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Abstract. Conjunctive query answering is an important reasoning task for logic-
based knowledge representation formalisms, such as Description Logics, to query
for instance data that is related in certain ways. Although there exist many knowl-
edge bases that use language features of more expressive Description Logics,
there are hardly any systems that support full conjunctive query answering for
these logics. In fact, existing systems usually impose restrictions on the queries
or only compute incomplete results.

In this paper, we present a new approach for conjunctive query entailment check-
ing that can directly be integrated into existing reasoning systems for expressive
Description Logics and serves as basis for conjunctive query answering. The ap-
proach reminds of absorption, a well-known preprocessing step that rewrites ax-
ioms such that they can be handled more efficiently. In this sense, we rewrite the
query such that entailment can dynamically be checked in the dominantly used
tableau calculi with minor extensions. Our implementation in the reasoning sys-
tem Konclude shows encouraging results.

1 Introduction

Although conjunctive query answering has intensively been studied for many expres-
sive Description Logics (DL), most of the state-of-the-art reasoning systems for these
DLs do not support conjunctive queries or only with limitations. In fact, conjunctive
query answering is typically reduced to many query entailment checking problems for
which decidability is still open in SROJ Q. Furthermore, the used techniques for show-
ing decidability and worst-case complexity of sub-languages (e.g., [3,13,16]) are often
not directly suitable for practical implementations. For the DLs SHZQ and SHOQ
approaches have been developed that reduce conjunctive query answering to instance
checking (e.g, [4,6,10]), which is not goal-directed, often requires many unnecessary
entailment checks, and may require language features (e.g., role conjunctions) which
are not available in OWL 2 and, hence, usually not supported by reasoning systems.
Even for queries with only answer variables, existing approaches (e.g., [8,12,17]) are
often suboptimal since they are based on the above mentioned reduction to many in-
stance checks. Recently, query answering has been improved by lower and upper bound
optimisations that utilise model abstractions built by a reasoner [5] or delegate work to
specialised procedures [14,22]. However, their effectiveness is ontology dependent and,
hence, optimised and deeply integrated query entailment checking and answering tech-
niques for expressive DLs are still needed for further improvements.
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In this paper, we present an approach that encodes the query such that entailment
can efficiently be detected in the model construction process with minor extensions to
the dominantly used tableau algorithm. The encoding serves to identify individuals in-
volved in satisfying the query and guides the search for a model where the query is
not entailed. We refer to this technique as absorption-based query entailment checking
since it reminds of the absorption technique for nominal schemas [19]. The approach is
correct and terminates for several expressive DLs for which decidability of conjunctive
query entailment is well-known (e.g., SHZQ, SHOQ). For the challenging combina-
tion of nominals, inverse roles, and number restrictions, termination is only guaranteed
if a bounded number of new nominals is generated. The technique seems well-suited
for practical implementations since (i) it only requires minor extensions to tableau algo-
rithms, (ii) can easily be combined with other well-known (query answering) optimisa-
tion techniques, and (iii) real-world ontologies hardly require the generation of (many)
new nominals. We implemented the proposed technique in the reasoning system Kon-
clude [20] with encouraging results. The accompanying technical report [18] sketches
extensions to query answering and contains more details as well as evaluation results.

2 Preliminaries

We assume readers to be familiar with DLs and conjunctive queries (see, e.g., [1]).
Since we focus on query entailment checking, we only consider Boolean queries (i.e.,
all variables are existential variables). A query Q is a set of query terms {q, . . . , g;} with
g; either a concept term of the form C(z) or a role term of the form r(z;, z2). We consider
r(x,y) € Q as equivalent to 7~ (y, x) € Q and use vars(Q) to refer to the variables in Q.
W.Lo.g. we do not use individual names in query terms and we assume that all variables
are connected via role terms.

