
Towards Reconciling Certain Answers and
SPARQL: Bag Semantics to the Rescue??

Sebastian Skritek

TU Wien, skritek@dbai.tuwien.ac.at

1 Introduction

Despite the intention of RDF, the data model for the Semantic Web, to sup-
port reasoning about RDF data (as witnessed e.g. by three different semantics
for RDF – simple/RDF/RDFS entailment – or accompanying standards like
OWL), SPARQL, the standardized query language for RDF, lacks some support
of including such reasoning into query answering, as was noted e.g. in [6, 1].

One major cause of this is that SPARQL only makes partially use of cer-
tain answers, which are the semantics commonly applied in reasoning scenarios.
While not fully supporting certain answers might be a reasonable decision when
looking at the costs of evaluating and (for a user) understanding a query, it
negatively affects the power of SPARQL. As a result, in recent years suggestions
have been made how to cover different aspects of reasoning about RDF data (e.g.
blank nodes under RDF simple entailment [6]; OWL reasoning [1]) in SPARQL
by adopting a certain answer semantics.

However, as observed in [1], just applying the usual definition of certain
answers to SPARQL can, in certain cases, be unnecessarily restrictive. To better
illustrate these situations, let us first recall the definition of certain answers.

Given an RDF graph G (possibly extended by some additional information),
most reasoning formalisms define the semantics of G in terms of an (infinite) set
models(G) of RDF graphs implied by G. Query answering in such a setting is
then commonly defined in terms of the certain answer semantic: for a query Q,
the certain answers certain(Q,G) (w.r.t. some reasoning formalism) are

certain(Q,G) =
⋂
G′∈models(G)Q(G′),

where Q(G′) denotes the result of evaluating Q over the RDF graph G′.
While this definition can be immediately applied to SPARQL queries, prob-

lems arise e.g. when looking at the OPTIONAL operator, or more precisely at the
weakly monotone classes of SPARQL queries, like the well-designed queries [10].

Example 1. Consider the SPARQL query Q

SELECT ?auth, ?award WHERE {?auth writes ?b} OPTIONAL {?b receives ?award}

and an RDF graph G = {(a, writes, b)}. Assuming that models(G) contains all
supersets of G (like e.g. under the RDF simple semantics), certain(Q,G) = ∅.
? This work was supported by the Austrian Science Fund (FWF): P30930-N35



2 S. Skritek

Given that (a, writes, b) ∈ G′ for every G′ ∈ models(G), this is an unintu-
itive result. However, the mapping µ = {(?auth, a)} is no certain answer be-
cause it is not part of Q(G′) for every G′ ∈ models(G). For example, take
G′ = G ∪ {(b, receives, p)}. Then Q(G′) = {{(?auth, a), (?award, p)}}.

What makes this situation unintuitive is that while µ /∈ Q(G′), an extension
of µ is contained in Q(G′). In fact, weakly monotone queries are exactly those
queries Q where for all pairs of RDF graphs G ⊆ G′ the result Q(G′) contains a
not necessarily proper extension of every mapping in Q(G) [3].

To account for this, based on the notion of subsumption (a mapping µ′ sub-
sumes a mapping µ if µ′ extends µ), an alternative certain answer semantics was
proposed in [1]. One challenge in devising such a semantics is to avoid introducing
unjustified subsumed mappings to the certain answers.

Example 2. Consider the query Q from Example 1 and let the RDF graph G1 be
the RDF graph G′ from Example 1. Assuming models(G1) to contain all super-
sets of G1, one would expect certain(Q,G1) = {{(?auth, a), (?award, p)}}, while
there is no justification for {(?auth, a)} ∈ certain(Q,G1). However, for G2 =
G1 ∪ {(a, writes, c)}, intuitively certain(Q,G2) = {{(?auth, a), (?award, p)},
{(?auth, a)}}. This is because, unlike for G1, over each graph in models(G2) at
least two different mappings contribute a solution, namely {(?auth, a), (?b, b),
(?award, p)} and {(?auth, a), (?b, c)}. However, due to projection, these two
mappings may lead to the same solution: for G3 = G2∪{(c, receives, p)} we get
(under set semantics) Q(G1) = Q(G3). Under bag semantics, Q(G1) and Q(G3)
still contain the same mapping, but it occurs once in Q(G1) and twice in Q(G3).

As a result, these two cases cannot be distinguished under set semantics, which
prevents a definition of certain answers that acknowledges the differences be-
tween these cases. In [1] this was resolved by excluding all subsumed mappings
from the certain answers. E.g., in the above example, {(?auth, a), (?award, p)}
would be the only certain answer for both, G1 and G2. While being a sensible
definition, it is nevertheless a little ad hoc.

