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Abstract. The set of regions of a condition/event transition system rep-
resents all the possible local states of a net system the behaviour of which
is specified by the transition system. This set can be endowed with a
structure, so as to form an orthomodular partial order. Given such a
structure, one can then define another condition/event transition sys-
tem. We study cases in which this second transition system has the same
collection of regions as the first one. When it is so, the structure of re-
gions is called stable. We propose, to this aim, a composition operation,
and a refinement operation for stable orthomodular partial orders, the
results of which are stable.

1 Introduction

This work studies the interrelations between local states, locally observable prop-
erties, and events of distributed systems. To this aim, its framework is set in the
relation between elementary Petri net systems, and the labelled transition sys-
tems expressing their behaviour, their case graphs. Indeed, labelled transition
systems are commonly used models for verification of properties of the specified
system [8].

We focus on the particular case in which local states act like Boolean vari-
ables, forbidding executions by carrying true or false values. Thus, the framework
is narrowed down to elementary and condition/event models, and their close re-
lation to the theory of regions. In [10, 11], regions were shown to be the key
to solving the synthesis problem: Given a labelled transition system, determine
whether it is the case graph of some elementary net system. The extension of a
local state of a net system in its case graph is the set of global states at which
it holds the value true. In a labelled transition system, a region is a set of global
states having a consistent incidence with respect to the actions, so as to be the
extension of a local state. Given an elementary, or condition/event transition
system, a net system can be constructed with regions as local states, such that
its case graph will be precisely the specified transition system. It was further
shown [9] that given an elementary (condition/event) system, it suffices to con-
sider the sub-collection of regions that is minimal with respect to set inclusion
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[1]. The remaining regions correspond to local states which are redundant in the
net system.

Regions, as subsets of global states of a system, carry an algebraic structure
[2]. They can be ordered by set inclusion, in a relation that expresses implication.
Negation, disjunction, and conjunction can be defined as set operations, only
partially in the latter two cases. The resulting structure was shown to be a
prime and coherent orthomodular partial order [2], omp for short.

Orthomodular partial orders typically represent, in an algebraic fashion, sys-
tems about which the acquisition of information depends on the point of view,
or experiment. They were first introduced by Birkhoff and Von Neumann [6] in
order to formalise the logic of properties of quantum systems. Foulis and Randall
[12, 18] extended their approach to provide a generalized model.

In the view that omp’s are a suitable specification for the observable prop-
erties of a system, we are concerned with a second synthesis problem: Given an
omp determine whether it is the regional structure of some elementary transition
system. This problem was first posed in [2], and a solution was pointed at. When
an omp is prime, one can make use of a representation theorem to find a set
of states such that the elements of the omp are subsets of it. By considering a
complete graph whose vertices are these states, one can label each edge so that
all elements of the omp can be found as regions of this new transition system.
When the structure of regions of this new system is isomorphic to the specified
omp, then the latter is called stable.

Not every omp is stable, and the full characterization of the class of stable
omp’s is an open problem which represents a long term objective. It is con-
jectured that every regional omp, the structured collection of regions of some
elementary transition system, is stable. The present work includes itself in a
series of papers [2–5] the scope of which is to study this stability of omp’s, in
an attempt to prove the conjecture.

The present work extends [4], in which some classes of stable omp’s were
presented. Here, composition and refinement operations are defined, which pre-
serve stability, thus proving the stability of regional omp’s for a wide range of
systems.

2 Background

This work implicitly deals with elementary net systems (ENS for short) [15].
Even though these models will not be formalised here, they underlie the main
ideas in the presented results. ENS are a class of pure, and simple Petri net
systems with a particular firing rule which ensures that the system remains 1-safe
in case of contact. Conditions of ENS can only be in one of two states, marked
or un-marked, and as such they can be seen as Boolean variables. Moreover, out
of Petri’s extensionality principle, two events having the same incidence on the
set of conditions, and viceversa for conditions in relation to events, should be
considered the same [17].
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Condition/Event net systems (CENS for short) are structurally identical to
ENS with the addition of a backward firing rule which provides symmetry to
the reachability relation amongst markings; reachability becomes an equivalence
relation, and reachability classes substitute the initial marking required for ENS.
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Fig. 1. To the left, a CENS. To the right, its sequential case graph. The state q1
corresponds to the marking {b1, b4}, at which e1 and e2 are concurrently enabled. To
the right, the subset of states {q1, q2} is in evidence; it corresponds to the extension of
b1, namely the set of markings containing b1.

2.1 Transition Systems and Regions

The behaviour of CENS can be expressed by means of a labelled transition
system. In such a model, states correspond to the reachable markings of the net
system. A marking enabling an event will correspond to a state from which an
arrow, labelled with this event, points to the state which is reached when the
event is fired. Such a labelled transition system is the sequential case graph of
the underlying net system.

Definition 1 (Transition System). A transition system is a structure A =
(Q,E, T ), where Q is a set of states, E is a set of events and T ⊆ Q × E ×Q
is a set of transitions carrying labels in E, such that:

1. the underlying graph of the transition system is connected;
2. ∀(q1, e, q2) ∈ T q1 6= q2;
3. ∀(q, e1, q1)(q, e2, q2) ∈ T q1 = q2 ⇒ e1 = e2;
4. ∀e ∈ E ∃ (q1, e, q2) ∈ T .

All the structures we consider are finite. A fundamental notion used in this
contribution is the one of region. Regions were introduced in [10, 11] as the
fundamental tool for solving the so called synthesis problem for Petri Nets.

