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Abstract. A SQL-on-Hadoop query consists of a workflow of MapRe-
duce jobs with a single point of configuration. This means that the de-
veloper tunes hundreds of tuning parameters directly in the query source
code (or via terminal interface), but the system assumes the same con-
figuration to every running job. The lurking problem is that the system
allocates computing resources uniformly to every running job, even if
they present different consumption needs (after all the tuning setup is
the same). In this paper, we demonstrate that such uniform allocation
of resources drives the query to inefficient performance. We claim that
applying a non-uniform allocation method to define a customized tuning
setup for each job can outperform the uniform allocation. Ultimately, we
demonstrate that searching for specific tuning setup is an optimization
problem with polynomial cost.
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1 Introduction

Ever since the proliferation of SQL-on-Hadoop engines [2,7,3,23,8,14,22,1] the
number of configuration parameters exposed by such systems, and by the un-
derneath MapReduce systems [9,20], has grown considerably, as presented in
Figure 1. For instance, the SQL-on-Hadoop system Apache Hive has increased
from 96 configuration parameters in its 0.6.0 release up to 989 parameters in the
release 3.0.0. The underlying processing engine Apache Hadoop has increased
from 104 configuration parameters in its 0.12.0 release up to 530 parameters in
the release 3.1.0. The impact on performance of this growing number of tuning
parameters has given rise to a successful line of research on tuning MapReduce
systems [17,16,21,18,4,13,15,10,5,24,26,11,12,19].

However, tuning SQL-on-Hadoop queries is more complex than tuning MapRe-
duce jobs, because queries span a workflow of jobs with a single point of configu-
ration (i.e., the tuning setup is set in the query source code or via command line).
In practice, developers tune the physical resources to be allocated by the query
and the query processing engine propagates such set of physical resources to all
jobs in the query plan with potential inefficient performance (see Section 4).

In traditional SQL processing, a query plan indicates the execution flow for
the query operators. SQL-on-Hadoop processing is no different, but in the dis-
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Fig. 1: Number of configuration parameters per release.

tributed environment of MapReduce systems every job of a query plan imple-
ments a different set of query operators with different resource consumption
needs [6,22]. For instance, while one job requires disk bandwidth due to a Ta-
bleScan operator, another job requires memory throughput due to a Sort op-
erator. The lurking problem of tuning SQL-on-Hadoop with a single point of
configuration: the propagation of the same set of physical resources to jobs with
different resource needs drives the query to inefficient performance.

Contribution. In order to avoid such propagation of tuning setup, we pro-
pose a novel resource allocation method that assigns a specific tuning setup
for each job in the query plan. We formulate the searching for specific tuning
setup as a combinatorial optimization problem, highlight its special structure,
and show that some special properties preserve the computational efficiency for
a particular input of this problem. We also present the shortcoming of tuning
SQL-on-Hadoop queries with the current MapReduce tuning advisers and how
these queries can achieve better performance when employing our method.

Structure. Section 2 presents the notations and definitions required for pre-
senting the problem. Section 3 presents the problem of tuning SQL-on-Hadoop
queries. Section 4 presents the current tuning allocation method and its impact
on SQL-on-Hadoop queries. Section 5 presents our method. Section 6 concludes.

2 Notation and Definitions

Let us define a query plan as a directed acyclic graph G = (V,E), where the set
of vertices V represents the MapReduce jobs, and the set of edges E denotes
the precedence between two jobs. More precisely, a vertex (job) j ∈ V is a tuple
of the form j = (Oj , Tj , Cj) in which Oj is the set of physical query operators
it executes, Tj is the set of associated input tables that are read and processed
by j, and Cj is the set of configurations used to allocate resources. In this set
each c ∈ C represents a configuration exposed by the SQL-on-Hadoop system
that allocates resources to jobs. Each directed edge is an ordered pair of vertices
e = (i, j) ∈ E that connects the jobs i to j, when the execution of i directly
precedes j.

Figure 2 illustrates the query plans compiled for TPC-H query 7, in version
0.13.1 and 3.1.0 of Apache Hive to reinforce the growing complexity of SQL-on-
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(a) Query plan compiled by Hive 0.13.1.