Given recent advances in SPARQL query answering and reasoning under bag
semantics (cf. [6, 9, 2, 4, 5]), in this ongoing work we are revisiting the definition of
a certain answer semantics for SPARQL under bag semantics, with the final goal
to devise a certain answer semantics that (more) adequately describes the certain
information returned by weakly monotone queries. This submission does not
present new results, but suggests a possible certain answer semantics, (hopefully)
showcasing that revisiting certain answer semantics for SPARQL is worthwhile.

2 Subsumption between Bags

A possible way of defining a certain answer semantics that faithfully includes sub-
sumed mappings is to introduce a “subsumption-aware” variant of bag-intersection.

Towards this goal, we fix some notation. A mapping µ is a set of pairs (?xi, vi),
each pair denoting µ(?xi) = vi. A bag M of mappings is a collection of mappings



Reconciling Certain Answers and SPARQL using Bag Semantics 3

that may contain each mapping more than once. We write cardM (µ) to denote
the number of times a mapping µ occurs in bag M (if clear, M may be dropped;
if we do not specify cardM (µ), we assume 1 by default). In this submission, we
will assume RDF graphs to be sets, while we assume query results to be bags of
mappings, a setting sometimes referred to as set-bag semantics in the literature.

Having settled this, we first have to extend the notion of subsumption to
bags. For sets L, R of mappings, subsumption L v R holds when for every
mapping µ ∈ L there exists a mapping µ′ ∈ R such that µ ⊆ µ′. Similar to
homomorphisms (cf. [7]), there are several possibilities for extending subsump-
tion to bags L,R of mappings: one could just apply the definition for sets, or one
could demand that for every mapping µ ∈ L there exists µ′ ∈ R such that µ ⊆ µ′

and cardL(µ) ≤ cardR(µ′). While it would be interesting to study the effects of
these definitions, for our purpose they are too weak. For example, they cannot
resolve the situation described in Example 2: under both defintions, Q(G1) and
Q(G2) would subsume each other. Thus a subsumption based definition of cer-
tain answers could not distinguish Q(G1) from Q(G2), despite our intention that
certain(Q,G2) = Q(G2), but not Q(G1).

We thus use a stricter definition for subsumption between bags, and say that a
bag L is subsumed by a bag R, written L vb R, if there exists a mapping h : L→
R such that µ v h(µ) for all µ ∈ L and cardR(µ′) ≥

∑
µ∈L : h(µ)=µ′ cardL(µ) for

all µ′ ∈ R (this corresponds to the additive homomorphisms in [7]).
Next, we say that a bag M of mappings is vb maximal w.r.t. a property Ω if

M satisfies Ω and there is no M ′ satisfying Ω such that M vM ′ but M ′ 6vM .
It is an interesting observation at this point that sets M1 6= M2 of mappings

may satisfy M1 vM2 and M2 vM1 (just consider the mappings in Example 2),
while (for bags or sets) B1 vb B2 and B2 vb B1 implies B1 = B2.

The notion of vb-maximal bags now allows us to define L∩v R, a version of
bag-intersection that retrieves maximal information from both, L and R: for two
bags L, R of mappings, let L ∩v R be a vb-maximal bag M such that M vb L
and M vb R. Unfortunately, the result of this operator is not necessarily unique.

Example 3. Let L = {{(x, 1), (y, 1), (u, 1)}, {(v, 1)}} andR = {{(x, 1), (y, 1), (v, 1)},
{(u, 1)}} be two bags of mappings. Then M1 = {{(x, 1), (y, 1)}} and M2 =
{{(u, 1)}, {(v, 1)}} are both vb-maximal w.r.t. being subsumed by L and R.

However, we will discuss next that in many cases ∩v, or a slight adaption of it,
is nevertheless well-suited to define meaningful certain answers.

3 Certain Answers via ∩v

Besides not returning a unique bag, another property of ∩v needs to be taken
care of before it can be used to define certain answers, as illustrated next.

Example 4. Consider a SPARQL query Q

SELECT ?a, ?w, ?r WHERE {?a isa author} OPTIONAL {?a writes ?w.?a reads ?r}

and an RDF graph G = {(a, isa, author), (a, reads, b)}. Assume that also the



4 S. Skritek

knowledge “every author writes some book” (expressed e.g. in OWL) is given and
that every RDF graph G′ ∈ models(G) satisfies this condition. Then

⋂
v{q(G′) |

G′ ∈ models(G)} = {{(?a, a), (?r, b)}}.