Reasoning algorithms for SROZQ are dominantly based on (variants of) tableau
algorithms, which, roughly speaking, check the consistency of a knowledge base K by
trying to construct an abstraction of a model for K, a so-called “completion graph”. A
completion graph G is a tuple (V, E, L, #), where each node v € V (edge (v,w) € E)
represents one or more (pairs of) individuals. Each node v (edge (v, w)) is labelled with a
set of concepts (roles), L(v) (L({v, w))), which the individuals represented by v ({(v, w))
are instances of. The relation # records inequalities between nodes. We call C € L(v)
(r € L(v,w))) a concept (role) fact, which we write as C(v) (r(v,w)). A node v is a
nominal node if {a} € L(v) for some individual a and a blockable node otherwise.

A completion graph is initialised with one node for each individual in the input
knowledge base. Concepts and roles are added to the node and edge labels as specified
by concept and role assertions. Complex concepts are then decomposed using expansion
rules, where each rule application can add new concepts to node labels and/or new
nodes and edges, thereby explicating the structure of a model. The rules are applied
until either the graph is fully expanded (no more rules are applicable), in which case the
graph can be used to construct a model that is a witness to the consistency of K, or an
obvious contradiction (called a clash) is discovered (e.g., a node v with C, -C € L(v)),
proving that the completion graph does not correspond to a model. K is consistent if the
rules (some of which are non-deterministic) can be applied such that they build a fully
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Fig. 1. Visualisation of the query of Example 1 and two possible foldings

expanded, clash-free completion graph. Cycle detection techniques such as pairwise
blocking [9] prevent the infinite generation of new nodes.

For handling axioms of the form A C C, where A is atomic, one typically uses
special lazy unfolding rules in the tableau algorithm, which add C to a node label if
it contains the concept A. Axioms of the form C E D, where C is not atomic, cannot
directly be handled with lazy unfolding rules. Instead, they are internalised to T C
—~CUD. Given that T is satisfied at each node, the disjunction is then present in all node
labels. To avoid the non-determinism introduced by internalisation, one typically uses
a preprocessing step called absorption to rewrite axioms into (possibly several) simpler
concept inclusion axioms that can be handled by lazy unfolding. Binary absorption
[11] utilises axioms of the form A M A, £ C for absorbing more complex axioms. This
requires a binary unfolding rule that adds C to node labels if A; and A, are present.

3 Absorption-Based Query Entailment Checking

With the exception of role relationships between nominals/individuals, DLs allow only
for expressing tree-shaped structures [7,21]. Even with nominals/individuals, forest-
shaped models exists [16]. Hence, we can check query entailment by “folding” the
relational structure of (parts of) the query into a tree-shaped form by identifying vari-
ables. The resulting queries (query parts), called foldings, can then be expressed as DL
concepts (possibly using role conjunctions). Such query concepts can be used to check
query entailment: we have that a query (part) is not entailed if a completion graph exists
that satisfies none of its foldings.

Example 1. Consider the (cyclic) query Q; = {t(w, x), r(x,y), s(y, 2), s(z, w)} (cf. Fig-
ure 1, left-hand side). There are different (tree-shaped) foldings of the query, e.g., by
identifying x and z or w and y (cf. Figure 1, middle and right-hand side). The foldings
can be expressed as A(r M s7).A(r M s7).T and A(r~ M r).A(s™ M ). T, respectively.

If we add, for each concept, say C, that represents a folding of the query, the ax-
iom C C L to the knowledge base, then consistency checking reveals query entailment.
Note that the tableau algorithm decides for each node whether (sub-)concepts of the
foldings are satisfied (due to the internalisation to T £ —~C U 1) and adds corresponding
(sub-)concepts or their negations to the node labels and, hence, the expansion of nodes
is not blocked too early w.r.t. deciding query entailment. Unfortunately, state-of-the-art
reasoners do not support role conjunctions and there can be many foldings of a query
(especially if the query has several nested cycles or uses role terms with complex roles).

