lower left clearly shows
the separation of the cluster of 6 solutions using only two colors (cf. Fig. 2) and
a larger cluster of the remaining 30 solutions which use all three colors. The
latter contains further substructure (revealed by another metric) as seen by the
heatmap and associated dendrograms on the right in Fig. 3; see [18] for details.
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…

…
Fig. 3. Different complexity measures and distance metrics when clustering the 36
PWs of valid 3-colorings: An unsuitable metric counts coloring differences directly and
“overfits” (upper left); a simple metric obtained by counting how many colors were
used works very well and identifies 6 bicolored PWs and 30 tricolored ones (lower left);
the cluster of 30 has further substructure corresponding to “coloring patterns” (right).

3.2 Games and 3-Valued (Partial) Models

Consider the single rule Datalog program with recursion through negation:

win(X) :- move(X,Y), not win(Y).

This (non-stratified) rule states that in a game graph the position x is won, if in
the graph there exists a move from x to some position y which is not won (since
the opponent then moves from y). Consider a simple graph consisting of the
following relation moves = {(a, b), (b, a), (b, c), (c, d)}. Since d is a sink, win(d)
is false, i.e., d is lost. This in turn makes win(c) true since there is a move from
c to d. On the other hand, a and b are both drawn, since the best move from b is
to a, perpetuating the game (moving to c would be a win for the opponent). The
unique 3-valued well-founded model [30] can be computed with DLV directly:

Fig. 4. A partial model W with won, lost, and drawn positions (left), computed by DLV.
The total (i.e., 2-valued stable) models Si are computed by DLV or Clingo (right).
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Timeline Input Database .

Fig. 5. A timeline visualization in PWE, showing elements of an inconsistent database.
Prior to any repair actions for MoMA, there is single PW containing all inconsistencies:
e.g., there is more than one Picasso with different death years, some artwork was
painted posthumously, etc.

$ dlv -wf win.dlv

True: {move(a,b), move(b,a), move(b,c), move(c,d), win(c)}

Undefined: {win(b), win(a)}

PWE recognizes 3-valued output by DLV. A user-defined visualization is used to
render the solved game graph with colored positions (Fig. 4). Both Clingo and
DLV can be used to generate all stable models of the above program. All stable
models Si extend the unique well-founded model W, i.e., agree on the defined
parts of W and can only vary over the undefined parts of W.

3.3 Integrity Constraint Repair and Timeline Visualizations

ASP has numerous applications, e.g., in model-based diagnosis and repair. In
the case of inconsistent databases, alternative repairs, i.e., minimal changes that
restore integrity, can be generated via declarative rules [4], giving rise to different
possible worlds. We illustrate how this can be done with PWE using a small
sample dataset from the Museum of Modern Art (MoMA) that we have prepared
so it exhibits interesting data quality problems. We selected a handful of artists
and a few of their artworks, i.e., Pablo Picasso, Yayoi Kusama, and Artko.
Artworks include Picasso’s Seated Woman and War and Peace, Kusama’s
Flower, Endless, and Accumulations, and Artko’s Acapulco Gold.

For each of the artists, we created a few synthetic errors to mimic similar
quality issues for more poorly curated collections. For Pablo Picasso, e.g.,
we created another instance Picasso (i.e., without his first name) who passed
away in a different year, but who uses the same artist-ID. Integrity constraint
violations (ICVs) can be captured via auxiliary rules: e.g., the following rules
report primary key violations and “posthumous art works”, respectively:

icv_PK(ID, N1, N2) :-

artist(N1,ID,_,_), artist(N2,ID,_,_), N1 != N2.

icv_PostHumous(T, AN, AID, ArtYear) :-

artwork(T,_,AID,ArtYear),artist(AN,AID,_,DeathYear), ArtYear>DeathYear.



52 S. Gupta, Y. Cheng, B. Ludäscher

Timeline PW1 .
...

Timeline PW4 .

Fig. 6. In PW1 four artworks are “lost” since the “wrong” artists were deleted. In
PW4, the largest number of artworks (here: 5) are visible, an indication that this PW
(and the associated repairs) are preferable over the alternative solutions.

Repair rules then specify alternate “fixes”, e.g., by deleting artist N1 or N2,
referred to in the rule above. Similar to the way illustrated in Section 3.1, PWE
can now be used to rank, compare, and cluster PWs, i.e., alternate “repair
worlds”. Here, we instead choose a timeline visualization (Fig. 5), as it lets users
visually inspect the dataset for inconsistencies.