Definition 2 (Region). A region of a transition system A = (Q,E, T ) is a
subset r of Q such that: ∀e ∈ E,∀(q1, e, q2), (q3, e, q4) ∈ T :
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1. (q1 ∈ r and q2 /∈ r) implies (q3 ∈ r and q4 /∈ r) and
2. (q1 /∈ r and q2 ∈ r) implies (q3 /∈ r and q4 ∈ r).

Regions are subsets of states which have a consistent orientation with the
labelling of transitions. As such, they can be assigned an incidence with respect
to each event, and interpreted as Boolean conditions which hold at the states
composing them.

Example 1. With reference to Figure 1, the extension of b1 is a region. As a
subset of states, all occurrences of e1 exit it and e4 enters it. All occurrences of
the remaining events do not cross the border of b1.

The set of regions of a transition system A will be denoted by R(A) and,
given a state q of A, Rq will denote the subset of the regions in R(A) which
contains the state q. Given a transition system A and its set of regions R(A),
the pre-set and post-set operators can be defined:

Definition 3 (Pre- and Post-sets). •( . ), the pre-set operator, and ( . )•, the
post-set operator, are defined on the events E and on the regions R(A) of the
transition system A as follows. Let r be a region in R(A)

1. •r = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 /∈ r and q2 ∈ r};
2. r• = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 ∈ r and q2 6∈ r};
3. •e = {r ∈ R(A) | e ∈ r•};
4. e• = {r ∈ R(A) | e ∈ •r}.

We are concerned with a specific class of transition systems, the condition/event
transition systems (cets for short). cets can be defined as those labelled transi-
tion systems which are the sequential case graph of some CENS. An alternative
definition, in terms of regions and the separation axioms, follows from the results
of [10, 11].

Definition 4 (CETS – Condition/Event Transition System). A cets is
a transition system in which the following conditions hold:

1. ∀ q1, q2 ∈ Q Rq1 = Rq2 ⇒ q1 = q2;
2. ∀ q1 ∈ Q ∀ e ∈ E •e ⊆ Rq1 ⇒ ∃ q2 ∈ Q such that (q1, e, q2) ∈ T ;
3. ∀ q1 ∈ Q ∀ e ∈ E e• ⊆ Rq1 ⇒ ∃ q2 ∈ Q such that (q2, e, q1) ∈ T .

This definition requires of a transition system, that its set of regions is suf-
ficient to fully determine the incidence of each event with respect to each state.
Under these conditions, a CENS can be constructed, which has the set of re-
gions for conditions, and the transition labels as events, and such that its case
graph is isomorphic to the given transition system. This tight relation between
CENS and cets was thoroughly formalised in [15], in the equivalent framework
of elementary systems.

The following basic properties of the regions R(A) of a cets A are proven
in [1]:

1. ∅, Q ∈ R(A);
2. r ∈ R(A) ⇒ Q \ r ∈ R(A);
3. r1, r2 ∈ R(A) ⇒ (r1 ∩ r2 ∈ R(A)⇔ r1 ∪ r2 ∈ R(A)).
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2.2 Orthomodular Partially Ordered Sets

Orthomodular partially ordered sets, indicated as omp in what follows, are well
known algebraic structures in the literature on Quantum Logics. The following
definition can be found as the finite version of Definition 1.1.1 in [16]. Note that
∧ and ∨ are the usual meet and join operations on a partial order, denoting,
respectively, the greatest lower bound, and the least upper bound.

Definition 5 (OMP - Orthomodular Partially Ordered Set). An ortho-
modular partially ordered set 〈L,≤, (.)′, 0, 1〉 is a set L endowed with a partial
order ≤ and a unary operation ( . )′ (called orthocomplement), such that the fol-
lowing conditions are satisfied:

1. L has a least and a greatest element (respectively 0 and 1) and 0 6= 1;
2. ∀x, y ∈ L x ≤ y ⇒ y′ ≤ x′;
3. ∀x ∈ L (x′)′ = x;
4. for any finite sequence {xi | i ∈ I} of elements of L such that i 6= j ⇒ xi ≤

x′j, then
∨

i∈I xi exists in L;
5. ∀x, y ∈ L x ≤ y ⇒ y = x ∨ (x′ ∧ y).

This latter condition is sometimes referred to as orthomodular law.

We will often denote 〈L,≤, (.)′, 0, 1〉 simply by L, and assume that an omp Li

has underlying structure 〈Li,≤i, (.)′, 0i, 1i〉.
In general, ∧ and ∨ operations can be undefined for some pairs of elements

of L. Two elements x and y in L are said to be orthogonal, noted by x ⊥ y, when
x ≤ y′. As a consequence of their basic properties, as listed at the end of Section
2.1 above, the set of regions of a cets is an omp. 0 and 1 are, respectively,
∅ and Q, the order is given by set containment and orthocomplement by set
complement; moreover, two regions are orthogonal whenever their intersection
is empty.

Since all the structures we consider are finite, an omp can be equivalently
specified by its collection of atoms A(L) := {x ∈ L \ {0} | ∀y ∈ L : (y ≤ x) →
(y = x or y = 0)} together with their orthogonality relation. Each element of L
can then be retrieved as the join of a collection of pairwise orthogonal atoms. The
reader is referred to [5] for the details, and to [12, 18] for a full characterisation
of this representation of omp’s. A subset M of an omp L with the order relation
and the orthocomplement operation inherited from L is a sub-omp of L in case
M is an omp ([16], definition 1.2.2).