Here we propose, as an alternative, to dynamically match and fold the query onto the
completion graph. This is achieved by ‘absorbing’ a query into several simple axioms
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that can efficiently be processed, where intermediate states encode the parts of the query
that are already satisfied. The intermediate states are tracked in the form of so-called
query state concepts (written S, possibly with sub-/super-scripts), which can be seen as
fresh atomic concepts with a set of associated bindings of query variables to nodes in
the completion graph. To realise this, we extend the tableau algorithm to create variable
bindings (to match a variable to a node in the completion graph), to propagate variable
bindings in the process of folding the query onto the completion graph, and to join
variable bindings. Creating and propagating variable bindings according to the role
terms of a query ultimately allows us to detect when cycles are closed.

For the creation of variable bindings, we borrow the | binders from Hybrid Logics
[2]. Informally, a concept of the form |x.C in the label of a node v instructs the tableau
algorithm to create a binding {x — v}, which binds x to the node v, and to store the
binding for the sub-concept C. For the propagation of bindings, we extend the V-rule of
the tableau algorithm. For example, if V7.C is in the label of a node v and the variable
binding {x — v} is associated with it, then the tableau algorithm associates {x — v}
with C for all r-successors of v. Additionally, propagation can happen within node
labels, e.g., if § € L(v) with the associated binding {x — v} and the knowledge base
contains S C C, we add C to £(v) and associate {x +— v} with it. Finally, for joining
bindings, we extend the binary unfolding rule. For example, if §; and S, are in the label
of a node v and the bindings {x — v,y = w} and {x — v,z > w} are associated with
them, respectively, then, for an axiom S, M S, C C in the knowledge base, we add C to
L(v) and associate the joined bindings {x > v,y > w, z — w} with it. With these basic
adaptations, we can capture the query in several simple types of axioms: § C |x.S’ for
creating bindings, § C S’ and § C ¥r.§’ for propagating bindings, and §, M S, C S’ for
joining bindings, where S, S’, S|, S, are query state concepts and r is an atomic role or
its inverse. The resulting axioms can usually be processed quite efficiently.

3.1 Query Absorption

Before presenting a formal algorithm, we demonstrate how the concepts and axioms for
a query are obtained by means of an example. We call this process absorbing a query.

Example 2 (Example 1 cont.). Consider again Q) = {t(w, x), r(x,y), s(y,z2), s(z, w)}.
We first pick a starting variable, say w, and introduce the axiom T C [w.S", which
triggers, for all nodes, that a binding for w is created. We use the (fresh) query state
concept S* to indicate that w is bound. Since it is convenient to continue with a role
term containing w, we choose #(w, x) and propagate the bindings for w to z-successors
using the axiom S C V£.S}" (again S}’ is fresh and indicates the state that bindings for w
have been propagated via ¢). Nodes to which S} (with the bindings for w) is propagated
are suitable bindings for x. This is captured by the axiom S}’ C |x.S*. Since S}’ may be
propagated from different nodes, we join the propagated bindings for w and the newly
created bindings for x using the axiom S}’ 11 §* C §**, for which the extended tableau
algorithm attaches the joined bindings to the fresh concept S**. We proceed analogously
for r(x,y), s(y,z), and s(z,w) (see Figure 2 for all created axioms). Nodes to which
the concept S} °° is propagated, potentially close the cycle in the query. The axiom
S M S £ §W9 checks whether a join is possible. In case it is, the query is satisfied
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Fig. 2. The axioms for absorbing the query Q, of Example 2

and a clash is triggered by the axiom $™%" C L. In this case, backtracking is potentially
triggered to try other non-deterministic choices which might yield a complete and clash-
free completion graph that is a counter example for the query entailment.

The next example demonstrates how concept terms in the query are handled.