When repair rules are used (see, e.g., [4]), multiple PWs are generated. Fig. 6
shows two of four PWs generated for our running MoMA example. For relatively
small numbers of PWs, the user can visually inspect the alternatives. For larger
sets, Python code (or declarative meta-programs) can be used to automatically
rank and compare worlds.

3.4 Towers of Hanoi: State-based Search and Graph Analysis

Towers of Hanoi (ToH) is a computer science classic to teach about recursion. It
is also a good introductory example for declarative problem solving, where the
reasoner has to find a sequence of actions to accomplish a goal while observing a
number of constraints. The Potassco/Clingo User Guide [11] contains a simple,
state-based problem description of ToH.9 We use a PWE notebook to better
analyze the time-series nature of the solutions to this problem [18]. In our PWE
demo notebook, we use a small instance of ToH with three disks and the usual
three pegs. The smallest number of moves to transfer all disks from the initial
state (labeled aaa) to the final state (labeled ccc) is 7 in this case.

9 https://github.com/potassco/clingo/tree/master/examples/gringo/toh

https://github.com/potassco/clingo/tree/master/examples/gringo/toh
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Fig. 7. Hanoi Graph visualizations in PWE: the combination of ASP and powerful
graph analytics in Python allows the user to analyze and visualize information encoded
in the graph. The shortest path (i.e., the sequence of moves) from the initial state (aaa)
to the desired state (ccc) is shown on the left and takes 7 steps. A Hamiltonian cycle
can be computed in the usual way using ASP rules, and then visualized in PWE (right).

Another model of ToH can be created by employing a different representation,
the Hanoi graph10. The state space of this move graph is more interesting than
it might seem at first glance. It contains the set of all possible configurations
and all valid moves between them and is radially symmetric. By design it also
encodes some useful information such as the shortest sequence of moves required
to move between any two states. We can create, analyze, and visualize the Hanoi
graph easily in PWE: We can use Python code, parametrized by the number of
disks and pegs, to generate ASP rules that encode the graph edges. We then
leverage Python’s NetworkX11 library to extract and conveniently visualize
this information. We can then perform various analyses on the Hanoi graph. For
example, as shown on the left in Fig. 7, we can find the shortest sequence of
moves that take us from the initial state (aaa) to the goal state (ccc) by finding
the shortest path between these two nodes. Similarly, one might be interested
in determining whether there exists a sequence of moves that visits all possible
configurations exactly once and returns to the initial configuration. This test for
the existence of a Hamiltonian cycle can be directly encoded in ASP, or it could
be computed using a Python library; see Fig. 7 (right) for a rendering of the
Hamiltonian cycle in the Hanoi graph, and [18] for further details.

4 Summary and Conclusions

We have presented Possible Worlds Explorer (PWE), a toolkit Datalog and ASP
systems with the down-to-earth practical data wrangling and visualization capa-

10 https://en.wikipedia.org/wiki/Tower_of_Hanoi#Graphical_representation
11 NetworkX Python Library: http://networkx.github.io

https://en.wikipedia.org/wiki/Tower_of_Hanoi#Graphical_representation
http://networkx.github.io
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bilities of Python, running in an interactive, user-friendly Jupyter environment.
To illustrate the power and capabilities of PWE, we have developed multiple
demonstration notebooks that are available at [18]. In addition, we have pro-
vided a Conda-based virtual environment configuration which can be used with
Binder [20] to navigate and interact with these examples and create new ones.
We believe that PWE will help making declarative problem solving more acces-
sible to practitioners and educators in academia and industry. Conversely, we
hope that theoreticians will be tempted to use PWE as a “language lab”, where
ideas combining multiple tools and systems can be tried out rapidly. The PWE
library is available via PyPi12 and the source code is available on Github [17].

We have not studied the scalability of PWE yet, but have run a few experi-
ments involving millions of facts, spread across tens to hundreds of thousands of
PWs, resulting in PWE load times under 15 minutes on a modern laptop. PWE
is an ongoing project and the tool is still evolving and being improved. We be-
lieve, however, that PWE in its present form already adds significant value for
new users, especially when compared to the “bare bones”, command-line only
tools usually available. In future iterations of PWE, we intend to add additional
functionality to this tool such as support for temporal and range queries and
new distance measures that can take into account temporal aspects. We also
believe that PWE and tools like it may play an increasing role in future data
science and AI applications (cf. QASP [27]) by combining declarative problem
solving in the style of ASP and Datalog with tool integration through Python.
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