Definition 6 (OMP-morphism). ([16], finite case of definition 1.2.7) Let L1

and L2 be omp. A mapping f : L1 → L2 is a morphism of omp’s if the following
conditions are satisfied:

1. f(0) = 0;
2. ∀x ∈ L1 f(x′) = f(x)′;
3. for any finite sequence {xi | i ∈ I} of mutually orthogonal elements in L1,

f(
∨

i∈I
xi) =

∨

i∈I
f(xi)
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Fig. 2. Two representations of the omp obtained by ordering the regions of the tran-
sition system in Figure 1. To the left, all regions are represented in a Hasse diagram.
To the right, only the atoms are represented; each of the two solid lines is a maximal
clique of orthogonality. This last representation is called Greechie diagram.

A morphism f : L1 → L2 is an isomorphism if f is injective, maps L1 onto L2

and f−1 is a morphism. An isomorphism f : L1 →M , when M is a sub-omp of
L2, is called embedding.

Morphisms of omp’s preserve compatibility, order and orthogonality [2]. Two
elements x, y of an omp L are said to be compatible if they admit a common
orthogonal base. Formally, x $ y ⇔ ∃a, b, c ∈ L : (a ⊥ b ⊥ c ⊥ a) and (x = a ∨ b
and y = b ∨ c) ([16], definition 1.2.1). This orthogonal base generates a Boolean
algebra which contains both elements, and is a sub-omp of L. When considered
as conditions of a net system, two compatible elements will induce sequential
behaviour of their neighbouring events, imposed by the orthogonal base. Indeed,
orthogonality is to be interpreted as mutual exclusion of the corresponding con-
ditions, and in fact, when restricted to atoms, the compatibility relation reduces
to orthogonality [5]. We say two elements are incompatible, denoted x 6 $ y,
when they are not compatible. Compatible elements x and y will be denoted by
x $ y. An embedding that preserves and reflects compatibility is called strong
([4], Definition 15).

A two-valued state of an omp is a well-known concept in the literature on
Quantum Logics ([16], Chapter 2). We will use here a specific definition of two-
valued state, state for short, apt to the omp’s of the regions of CETS.

Definition 7 (State of an OMP). ([2], theorem 41) Let A(L) be the set of
atoms of an omp L. Let E be the set of the maximal cliques of ⊥ in L restricted
to A(L); let C be the set of the maximal cliques of 6 $ in L restricted to A(L); let
S = {s ∈ C | ∀e ∈ E |s ∩ e| = 1}, then the up-closure of s, ↑(s), in L is a state
in L.

Since states of L are uniquely defined by means of up-closures of maximal
cliques of 6 $, we will frequently refer to these maximal cliques as the states of
the omp L when clear from the context.
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The collection of all states of an omp L will be denoted by S(L). It will
also be useful to consider the collection of states which contain a given element.
Given an element x ∈ L, let us define the notation Sx := {s ∈ S(L) | x ∈ s}.

The following section is concerned with the representation of an omp as a
collection of subsets of its states. The order in L will then be set inclusion, and
the orthocomplement will simply be given by set complement. When this is the
case, the omp is said to admit a concrete representation.

2.3 Properties of Regional OMP’s

As explained in more detail in section 2.4 below, omps can be constructed from
the regions of a cets. These omps will, from now on, be referred to as regional
omps. They have been shown, in [2], to satisfy the following properties. We shall
not get in the details, and the reader is referred to [2] for a full explanation of
these, and the implications they provide in the interpretation of omps for system
specification.

– Regularity: L is regular whenever every set of pairwise compatible elements
is a compatible set [16]

– Richness: L is rich whenever it admits a concrete representation [16]

There is some inconsistency in the terminology referring to these concepts
in the literature, and it has led to some confusion in the axiomatic definition of
these properties. Indeed regularity is the term used in [16], whereas [14] refers
to this property as coherence. The concept of coherence is however slightly more
general in [12, 18].

Richness is axiomatically defined in [16], and assumed through [2–5] to be
equivalent to the notion of primeness defined in [14]. The two definitions how-
ever, differ enough to raise a doubt, as their equivalence might not seem straight-
forward. This equivalence is, in what follows, proven, for the sake of mathemat-
ical rigour.

An omp L is called unital when for every element x ∈ L\{0} there is a state
s ∈ S(L) such that x ∈ s.

Definition 8 (Rich OMP). [16] An omp L is rich iff
∀x, y ∈ L : Sx ⊆ Sy ⇒ x ≤ y

In Chapter 2 of [16], a few equivalent characterisations of richness are shown.
In particular we are interested in the following:

Theorem 1. [16] An omp L is rich iff it is unital and
∀x, y ∈ L : x 6 $ y ⇒ ∃s ∈ S(L) : x ∈ s and y ∈ s

Rich omp’s where shown in Chapter 2 of [16] to also be unital.