Example 3 (Example 2 continued). Consider O, = Q; U {B(x)}. As in Example 2, we
pick w as starting node and then process #(w, x). This yields (again) the first four axioms
shown in Figure 2. Assume that we now process B(x). At the state S$"*, the tableau
algorithm can either satisfy =B (which indicates that the query is not satisfied with these
bindings for w and x) or we have to assume a query state where also B(x) is satisfied.
This is achieved by adding the axiom §"* C —B LI F, where Fy is a fresh concept.
Note that we want to keep the number of modified tableau rules minimal. Hence, when
applied to —=BLI F'},, the LI-rule does not propagate variable bindings. In case, the disjunct
F is chosen, we join its empty set of variable bindings with those for $"** using the
axiom $"* M Fy C 8%, which is handled by the extended binary unfolding rule. For the
next role term r(x, y), we then add Si* C V.5 and continue as in Example 2.

Algorithm 1 formalizes the query absorption process and extends the given knowl-
edge base K via side effects. The functions absorbCT (Algorithm 2) and absorbRT
(Algorithm 3) handle concept and role terms, respectively. The functions use a map-
ping Vs from variables to the last query state concepts, i.e., each variable in the query
is mapped to the last introduced query state concept for that variable such that we can
later continue or incorporate the propagation for that variable. In the example, we al-
ways chose an adjacent next query term that contains the current variable z. In case a
non-adjacent term is chosen, Lines 6—11 ensure the connection to the current variable
(which exists as we consider connected queries, see Section 2). In our example, if we
were to choose s(y, z) as first query term in Line 5 (with w as starting variable), Lines 6—
11 ensure that we process, for example, #(w, x) and r(x, y) before we process s(y, z) in
Line 17. Clearly, the presented algorithm can further be optimised, e.g., by not creating
binder concepts for variables that are not required in joins, but the presented algorithm
is already quite convenient to show the principle of the approach.

3.2 Tableau Rules and Blocking Extensions

As outlined in the previous sections, minor extensions and adaptations of the tableau
algorithm are required for creating, propagating, and joining bindings as well as for
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Algorithm 1 absorbQ(Q, K) Algorithm 2 absorbCT(C(x), Vs, K)
Input: A query Q and a knowledge base K 1: §*1-*% « V;¢(x)
that is extended via side effects 2: F{. « fresh atomic concept

1: z « choose one variable from vars(Q) 3: S« fresh query state concept

2: §% « fresh query state concept 4: K «— KU (S5 C-C U F}

3: K —KU{TLC |25 50 K K U [SHmn Fé‘ C S?'"x'"x"}
4: Vis(z) « §° 6: Vis(x) e S

5: for each g € Q do

6: if g = C(x) or g = r(x,y), z # x then

7. choose g1, q2, . .., q, € Q with

g1 =11z y1), g2 = RO, Y2),
cslqn = rn(yn—l’x)

8: for 1 <i<ndo Algorithm 3 absorbRT(r(x, y), Vs, K)
9: absorbRT(g;, Vis, K) L: §T-%in e Vig(x)

10: end for 2: Sy « fresh query state concept
11: end if 3: K — KU {SH-Fmn Yy Gt

12: if ¢ = C(x) then 4: if V¢ (y) is undefined then

13: absorbCT(C(x), Vis,K) 5: S$¥ « fresh query state concept
14: e X 6: K — KU{SH"" T |y.8)

15: end if 7: Vis(y) « §”
16: if ¢ = r(x,y) then 8: end if
17: absorbRT(r(x, y), Vis, K) 9: SY1-YIm — Vo (y)

18: 7y 10: S¥1-%* « fresh query state concept with
19: end if e =X e X XYY e Y
20: end for 11: K « KU
21: S2-2m? Vis (Z) {Sfl«-»x-»-*'n M §yt-=y=ym Szl...zk}
22: K« KU {Sa-m 1} 12: Vig(y) « S

ensuring a correct blocking. First, we discuss the required rule extensions and define
the notion of variable mappings:

Definition 1 (Variable Mapping). A variable mapping u is a (partial) function from
variable names to nodes and we refer to the set of elements on which u is defined as
the domain, written dom(u), of u. We say that two variable mappings u, and p, are
compatible if 1 (x) = pa(x) for all x € dom(u;) N dom(uy).