(b) Query plan compiled by Hive 3.1.0.

Fig. 2: Query plans for TPC-H query 7.

Hadoop queries. Note that the number of MapReduce jobs in each query plan
differs considerably across software releases due to the development of different
optimization techniques and the addition of new query operators. Although our
example sticks to the Apache Hive terminology other SQL-on-Hadoop systems
like Spark [3] and Impala [14] also represent the query plans as DAGs.

3 The Tuning Allocation Problem

In SQL-on-Hadoop systems, the task of allocating physical resources through
tuning setups mainly comprises two steps: (1) searching for the most efficient
tuning setup for a job j ∈ V , and (2) allocating the found tuning setup to the
same job j. We define the most efficient tuning setup as the configuration that
drives the query to decrease response time or minimize resource usage.

Searching for the most efficient tuning setup is a task performed by Tuning
Advisers. The common approach is to profile the query execution and, then,
to employ heuristics such as Genetic Algorithm [16,17,5], Hill Climbing [15,10],
Random Forest [4], Particle Swarm Optimization [13], Exhaustive Search [18],
Recursive Random Search [11] and others [21,27]. We define the searching for
the most efficient tuning setup as the Adviser Function, as follows:

Definition 1 (Adviser Function). We denote as f(j) the adviser function
f : V 7→ C which is responsible for always finding the most efficient tuning
setup Cj for j ∈ V , where the set C = {C1, . . . , Ck} is the collection of possible
configurations.

However, allocating the found tuning setup remains a problem due to the
single point of configuration of SQL-on-Hadoop queries. We propose to replace
the single point of configuration of queries, exposed to developers, by an auto-
mated tuning system able to allocate specific tuning setup per job. Thus, we
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define the task of allocating tuning setups Cj for each job j ∈ V in a query
plan G as the problem of assigning the most efficient tuning setup found by the
adviser function f(j).

In Definition 2, we formulate the tuning allocation as a combinatorial opti-
mization problem, and use this perspective to develop the reasoning about how to
improve the current allocation of configurations to jobs for a query plan. For the
problem definition, suppose that we have a computable function σ : C ×V → R,
where σ(Ci, j) determines the computational cost of execute a job j with a tun-
ing setup Ci. We define the problem of assigning the most efficient tuning setup,
as follows:

Definition 2 (Tuning Allocation Problem). Given a directed acyclic graph
G = (V,E) representing a query plan, a set C of possible configurations, and a
cost function σ : C × V → R. Find an assignment of tuning setups such that the
total cost to process all jobs is minimum, that is, the summation∑

j∈V

∑
Ci∈C

σ(Ci, j)

is minimum.

Next, we present the current approach employed by SQL-on-Hadoop systems
to assign tuning setups to jobs. In Section 5, we present our approach to assign
tuning setups to jobs.

4 Uniform Tuning

The methodology employed by the current SQL-on-Hadoop engines allocates the
same physical resources to all jobs of a query plan. We name this methodology
as the Uniform Tuning method, and we treat it as a shortcoming for the query
plan. We define the Uniform Tuning method as follows:

Definition 3 (Uniform Tuning). The Uniform Tuning is the assignment of
configurations to jobs such that Cu = Cv for any u, v ∈ V and Cu, Cv ∈ C.

Despite the adviser function f(j) always find the most efficient tuning setup
Cj for every job j ∈ V , in the case where only one tuning setup Cj is repli-
cate to all jobs in V (according to Definition 3), Cj may negatively affect the
query’s performance, as we observe in Figure 3. The uniform tuning problem
becomes more severe because SQL-on-Hadoop systems delegate to developers
the responsibility to chose one of the available tuning setups Cj to be replicated.