Definition 9 (Prime OMP). [14] An omp L is prime iff
∀x, y ∈ L : x 6= y ⇒ ∃s ∈ S(L) : x ∈ s⇔ y /∈ s
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We now prove two lemmas that will be used in the proof of Theorem 2 below:

Lemma 1. In an omp L we have that:
∀x, y ∈ L : x 6 $ y ⇒ ∃s ∈ S(L) : x /∈ s and y /∈ s if and only if:
∀x, y ∈ L : x 6 $ y ⇒ ∃s ∈ S(L) : x ∈ s and y ∈ s

Proof. Suppose that L is an omp such that ∀x, y ∈ L : x 6 $ y ⇒ ∃s ∈ S(L) : x ∈ s
and y ∈ s and consider two elements x, y ∈ L : x 6 $ y; then it is also true that
x′ 6 $ y′. By hypothesis we have that ∃s ∈ S(L) : x′ ∈ s and y′ ∈ s and neither x
nor y belong to s, which means that ∃s ∈ S(L) : x /∈ s and y /∈ s for every pair
of incompatible elements in L.

Conversely, suppose that L is an omp such that ∀x, y ∈ L : x 6 $ y ⇒ ∃s ∈
S(L) : x /∈ s and y /∈ s and consider two elements x, y ∈ L : x 6 $ y; again it is
true that x′ 6 $ y′. By hypothesis we have that ∃s ∈ S(L) : x′ /∈ s and y′ /∈ s and
both x and y belong to s, which means that ∃s ∈ S(L) : x ∈ s and y ∈ s for
every pair of incompatible elements in L.

Lemma 2. A prime omp L is also unital.

Proof. For every element x ∈ L distinct from 0 we have that ∃s ∈ S(L) : x ∈
s⇔ 0 /∈ s and since 0 doesn’t belong to any state of L then x belongs to s.

Theorem 2. An omp L is rich iff it is prime.

Proof. Suppose that L is rich and consider two elements x, y ∈ L : x 6= y. There
are two cases:

x $ y : in this case there exists a Boolean subalgebra of L that contains
both x and y. For both of them we calculate the set of atoms below them,
A↓(x) = {a ∈ A(L) | a ≤ x} and A↓(y) = {a ∈ A(L) | a ≤ y}. Such sets differs
in at least an element z, because otherwise it would mean, out of Axiom 4 in
Definition 5, that x = y. If we consider a state s ∈ S(L) such that z ∈ s then s
will contain only one element between x and y because z belongs to to only one
of the two sets A↓(x) and A↓(y). The existence of s is ensured by the fact that
L is unital, which means that ∃s ∈ S(L) : x ∈ s⇔ y /∈ s.

x 6 $ y : if x 6 $ y then we also have that x 6 $ y′. From the hypothesis we have
that ∃s ∈ S(L) : x ∈ s and y′ ∈ s which means that ∃s ∈ S(L) : x ∈ s⇔ y /∈ s.

Now, suppose that L is prime, for Lemma 2 L is also unital. Consider two
elements x, y ∈ L : x 6 $ y. That means that x 6 $ y′ and in particular x 6= y′. By
Definition 9 of prime omp we have that ∃s ∈ S(L) : x ∈ s⇔ y′ /∈ s which means
that ∃s ∈ S(L) : x ∈ s⇔ y ∈ s. Again, we consider two cases:

x ∈ s : then ∃s ∈ S(L) : x ∈ s and y ∈ s
x /∈ s : then ∃s ∈ S(L) : x /∈ s and y /∈ s
which, as shown in Lemma 1, is equivalent to ∃s′ ∈ S(L) : x ∈ s′ and y ∈ s′.

ut
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2.4 Saturated Transition System and the Stability Problem

As anticipated in section 2.3 above, we know that, given a cets A = (S,E, T ),
H(A) = (R(A),⊆, ∅, S, ( . )′) with ( . )′ the set complement operation, is an omp.
Moreover, this regional omp is regular and rich.

We know as well that, given a regular and rich omp L, J(L) = (S(L), E(L),
T (L)) is a cets; where E(L) and T (L), the sets of, respectively, events and
transitions, are constructed by exploiting symmetric differences between states
as defined in [2] and [5]. Formally, a state is a collection of elements of L, and
each event e ∈ E(L) will be of the form e = [s, s′] = (s \ s′, s′ \ s), as such, it is
characterised by its sets of pre-conditions, and post-conditions seen as elements of
L. The underlying graph of J(L) is complete, presenting a transition (s, [s, s′], s′)
between each ordered pair of distinct states (s, s′), and is therefore called the
saturated transition system of L.

In [5] it is shown how the construction of J(L) can be done by considering
exclusively the atoms of L. In particular, states are determined by their atoms,
and so are events, as symmetric differences of the atoms of states. A natural
question concerns the full axiomatic definition of the regional omps. We know
that, in the general case, given a rich and regular logic L, L embeds in H(J(L)).
We consequently define as stable an omp L isomorphic to H(J(L)).

It is our long-term goal to fully characterise the class of stable omp’s, and
it is conjectured that it coincides with the class of regional omp’s. In the next
section, we will present a compositional approach which will allow us to prove
the stability of a wide class of regional omps.

3 Composition of OMPs and their Stability

This section will start introducing a rather general composition operation for
omp’s. The result of this composition will not always be an omp but we show
that it is the case in particular instances.

3.1 Composition of OMP’s

We here present a composition operation for omp’s, in the fashion of those
presented in [7] for modular ortholattices and orthomodular lattices. We focus on
the class of orthomodular posets, of which orthomodular lattices are a subclass.
Note that, whereas the cases treated in [7] are classes of algebras, our class is
not, since in omp’s joins and meets are only partially defined.

Definition 10 (V-formation). A V-formation of omp’s is a tuple
(I, L1, L2, φ1, φ2), such that I, L1, and L2 are omp’s, and φi : I → Li(i = 1, 2)
are morphisms of omp’s.