For an extended completion graph G = (V,E, L, #, M) and v € V, we denote with
M(C,v) the sets of variable mappings that are associated with a concept C in L(v).

The |-rule creates and associates variable mappings with concept facts in the com-
pletion graph, which we then propagate to other concept facts w.r.t. the axioms from
the query absorption by using the extensions of expansion rules depicted in Table 1.
In particular, the application of the V-rule to a concept fact Yr.C(v) now also propa-
gates mappings that are associated with Yr.C(v) to the concept C in the labels of the
r-neighbours. If complex roles have to be handled, one can, for example, use an unfold-
ing of the universal restriction according to the automata for role inclusion axioms [9].

The remaining rules of Table 1 handle the (lazy) unfolding of the new query state
concepts in node labels. Please note that the standard unfolding rules for simple atomic
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Table 1. Tableau rule extensions for creating and propagating variable mappings

l-rule: if  |x.C € L(v), v not indirectly blocked, and C ¢ L(v) or {x — v} ¢ M(C,v)
then L(v) = L(v) U{C}and M(C,v) = M(C,v) U {{x — v}}
V-rule: if Vr.C € L(v), v not indirectly blocked, there is an r-neighbour w of v with
C ¢ L(w)or M(Vr.C,v) £ M(C,w)
then L(w) = L(w) U {C} and M(C,w) = M(C,w) U M(Vr.C,v)
Cy-rule: if S C C e K, 1" € L(v), v not indirectly blocked, and C ¢ L(v) or
M(S¥1- vy & M(C,v)
then L(v) = L(v) U{C} and M(C,v) = M(C,v) U M(S§*1-% v)
Co-rule: if S*" MAC C e K, {S9" A} € L(v), v not indirectly blocked, and
M(S¥ -2 vy € M(C,v)
then L(v) = L(v) U{C}and M(C,v) = M(C,v) U M(S*1-*,v)
Cserule: if S M8 £ C e K {8, 857"} € L(v), v not indirectly blocked, and
(M, v) XEM(ST ", v) € M(C,v)
then L(v) = L(v) U{C} and M(C,v) = M(C,v) U (M(S{""™,v) X M(S3' ", v))

concepts are still necessary, i.e., C has to be added to a node label for axioms of the
form AC C and A; MA, C Cif A or A; and A, are present. In contrast, the new un-
folding rules are only applied if at least one concept on the left-hand side is a query
state concept and they additionally also propagate associated variable mappings to C.
More precisely, if the query state concept S*'~* is in the label of a node v and we have
the variable mappings M associated with this fact, then we add C for an axiom of the
form $*1-* C C € K and we associate M also with C(v) (cf. C;-rule). For an axiom
of the form S¥ % M A C C, we only add C and propagate the mappings to C if also
the atomic concept A is in the label (cf. C,-rule). Finally, the C3-rule handles binary
inclusion axioms, where both concepts on the left-hand side are query state concepts,
by propagating the join of the associated variable mappings to the implied concept.

Definition 2 (Variable Mapping Join). A variable mapping u, U u; is defined by set-

ting (u; U (p)(x) = w1 (x) if x € dom(uy), and (u; U tp)(x) = po(x) otherwise. The join

My X M; between the sets of variable mappings M, and M, is defined as follows:
My XMy ={uy Yo | g € My, ua € My and g is compatible with u,}.

By applying the rules of Table 1 (in addition to the standard tableau rules) for a
knowledge base that is extended by the axioms from the query absorption, we get asso-
ciations of variable mappings with query state concepts such that they indicate which
parts of a query (and how these parts) are satisfied in the completion graph.