However, this result does not respect the requirement expressed in the query that
a result should contain either a value for both, ?w and ?r, or neither of them. As
a result, instead of defining certain answers just as

⋂
v{q(G′) | G′ ∈ models(G)},

following [1], we also restrict the possible domains for the certain answers. For
a set V of sets of variables, we therefore extend L ∩v R to L ∩Vv R as being the
vb-maximal bag M such that M vb L, M vb R, and dom(µ) ∈ V for all µ ∈M .

Finally, for a query Q, let the admissible solution domains adsoldom(Q) be
the set of possible domains of mappings inQ(G) (for anyG). Due to space restric-
tions we stick to this vague definition; but, for example, for conjunctive queries
Q, adsoldom(Q) contains as single element the set of all output variables of Q,
for query Q from Example 2 we get adsoldom(Q) = {{?auth}, {?auth, ?award}},
and for Q from Example 4, adsoldom(Q) = {{?a}, {?a, ?w, ?r}}.

Definition 1. Let G be an RDF graph, Q a query, and models(G′) the set of
graphs entailed by G. Then the certain answers of Q are defined as

certain(Q,G) =
⋂adsoldom(Q)

v {Q(G′) | G′ ∈ models(G)}.

While, for arbitrary inputs L,R,V, the result of L ∩Vv R is not necessarily
unique, in most of the settings in which we compute certain answers, L, R, and
V are not arbitrary inputs but adhere to some structure that we can exploit.

For example, when applied to conjunctive queries, ∩Vv reduces to conventional
(set- or bag) intersection, and as a result for these queries we get the “classical”
definition of certain answers as a special case of Definition 1.

Similarly, in the special case of models(G) containing a minimal element G
(i.e. G ⊆ G′ for all G′ ∈ models(G)), for weakly monotone SPARQL queries the
certain answers are uniquely defined. In fact, applied to the settings in Exam-
ples 1 and 2 it produces exactly the intuitive bags of certain answers.

More generally, also for the sets models(G) that exhibit a canonical model
(i.e. that contain some G′ ∈ models(G) such that for every Gi ∈ models(G) there
exists some homomorphism hi : G

′ → Gi) we strongly conjecture that for weakly
monotone queries, and especially for well-designed SPARQL queries, Definition 1
gives a unique bag of certain answers.

There are, of course, a lot of open question for future and ongoing work.
These include the relationship to certain answer semantics from the literature
(e.g., while “typical” certain answers for CQs are a special case of Definition 1,
this seems not to be the case for the definition in [1]), an investigation of classes
that provide a unique bag of certain answers, and of course the costs/complexity
of query evaluation under this semantics for specific reasoning formalisms (e.g.
OWL). Another line of research is to establish a connection with the work in [8].
Finally, also considering alterations of this definition could be of interest.



Reconciling Certain Answers and SPARQL using Bag Semantics 5

References

1. Ahmetaj, S., Fischl, W., Pichler, R., Simkus, M., Skritek, S.: Towards reconciling
SPARQL and certain answers. In: Proc. WWW 2015. pp. 23–33. ACM (2015)

2. Angles, R., Gutiérrez, C.: The multiset semantics of SPARQL patterns. In: Proc.
ISWC 2016. LNCS, vol. 9981, pp. 20–36. Springer (2016)

3. Arenas, M., Pérez, J.: Querying semantic web data with SPARQL. In: Proc. PODS
2011. pp. 305–316. ACM (2011)

4. Console, M., Guagliardo, P., Libkin, L.: Approximations and refinements of certain
answers via many-valued logics. In: Principles of Knowledge Representation and
Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape
Town, South Africa, April 25-29, 2016. pp. 349–358. AAAI Press (2016)

5. Console, M., Guagliardo, P., Libkin, L.: On querying incomplete information in
databases under bag semantics. In: Proc. IJCAI 2017. pp. 993–999. ijcai.org (2017)

6. Hernández, D., Gutierrez, C., Hogan, A.: Certain answers for SPARQL with blank
nodes. In: Proc. ISWC 2018. LNCS, vol. 11136, pp. 337–353. Springer (2018)

7. Hernich, A., Kolaitis, P.G.: Foundations of information integration under bag se-
mantics. In: Proc. LICS 2017. pp. 1–12. IEEE Computer Society (2017)

8. Libkin, L.: Certain answers as objects and knowledge. vol. 232, pp. 1–19 (2016)
9. Nikolaou, C., Kostylev, E.V., Konstantinidis, G., Kaminski, M., Grau, B.C., Hor-

rocks, I.: The bag semantics of ontology-based data access. In: Proc. IJCAI 2017.
pp. 1224–1230. ijcai.org (2017)

10. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009)