A V-formation serves as specification for composing L1 and L2 on the com-
mon interface I. In categorical terms, it is simply a diagram in the category of
omp’s. Strictly speaking, the interface would only be φ−11 (L1) ∩ φ−12 (L2), so in
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order to simplify notation, we here consider V-formations in which φi(i = 1, 2)
are embeddings, and so for each i = 1, 2, φi(I) is a sub-omp of Li isomorphic to
I.

0I

1I

x x′

I

01 = φ1(0I)

11 = φ1(1I)

a1 b1 c1 = φ1(x)

a′1 b′1 c′1 = φ1(x′)

L1

02 = φ2(0I)

12 = φ2(1I)

a2b2φ2(x′) = c2

a′2b′2φ2(x) = c′2

φ1 φ2

L2

Fig. 3. A V-formation

Given a V-formation of omp’embeddingss, we propose a straightforward com-
position operation. This construction is inspired by co-equalisers [13], however,
universality of the construction remains an open problem. As a matter of fact,
the nature of the proposed composition interprets the interface I as a sub-omp
of each component, so as to identify the two copies element-wise. In this sense,
it requires the morphisms of the V-formation to be actual embeddings.

Definition 11 (Equivalence induced by a V-formation).
Let V = (I, L1, L2, φ1, φ2) be a V-formation of omp’s. Consider L̃, the disjoint
union of L1 and L2 such that φi : I → L̃ (i = 1, 2), with φ1(I) ∩ φ2(I) = ∅. The
equivalence relation induced by V is the binary relation ∼V := {(x, x) ∈ L̃2 | x ∈
L̃} ∪ {(φ1(x), φ2(x)) ∈ L̃2 | x ∈ I} ∪ {(φ2(x), φ1(x)) ∈ L̃2 | x ∈ I}.

It is straightforward to verify that ∼V is an equivalence relation. It is re-
flexive, and symmetric by construction. If x, y, z ∈ L̃ are such that x ∼V y and
y ∼V z then it must be either z = x or z = y, so ∼V is transitive. We will de-
note the equivalence class of an element x ∈ L̃ by [x]. This equivalence relation
satisfies these additional properties:

Proposition 1. Let V = (I, L1, L2, φ1, φ2) be a V-formation of omp’s, and ∼V

as in Definition 11. Then:
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1. ∀i ∈ {1, 2} : ∀x ∈ Li : [x] ∩ Li = {x}
2. ∀x, y ∈ L̃ : x ∼v y ⇔ x′ ∼V y′

3. [01] = [02] = {01, 02} and [11] = [12] = {11, 12}
4. ∀x, y ∈ L̃ : (x ≤ y)⇒ ¬(∃x̃ ∈ [x], ỹ ∈ [y] : ỹ < x̃).

Proof. 1. By construction.
2. Let x, y ∈ L̃ be two distinct elements such that x ∼ y. From the definition

of ∼V , it follows that ∃z ∈ I : φ1(z) = x and φ2(z) = y (up to swapping
of x and y). Since φ1 and φ2 are omp-morphisms, it follows that φ1(z′) =
x′ and φ2(z′) = y′, hence x′ ∼ y′.

3. It is a direct consequence of Axioms 1 and 2 in Definition 6.
4. Let x ≤ y then ∃i ∈ {1, 2} : x, y ∈ Li, and x ≤i y. Analogously, ∃j ∈ {1, 2} :
x̃, ỹ ∈ Lj , and ỹ <j x̃. Clearly it must be that i 6= j. Now, x ∼V x̃, and
y ∼V ỹ ⇒ ∃a, b ∈ I : φi(a) = x, φj(a) = x̃, φi(a) = y, and φj(b) = ỹ. Since
φi is an omp-embedding, it must reflect the order, yielding a ≤ b, but φj
preserves the order, and so x̃ ≤ ỹ.

ut

These results allow for endowing the quotient L̃/ ∼V with a structure.

Definition 12 (I-pasting of OMP’s). Consider the setting of Definition 11,
and define:

1. L = L̃/ ∼V ,
2. 0 = [01] = [02] and 1 = [11] = [12],
3. ∀[x] ∈ L : [x]′ = [x′],
4. [x] ≺ [y]⇔ ∃x ∈ [x] : ∃y ∈ [y] : x ≤ y in L̃, and
5. ≤ ⊆ L× L as the transitive closure of ≺.

Then the I-pasting of L1 and L2 induced by V is the structure L1|I|L2 = 〈L,≤
, (·)′, 0, 1〉.

It follows immediately from Proposition 1 (4.) that ≤ is an order relation.
Proposition 1 (2.), states that ∼V is congruence for complementation, and so
(·)′ is well-defined on L. It is furthermore trivial to verify that 0 and 1 are
respectively the minimal and maximal elements in L. Note that whenever x ⊥ y,
then [x] ⊥ [y]. So defined, the composition of two omp’s over an interface is
simply obtained by identifying the elements whose pre-images through φ1 and
φ2 coincide. In general, such an I-pasting will be an orthocomplemented partial
order [14]. This is, however, not sufficient to guarantee that it is in fact an omp.
The following example shows that it can fail to be.