Example 4 (Example 2 cont.). Assume we extend K| = {A(a),AC t.B,BC Ar.A,tC
s~,rE s~} with the axioms from absorbing Q; in Figure 2 and test the consistency with
a tableau algorithm extended by the rules of Table 1. We observe that the constructed
completion graph contains a clash and, consequently, Q; is entailed (cf. Figure 3). More
precisely, we create a node for the individual a and add A to its node label (due to A(a)).
Now, we alternately create 7- and r-successors (due to AC 3¢.B and BC 3r.A), where the
t-successors are labelled with B and the r-successors with A. DuetotC s~ and 7 C 5™,
we add s~ to each edge label. It is obvious to see that the folding (¢ 1 s7).A(r M s7).T
of Q) (cf. Example 1 and Figure 1) is satisfied for each node that instantiates A.
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Fig. 3. Clashed completion graph for Example 4 with propagated variable mappings

Due to T C [w.S" from the absorption, we add S* to each node label and associate
S" with a mapping from w to the node. In particular, for v, representing the individual a,
we associate {w>v,} with S*. Note that {wv,} € M(S",v,) is shown as S " {iw=valt in
Figure 3, i.e., we list the set of associated mappings as a second super-script highlighted
in grey. To satisfy the axiom S$* C V¢.5}, we unfold S* to V¢.S}" and we also keep the
variable mappings, i.e., we have {w - v,} € M(¥t.S},v,). Now, the application of the
V-rule propagates {w i v,} to S} € L(v;). There, we unfold S} to the binder concept
for x, for which then the |-rule creates a new variable mapping {x +— v} that is joined
by the C3-rule with {w — v,} such that we have {w v, x> v} € M(S"*,v;). These
steps are repeated until we have {w v, x= vy, y = va, 2 v1} € M(SE 7%, v,). Since
{wv,} is compatible with {w > v,, x> v,y v,, 7 v}, the Cs-rule adds the latter
variable mapping to M(S"%",v,). Finally, the C;-rule adds L to £(v,). Since all facts
and variable mappings are derived deterministically, no non-deterministic alternatives
have to be evaluated and entailment of Q; is correctly determined.

As one can see from the example, the variable mappings associated with query state
concepts directly correspond to foldings of the query. In particular, variables that are
mapped to the same node correspond to the folding where the corresponding variables
are identified. In addition, if a variable is mapped to a nominal node, then the mapping
basically represents the “folding” that is obtained by replacing the variable with the
associated nominal/individual (and folding up the remaining terms).

Without further optimisations, we create new bindings for every node and, due to
complex roles and/or nominals, variable mappings might be propagated arbitrarily far
through a completion graph. At first sight, this seems problematic for blocking. The
correspondence with foldings, however, helps us to find a suitable extension of the
typically used pairwise blocking technique [9] defined as follows:

Definition 3 (Pairwise Blocking). Ler G = (V, E, L, #, M) be a completion graph. We
say that a node v with predecessor V' is directly blocked if there exists an ancestor node
w of v with predecessor w' such that (1) v,v',w,w’ are all blockable, (2) w,w’ are not

blocked, (3) L(v) = L(w) and L(V') = L(W), and (4) LV, v)) = LW, w)). A node
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Fig. 4. Expansion blocked completion graph for Example 5 with variable mappings

is indirectly blocked if it has an ancestor node that is directly blocked, and a node is
blocked if it is directly or indirectly blocked.

The query state concepts, which track how much of the query is satisfied, are already
part of the concept labels. Hence, it remains to check whether the query is analogously
satisfied (i.e., same foldings must exist) by, roughly speaking, checking whether the
variable mappings have been propagated in the same way between the blocking node,
its predecessor and (related) nominal nodes and between the blocked node, its prede-
cessor and (related) nominal nodes. Note that a mapping ¢ and the query state concepts
with which p is associated capture which query parts are already satisfied. Query state
concepts that are associated with mappings that are compatible with u correspond to
states where fewer or additional query parts are satisfied. The following notion captures
such related query state concepts for a mapping u and a node v of a completion graph:

Definition 4. Let G = (V, E, L, #, M) be a completion graph. For v € V and a mapping
u, we set states(v, u) = {C € L(v) | u, € M(C,v) is compatible with u}.