The Fig. 3 illustrates that the Uniform Tuning drives the query processing
to inefficient performance in practice through experiments in the Amazon Elas-
tic MapReduce (EMR) cloud environment. We used Starfish [11] to generate
the tuning setups. We ran the TPC-H benchmark with Scale Factor of 100GB
on Apache Hive (version 0.13.1) and Apache Hadoop (version 0.20.2). We are
attached to these versions because they are the versions supported by Starfish.
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(c) Query 4.
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(d) Query 5.
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(e) Query 7.
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(f) Query 8.
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(g) Query 9.
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(h) Query 10.

Fig. 3: Speedups compared to default configuration for the uniform tuning.
Tuning-{v}, represents a tuning setup generated by Starfish for the job v.

The experiments ran with 6 machines (type c5.2xlarge: 8 of CPU and 16GB of
RAM, 100GB of SSD disks). Each runtime is an average of 3 executions.

The x-axis represent the available tuning setups, where tuning-j represents
the given Cj generated for a job j. Each Cj was applied uniformly to the query
plan, following Definition 3. The y-axis represents the speedups when the execu-
tion of the query under the tuning-j is compared to the execution of the default
configuration. The default configuration is the configuration bundled with the
SQL-on-Hadoop system and is our baseline. According to Definition 3, each
tuning setup allocates a different set of resources uniformly to the query, conse-
quently, producing a different outcome. Note that in all queries the performance
degrades due to the presence of the uniform allocation of resources, as expected.

We claim that applying a non-uniform allocation method to define a cus-
tomized tuning setup for each job can outperform the current alternative (uni-
form tuning), which consists of choosing arbitrarily a tuning setup C0 and repli-
cate it to all jobs. Therefore, our contribution is a non-uniform allocation method
that allows SQL-on-Hadoop systems to apply specific tuning setup per job.
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5 Non-Uniform Tuning

For a query plan G = (V,E), every job implements a different set of SQL opera-
tors, i.e., for every job u, v ∈ V we have Ou 6= Ov. Consequently, we assume that
each job presents different resource consumption needs [6]. For instance, while
a job u requires disk bandwidth due to a TableScan operator, another job v re-
quires memory throughput due to a Sort operator. Next, the rest of this section
discuss properties and facts about the particular structure of this problem. The
first fact states that the optimum of the problem presented in Definition 2 can
be found efficiently when using a non-uniform tuning method. Since this study
aims to find a way to do more efficient queries, it is very important to be sure
that the allocation of optimal tuning can be made in polynomial time.

The following integer linear programming model describes the optimal so-
lution for the Tuning Allocation Problem. We define the binary decision
variable xij ∈ {0, 1} to indicate whether a tuning setup Ci ∈ C is assigned to
a job j ∈ V . Let the coefficient cij = σ(Ci, j) be the computational cost for
executing a job j with the tuning setup Ci.

Minimize
∑
j∈V

∑
Ci∈C

cijxij (1)

subject to
∑
Ci∈C

xij = 1 ∀j ∈ V (2)

∑
j∈V

xji = 1 ∀Ci ∈ C (3)

xij ∈ {0, 1} ∀Ci ∈ C,∀j ∈ V (4)

The objective function (1) minimizes the computational cost in processing all
the jobs for a given query plan. Constraints in (2) ensure that exactly one tuning
setup is assigned to a vertex. Reciprocally, the equality in (3) says that only one
vertex j ∈ V can choose a tuning setup Ci ∈ C. Finally, the constraints in (4)
preserve the decision variable’s integrality.

Claim 1. The Non-Uniform Tuning method can find the optimal solution for the
Tuning Allocation Problem in polynomial time.

The program in (1)-(4) describes precisely the model of an well known com-
binatorial optimization problem called Assignment Problem. For clarity of
exposition, we present a procedure to transform an instance 〈G = (V,E), C〉 of
the Tuning Allocation Problem into an instance 〈G′ = (V ′, E′)〉 of the orig-
inal Assignment Problem as follows. Let G′ be a undirected graph such that
we create a new vertex i associated to each set Ci ∈ C. Also add a copy of
each j ∈ V and define U as the set of all i added to G′ in this way we have
V ′ = U ∪ V with U and V disjoint. Now, we add an edge {i, j} between every
vertex i ∈ U and j ∈ V . The cost of assigning a tuning setup Ci to job j is cij
and can be interpreted as an weight on the edge {i, j} ∈ E′. Notice that all edges
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in E′ go between U and V . This implies that G′ (the input of the Assignment
Problem) is a complete bipartite graph.