Example 2. With reference to Figure 3. Let I = {0, 1, x, x′} be an omp with
0 ≤ x, x′ ≤ 1. For i = 1, 2, let Li be Boolean algebras with three atoms
each {ai, bi, ci}. Since φi are omp-morphisms, φi(0) = 0i, and φi(1) = 1i.
Now let φ1(x) = c1, so that φ1(x′) = c′1 = a1 ∨ b1; and φ2(x′) = c2 so that
φ2(x) = c′2 = a2 ∨ b2. In this case, ∼ is the reflexive and symmetric closure
of {(01, 02), (11, 12), (c1, c

′
2), (c′1, c2)}, let [x] denote its equivalence classes. In
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L1|I|L2, we have that [a1] ≤ [c′1] = [c2] ≤ [a′2]. Hence, [a1] and [a2] are or-
thogonal, but they have no least upper bound. Indeed, [a1], [a2] ≤ [b′1], [b′2] and
[b′1] ∧ [b′2] = [0].

In what follows, we will study cases in which this composition is actually an
omp.

3.2 Extending a system with a sequential component

It is a known result [16] that whenever L1 and L2 are omp’s, and I = {0, 1} is
the trivial Boolean algebra, then L1|I|L2, as defined in the last subsection, is
an omp. It was further shown in [4] that in this case, if L1 and L2 are stable,
then so must be L1|I|L2. This composition operation corresponds to the parallel
composition of the corresponding operand systems. Indeed, the two systems are
simply considered as a whole, although they remain independent, they do not
synchronise or exchange information. Since the result of L1|I|L2 is stable, it can
be itself an operand for a further composition, and so this composition can be
iterated, in order to generate a wide class of stable systems. As an operation, it
is associative and commutative.

We consider now the case in which the interface is a non-trivial Boolean
algebra I = {0, 1, y, y′} whose atoms are: A(I) = {y, y′}. With such an inter-
face, we impose that the corresponding saturated transition systems synchronise
according to the specified embeddings. One of the components will be a finite
Boolean algebra, and will be denoted B. Boolean algebras considered as omp’s
were shown to be stable in [4]. The proof of stability will require the notion of
free atom. An atom is free in an omp if it belongs to just one maximal Boolean
subalgebra. When seen as the region of a cets, a free atom is a minimal region
belonging to a single regional partition.

Example 3. With reference to Figure 2, b1, b2, b4, b5 and b3 are all atoms, however
b1, b2, b4, b5 are free, but b3 is not. Indeed, b3 belongs to two maximal Boolean
algebras.

The considered embeddings will then identify a free atom of an omp with an
atom of B.

Theorem 3. Let L be an omp, and x ∈ A(L) be an atom. Let B be a finite
Boolean algebra, and a ∈ A(B). Let I = {0, 1, y, y′}, and define φL : I → L, and
φB : I → B such that φL(y) = x, and φB(y) = a. Then L|I|B induced by the
V-formation (I, L,B, φL, φB) is an omp.

Proof. After Proposition 1, it suffices to show that orthogonal joins are well
defined, and that the orthomodular law holds. First note that in this case, the
only identifications are [0] = {0L, 0B}, [1] = {1L, 1B}, [x] = {x, a} and [x′] =
{x′, a′}, all other equivalence classes being singletons. Since both x and a are
atoms, we have that ≤=≺, in the setting of Definition 12. Furthermore, for each
pair of orthogonal elements [c] ⊥ [d], there must be c ∈ L′ ∩ [c] and d ∈ L′ ∩ [d],
where L′ ∈ {L,B} such that c ⊥ d in L′. If this holds for both L′ = L and
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L′ = B, then the only possibility is [c] = [x] and [d] = [x′], for which the join
must be [1], and is well defined. Now, from the Definition 12 (4.) of ≺, it follows
that for every pair of ordered elements [c] ≤ [f ], there must be one L′ ∈ {L,B}
such that c ∈ L′∩[c] and f ∈ L′∩[f ], with c ≤ f . Now, this ensures, on one hand,
that orthogonal joins (and meets) are well defined in the I − pasting, whenever
they are well-defined on L and B. Indeed if c ∈ L′ ∩ [c] and f ∈ L′ ∩ [f ], with
c ≤ f holds for both L′ = L and L′ = B, φ′L preserving order, it must be either
c = 0L′ or f = 1L′ .

On the other hand, since L′ is an omp, then c ≤ f implies that f = c∨(f∧c′),
hence [f ] = [c] ∨ ([f ] ∧ [c]′). ut

In the following, L|I|B will refer to this particular construction, and L will be
assumed to be stable. Furthermore, we will suppose that φL(y) = x is a free
atom, and show that L|I|B is stable whenever L is.

We start defining J ′(L) = (Q′L, E
′
L, T

′
L) in the following way:

Q′L = Sy ∪ {s ∪ {vi}|s ∈ Sy′ , φB(y) 6= vi ∈ A(B)}
E′L = {[s, s′]|s, s′ ∈ Q′L, s 6= s′}
T ′L = {(s, [s, s′], s′)|s, s′ ∈ Q′L, [s, s′] ∈ E′L, s 6= s′}.

s0 s1

s2

s3 s4

φL(y)

J(L) J ′(L) ∼= J(L|I|B)

s1

s4

[φL(y)]

sv10

sv12

sv13

sv20

sv22

sv23

Fig. 4. Construction of J ′(L), where L is the omp of Figure 2, I is as in Theorem 3,
and B is a Boolean algebra with three atoms: A(B) = {φB(y), v1, v2}. Lines represent
transitions in both directions. Dashed lines have an incidence with respect to φL(y) or
[φL(y)], whereas solid lines are independent from them.