Note that we do not limit states to query state concepts only to enable more absorp-
tion optimisations (see [18] for details). We formally capture (query state) concepts
associated with a mapping and their relation to blocking with the notion of analogous
propagation blocking and witness mappings:

Definition 5 (Analogous Propagation Blocking). Let G = (V, E, L, #, M) be a com-
pletion graph and oy, ..., 0, € V all the nominal nodes in G. We say that a node v with
predecessor V' is directly blocked by w with predecessor w' if v is pairwise blocked by
w and, for each mapping u € M(C,v) U M(C,v') U M(C,01) U ... U M(C,0,),C €
L) U LOV)U L(o)) U ... U L(oy), there exists a witness mapping ¢/ € M(D,w) U
M(D,w") U M(D,o) U ... U M(D,0,),D € Lw)U L(W)U L(oy) U ...U L(o,) and
vice versa such that states(v,u) = states(w,u’), states(v’,u) = states(w’, '), and
states(o;, 1) = states(o;, ') for 1 <i<n.
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Table 2. Witness mappings for testing analogous propagation blocking for Example 5

1 [ [states(vs, u) = states(va, ') [states(va, u) = states(vi, i)
w3} {(w,} {S¥,vt.Sy, S*} {S*}

w s} {w v} {Ve.S), Sy, S, 8", Vr.S)} {S",ve.S), S}

Wi v, W vg)| (Wi va) VLS, S, §%, S, Vr.S) | {VL.SY, S, §%, §*, Vr.5v%)
x>} {x+= vy} {S%,Y2.8%, ¥, §%, 8%, Vr.8¥3) {S™, V1.8%, SV}

Wi Vg, X o} | {Y2.SY, S¥, 8%, 8% Vr.S¥%) | {Yr.5Y,S")

Wi vy, X1} | (W vy, X vy} | (YE.SY, S, §¥, W% Vr.S¥)  |{SY, Vr.SY)
XV} (x>} (S, V1.8, SV} {S¥, V1.8, S, 8%, S¥* Vr.8")

W ve, x| (Y2.S), )} (VESY, 81, 8%, $™, Vr.5))

Example 5 (Example 2 cont.). For testing entailment of Q) over K, = {A(a), AT 3r.A,
t o t C t}, we can capture the transitivity of # by extending the axioms of Figure 2 with
SYEVLSY (cf. [9]). For the resulting axioms, the tableau algorithm creates a completion
graph as depicted in Figure 4, where the query is not entailed. Due to the axiom AC3z.A,
the tableau algorithm successively builds #-successors until blocking is established.
Note that new variable mappings are created for all nodes and all mappings are propa-
gated to all descendants due to the transitive role 7. Hence, we not only have mappings
with new bindings for each new successor, but also an increasing number of mappings.
Nevertheless, v is already directly blocked by v, using analogous propagation blocking
since all pairwise blocking conditions are satisfied (e.g., L(v3) = L(v2), L(v2) = L(v1))
and we have for each variable mapping a witness mapping as shown in Table 2. For
example, for the mapping {w — v3}, we have states(vs, {w — v3}) = {S¥,Vt.5}", S*} and
states(v,, {w — v3}) = {S*} due to the compatible mappings {x — v3} and {x v},
respectively (cf. first row of Table 2). A witness for {w — v3} is {w — v} since
states(vy, (wva}) = {S¥,V£.5), S*} and states(vy, {w— v, }) = {S¥).

To avoid considering all nominal nodes in blocking tests, one could obtain restricted
sets of relevant nominal nodes by “remembering” nominal nodes over which variable
mappings have been propagated, by tracking the usage of nominals for descendants or
by indexing variable mappings propagated over nominal nodes.