Even though the Assignment Problem problem is known to be NP-hard,
an optimal solution can be obtained efficiently (within execution time bounded
by a polynomial function) when the input graph is bipartite [25]. Therefore,
the problem can be solved efficiently, because of the total unimodularity of the
constraint matrix of the Assignment Problem.

An important observation about the Tuning Allocation Problem is that
if we drop the constraints (3) of the linear model, the solution remains feasible for
the problem. It means that we can attribute a configuration Ci to more than one
job (otherwise, the uniform tuning method would not be feasible). Therefore, the
natural formulation for this problem is a relaxation for the Assignment Prob-
lem. Actually, the resulting integer linear program can be rewritten as follows:

Minimize
∑
j∈V

∑
Ci∈C

cijxij

subject to
∑
Ci∈C

xij = 1 ∀j ∈ V

xij ∈ {0, 1} ∀Ci ∈ C,∀j ∈ V.

Fortunately, the coefficient matrix does not change, and we still have an
incidence matrix of a bipartite graph. In this way, the matrix of coefficients
of the problem maintains the total unimodularity. Consequently, the Tuning
Allocation Problem also can be solved in polynomial time.

Claim 2. For a query plan G = (V,E), in worst case, the non-uniform method
is equal to the uniform method, otherwise the non-uniform method performs
better.

Let the tuning setup C0 be the one assigned to all jobs j ∈ V of the query plan
G using the uniform tuning. Now, consider the case with non-uniform tuning in
which for the same query plan G, the most efficient tuning for every job j can
be obtained by calling interactively the function f(j) (see Definition 1). Directly
from definition of the adviser function f(j), we have the following inequality

σ(f(j), j) ≤ σ(C0, j) (5)

for every job j ∈ V . The inequality says that, in the best case for the uniform
tuning, the arbitrary tuning setup C0 can be the most efficient for j, but there
are no guarantees that it will happen. While attributing a tuning setup Ci chosen
by the function f(j), we know that it is always the most suitable tuning setup
for j. Consequently, the total cost required to execute all jobs j ∈ V of the
query plan G using the non-uniform method, can be written, as the following
summation: ∑

j∈V

σ(f(j), j).
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So, from the inequality (5) we can compare the total costs of the two methods,
as follows: ∑

j∈V

σ(f(j), j) ≤
∑
j∈V

σ(C0, j),

i.e., the computational cost for executing the query plan G using the non-uniform
assignment method is at most equals to the cost for the uniform method.

The advantage of using the uniform tuning method is that it is simple and
straightforward, i.e., the SQL-on-Hadoop engine just replicates the chosen tun-
ing setup. On the other hand, there are no guarantees that the chosen tuning
setup will perform well during the query’s execution. In this sense, our proposal
of non-uniform tuning personalizes the tuning setup for each job and the optimal
assignment of tuning setups is guaranteed. In other words, the Tuning allo-
cation Problem can be solved optimally with the non-uniform tuning method
and Claim 1 shows that it can be done in polynomial time. Furthermore, a di-
rect consequence of the non-uniform tuning method is the improvement in the
performance of the query plan, as stated in Claim 2.

6 Conclusion

In this paper we presented the shortcoming of MapReduce tuning advisers when
applied to SQL-on-Hadoop systems due to the uniform allocation of physical
resources and its consequences on query’s performance. After, we modeled the
Tuning Allocation Problem in order to solve the uniform allocation of
physical resources. We presented our Non-Uniform Tuning method and proved
that it allows assigning optimal tuning setups to SQL-on-Hadoop queries. We
also proved that the optimal set of tuning setups required by a query can be
found in polynomial time. For future work, an interesting direction consists of
combining multiple tuning advisers to optimize one single query, once different
tuning advisers focus on different query operators with different resource usage.

Acknowledgement: This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.
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