Lemma 3. J ′(L) is isomorphic to J(L|I|B). Furthermore, for every vi ∈ A(B)
such that φB(y) 6= vi, the subgraph of J ′(L) induced by S(y)∪S(vi) is isomorphic
to J(L).
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Proof. Every state q ∈ Q′L contains one, and only one, atom of B and since
φL(y) is a free atom, it has one, and only one, atom for every Boolean algebra
of L. Hence the elements of Q′L coincide with the elements of S(L|I|B). Since
the construction of J ′(L) is completely determined by the set of states as in the
construction of J(L|I|B), the two transition systems J(L|I|B) and J ′(L) are
isomorphic.

We also observe that for every atom vi ∈ A(B) distinct from φB(y) the
elements in S(y) ∪ S(vi) coincide with the elements of S(y) ∪ S(y′), which is
the set of states of J(L). From this observation it is easy to see that there is an
isomorphism between J(L) and any subgraph of J ′(L) induced by a set of states
in the form S(y) ∪ S(vi). ut

This last lemma will permit to consider J ′(L) instead of J(L|I|B).

Lemma 4. If a region H ∈ R(J ′(L)) contains a state s∪{vi} ∈ Q′L and Svi 6⊆ H
then ∀s ∪ {vj} ∈ Q′L : s ∪ {vj} ∈ H.

Proof. Since Svi 6⊆ H there must be a state s′ ∪ {vi} /∈ H, which means that
the event [s, s′] is an event labeling a transition exiting H. Now suppose that
there is a state s ∪ {vj} ∈ Q′L that doesn’t belong to H. This means that the
transition from s∪{vj} to s′ ∪{vj} ∈ Q′L does not exit H, but such a transition
is also labeled [s, s′], which is not possible since that would mean that H is not
a region. ut

Lemma 5. Every atomic region of J ′(L) is in the form Sx for x ∈ A(L|I|B).

Proof. Assume that there is an atomic region H 6∈ {Sx | x ∈ A(L|I|B)}. Con-
sider the subgraphs induced by Sy ∪ Svi for all the φB(y) 6= vi ∈ B and call
Hvi ⊂ H the sets H∩(Sy∪Svi). All the Hvi are atomic regions in every subgraph
of J ′(L) induced by Sy ∪Svi , since they are all isomorphic to J(L). The regions
Hvi can be atomic or not. If they are atomic, then they must coincide with an
atomic region Sx, with y 6= x ∈ Ln. Hence, after Lemma 4, H ∈ {Sx}x∈Ln+1

. If
they are not atomic, then there are H ′v1 ⊂ Hv1 ,...,H ′vk ⊂ Hvk from which we can
make the region

⋃
i∈{1,..,k}H

′
vi ⊂ H, hence H is not atomic. ut

Theorem 4. Let L be a stable omp, and x ∈ A(L) be a free atom. Let B
be a finite Boolean algebra, and a ∈ A(B). Let I = {0, 1, y, y′}, and define
φL : I → L, and φB : I → B such that φL(y) = x, and φB(y) = a. Then L|I|B
induced by the V-formation (I, L,B, φL, φB) is stable.

Proof. We wish to show that H(J(L|I|B)) ' L|I|B. With Lemma 3, we reduce
it to showing that H(J ′(L)) ' L|I|B. Since H(J ′(L)) is a finite omp, it is
characterised by the orthogonality relation among its atoms. Now, Lemma 5
states that each atom of H(J ′(L)) corresponds to an atom of L|I|B, and it was
shown in [4] that every atom of L|I|B must be an atom of H(J ′(L)).

For each pair of elements x ∈ A(L), y ∈ A(B), there is a state in s ∈ J(L|I|B)
such that [x] ∈ s and [y] ∈ s. Hence, the pasting must preserve incompatibil-
ity. Since the pasting also preserves orthogonality, we have that L|I|B, and
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H(J(L|I|B)) have same collection of atoms, with identical orthogonality rela-
tions. As it was shown in [5], this is sufficient to state that H(J(L|I|B)) ' L|I|B

ut

3.3 Stability of Atom Refinement

The operation of refining an atom of an omp into two new atoms preserves
stability.

Theorem 5. Let L be a stable omp. Let x ∈ A(L). Consider Ma = (A(L) \
{x})∪ {y, z}, in which all orthogonal atoms of L remain orthogonal in Ma, and
all atoms orthogonal to x in L are orthogonal to both y and z in Ma. Then the
omp M generated by Ma is stable.

Proof. We will consider only the atoms of L and M , and states as represented
by maximal cliques of 6 $ as in Definition 7. Let Sx′ be the set of states of L not
containing x. By construction of Ma, for each state s ∈ Sx of L there are two
states of M , in Sy and Sz respectively. Furthermore, the states of Sx′ all contain
an atom orthogonal to x in L, and it will be orthogonal to both y and z in M .
Thus, Sx′ , Sy and Sz constitute a partition of the states of M .

Starting from the states of M as partitioned above, it is possible to de-
fine the following sets of events: Ex′ = {[s, s′] | s, s′ ∈ Sx′ , s 6= s′}, Ey,z =
{[s, s′]|s ∈ Sy, s

′ ∈ Sz}, Ey = {[s, s′]|s, s′ ∈ Sy}, Ez = {[s, s′]|s, s′ ∈ Sz},
Ex′,y = {[s, s′] | s ∈ Sx′ , s′ ∈ Sy} and Ex′,z = {[s, s′] | s ∈ Sx′ , s′ ∈ Sz}.