4 Implementation and Experiments

The presented query entailment checking approach is implemented in the tableau-based
reasoning system Konclude [20], which supports the DL SROJ Q with nominal schemas,
i.e., an extension of the nominal constructor by variables for natively representing rule-
based knowledge in ontologies. Axioms with nominal schemas are also absorbed in
Konclude such that variable bindings are appropriately propagated through the com-
pletion graph [19], which we reuse to some extent for the query entailment checking
extension. The implementation and data for the experiments are available online [18].
At the moment, Konclude may not terminate for SROJQ ontologies if the absorp-
tion of the query leads to propagations over new nominal nodes. However, this does not
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Table 3. Statistics for evaluated ontologies with query entailment checking (EC) times in seconds

Ontology \ DL \#Axioms #C #P #] #Assertions \ EC avg/max [s]

DMKB SROIQ 4,945 697 177 653 1,500 0.31 / 1.34
Family SROIQ(D) 317 61 87 405 1,523 |180.33 / =>300.00
Finance\p, | ALCROIQ 1,391 323 247 2,466 2,809 0.09 / 0.27
FMA3.1\p | ALCOIN 86,898 83,284 122 232,647 501,220 0.11 / 0.78
GeoSkills\p| ALCHOIN 738 603 23 2,592 5,985 0.04 / 0.35
OBI SROIQ(D) 6,216 2,826 116 167 235 0.08 / 0.05
UOBM(1) | SHOIN(D) 206 69 44 24,858 257,658 0.73 / 6.69
Wine SHOIN(D) 643 214 31 367 903 0.08 / 0.32

seem problematic in practice. For example, the ORE2015 dataset [15] contains 1920
ontologies (with trivial ontologies already filtered out), but only 399 use all problem-
atic language features (36 are O Q, 281 are OZ N, and 82 are O F). Konclude never
applied the new nominal rule in the consistency checks for these 399 ontologies, but
we terminated the reasoner (and, hence, the analysis of the new nominal generation)
for 4 ontologies after reaching the time limit of 5 minutes. Even if new nominals are
generated, it would further be required that the query propagates differently over new
nominal and blockable nodes such that blocking cannot be established.

For evaluating (the limits of) our query entailment checking approach, we identified
several interesting ontologies (i.e., ontologies that use most features of SROZQ with at
least 100 individuals and for which standard reasoning tasks are difficult but process-
able by Konclude), such as DMKB, FMA, OBI, UOBM (cf. Table 3), and generated
50 non-trivial queries with several cycles for each ontology. In summary, the entail-
ment for most queries can be decided in under one second (90% require less than 1s,
49% less than 0.1s) by using one core of a Dell PowerEdge R420 server with two In-
tel Xeon E5-2440 CPUs at 2.4 GHz and 144 GB RAM under a 64bit Ubuntu 16.04.5
LTS. However, there are queries that lead to many propagations (e.g., UOBM) and/or
require many blocking checks (e.g., Family) and, consequently, such queries require
significantly more time (e.g., 30 queries for the Family ontology reached the time limit
of 5 minutes since complex roles lead to many propagations with non-trivial blocking
tests). To further improve the performance, one could also use a representative prop-
agation of variable mappings [19] for entailment checks and/or index more precisely
which nodes constitute blocker candidates. Nevertheless, the extension of the presented
query entailment checking approach to query answering (with appropriate reduction
optimisations) is already able to outperform PAGOdA [22] on some of the non-trivial
real-world queries from the PAGOdA evaluation (see [18] for details).

5 Conclusions

We presented a novel query entailment checking approach based on the well-known
absorption optimisation that improves the reasoning performance for several more ex-
pressive Description Logics. The approach can nicely be integrated into state-of-the-art
tableau-based systems and our implementation in Konclude shows encouraging results.
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