Let Ay be the transition system with the following sets of states and events:
Sx′∪Sy and Ex′∪Ey∪Ex′,y, let, symmetrically,Az be the transition system whose
states are Sx′∪Sz and whose events are Ex′∪Ez∪Ex′,z. We note that bothR(Ay)
and R(Az) are isomorphic to the regions of the saturated system J(L) since in
both cases of R(Ay) and R(Az), atoms y and z replace uniformly x. Moreover,
since states Sy and Sz are disjoint, it is possible to construct the cets A =
Ay∪Az endowed by all the new events in Ey,z. We note that R(A) must contain
R(J(M)) since cets A, having less events than J(M), can have less constraints
in the construction of its regions. We want to show that R(A) = R(J(M)). Let,
by contradiction, r be a region in R(A) not belonging to R(J(M)).

If r ⊆ Sx′ , then r ∈ R(J(M)) since all the labels in Ex′ belong to both cets
A and J(M) and the new events in Ex′,y and Ex′,z are distinct copies of the
original events Ex′,x in J(L), so they do not create new regions. If r ⊆ Sy and,
symmetrically, for r ⊆ Sz then r must be a region in R(J(M)) since all the
labels in Ey and Ex′,y, and symmetrically Ez and Ex′,z are, by construction,
isomorphic to the labels Ex′,x in J(L) and all the new labels Ey,z are exiting
from or, respectively, entering in r. The only remaining case could be for r being
a minimal region in R(A) and a non minimal region in R(J(M)) but this would
be in contradiction with y and z being atoms in M . ut

Example 4. Consider three Boolean algebras B1, B2 and B3 with three atoms
each, A(Bi) = {ai, bi, ci} for i = 1, 2, 3. Let I = {0, x, x′, 1} and consider the two
omp-morphisms φi : I → Bi (i = 1, 2), such that φi(x) = ci. B1 is a stable logic,
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and c1 is clearly a free atom, so after Theorem 4, L = B1|I|B2 is a stable omp. L
is isomorphic to the omp in Figure 2, by considering b3 = [φ1(x)] = [φ2(x)]. Since
L is stable, and b5 is a free atom, we can compose it with B3, by means of the
morphisms φL and φ3, provided by φL(x) = b5 and φ3(x) = c3. The Greechie
diagram of L|I|B3 is depicted at the top of Figure 5. Thanks to Theorem 5,
we can now split any atom of L|I|B3, obtaining, for example, the stable omp
depicted at the bottom of Figure 5.

[b3] [b4] [b5]

[b3] [b4] [b5]

Fig. 5. Greechie diagrams of two omps. The omp depicted below, is obtained from the
one depicted above, by refining the atoms as shown. Since the omp above is stable, so
is the one below.

A free atom of the operands can be refined both after and before the composi-
tion operation, in this second way, only one of the two refining atoms will be used
as interface with the appended sequential component, the other one remaining
free for further composition. With this method, one can iterate the composi-
tion operation without worrying about exhaustion of available free atoms of the
original system.

Example 5. Consider a system made of two sequential components each of which
can get to a state for which they require the same resource. If each of these com-
ponents can be in two additional states, the regional omp for this system is
represented as L1 in Figure 6. B1 and B2 represent the two sequential compo-
nents, and x1, x2 correspond to their mutually exclusive states. Bc represents
the state of the resource c, it can be in state xi, indicating that Bi holds c, or in
state y1, indicating that c is available. When c is available, no other component
is involved in the coresponding local state of Bc, and so y1 is a free atom. L1

is isomorphic to the omp at the top of Figure 5, and was shown to be stable in
Example 4. We may want to make the resource c available for a third sequential
component B3, so we can use Theorem 4 to compose L1 and B3 on y1, obtaining
the stable L2 = L1|I|B3 a shown in Figure 6. However, in this new compound
system, the resource must be held by one of the three components Bi, as Bc has
no more free atoms. No additional component can be added to the system, to
compete for c. Instead of performing the composition L1|I|B3 directly, we can
first make use of Theorem 5, and refine y1 in L1 into two new free atoms x3, y2,
thus obtaining the omp L3 of Figure 6. We can now compose it with B3 on x3,
thus obtaining L4 = L3|I|B3, which is stable. One can see that y2 remains a free
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atom, a local state representing that the resource is available. This process can
be iterated, to obtain a system with n sequential components competing for the
same resource.

L1

x1 x2 y1
Bc

B1 B2

L2

x1 x2 y1
Bc

B1 B2 B3

L3

x1 x2 x3 y2
Bc

B1 B2

y1 L4

x1 x2 x3 y2
Bc

B1 B2 B3

Fig. 6. Refining a free atom

4 Conclusion

In [4], a collection of regional omps were shown to be stable. Furthermore, the
parallel composition operation was shown to preserve stability. In the present
work, we have formalised two additional operations which preserve stability. One
corresponds to the refinement of a local state into two. The second corresponds
to the extension of a system with a sequential component which synchronises
with it over a local state which is not already a synchronisation. With these
elements, we can define an algebra of system omps, such that all its elements
are stable.

However, not every regional omp can be obtained with the defined operations.
For instance, a strong limitation is the restriction of the composition operation to
interfacing on free atoms. Another limitation of this operation is that it does not
allow for extending a system with a sequential component that would synchronise
with the system at more than one state. A clear goal in our approach is to
extend the composition operation so as to generate every regional omp. In this
way, by showing that we can generate all regional omps with stability preserving
operations, we would prove the conjecture that all regional omps are stable.
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