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An important challenge for adopting ontologies in practical applications is the
knowledge acquisition bottleneck, that is, the significant time and effort it takes
to build the required ontologies. As a promising approach to help overcoming
this difficulty, the varied field of ontology learning has received a lot of attention
in the last two decades, see [15] for a recent overview. A prominent line of
research within ontology learning is concerned with learning description logic
(DL) concepts from positive and negative examples, given an already available
DL ontology that contains background knowledge [12, 14, 16, 20, 7]. Applications
include the support of ontology development and the construction of concept
based classifiers [4, 18]. The precise formulation is as follows. Given a knowledge
base (KB) K = (T ,A) and designated sets of individuals P and N from A that
serve as positive and negative examples, find a concept C formulated in a DL
LS that separates the positive from the negative examples, that is, K |= C(a)
for all a ∈ P and K 6|= C(a) for all a ∈ N . In addition to separation, one also
wants to achieve that the learned concept C generalizes the positive examples
in a meaningful way, classifying new examples accordingly.

As a prominent system for DL concept learning, we mention DL Learner.
It encompasses several learning algorithms that support a range of DLs, includ-
ing expressive ones such as ALC and ALCQ, Horn DLs such as EL, and even
full OWL 2 [5, 4]. Like competing systems such as DL-Foil, YinYang, and
pFOIL-DL [7, 10, 19], DL Learner uses carefully crafted refinement operators
[1, 13, 14] along with various heuristics to learn concepts that provide an as good
as possible generalization of the examples, avoiding overfitting. If possible, re-
finement operators are designed so that the resulting algorithm terminates on
any input and is complete in the sense that whenever there is a concept that
separates the positive and negative examples in the input, then such a concept
is indeed learned.

In the paper reported about in this abstract [8], we investigate the fundamen-
tal question of when a separating concept exists for a learning instance (K, P,N),
considering the most popular choices of DLs for the TBox language LT and the
separation language LS . Our main contributions are model-theoretic character-
izations that give important insight into when this is the case and a precise
analysis of the computational complexity of separability viewed as a decision
problem, which we refer to as (LT ,LS) concept separability and as L concept
separability when LT = LS = L. We also consider concept definability, the spe-
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cial case of concept separability in which P ∪N comprises all individuals from A.
All our complexity results actually hold for both separability and definability.

We believe that these problems are relevant both from a practical and from a
theoretical perspective. In fact, complexity lower bounds for concept separability
point to an inherent complexity that no practical system that aims for complete-
ness can avoid. Undecidability results even mean that there can be no practical
learning system that is both terminating and complete. From the viewpoint of
machine learning theory, concept separability corresponds to the existence of
a consistent hypothesis, the most fundamental problem for exploring the ver-
sion space [9]. The associated decision problem is often called the consistency
problem, and it is known to be closely related to PAC learnability [17, 11].

We cover the expressive DLs ALC, ALCI, ALCQ, and ALCQI as well as
the Horn DLs EL and ELI. For the former, overfitting is a risk because the
disjunction operator available in such DLs enables the construction of separating
concepts that do not provide the desired generalization of the positive examples.
Nevertheless, most practical systems such as DL Learner work with expressive
DLs and avoid overfitting by using appropriate refinement operators. Horn DLs
do not admit disjunction and therefore are not prone to overfitting. On the other
hand, they provide less separating power and, as we show, tend to incur higher
computational (worst-case) cost for learning.

For expressive DLs, we start with initial characterizations in terms of (a form
of) bisimulations and then proceed to more refined characterizations based on ho-
momorphisms. Interestingly and unexpectedly to us, these establish a tight link
between concept separability and the evaluation of ontology-mediated queries
(OMQs) based on unions of ‘rooted’ conjunctive queries [6, 2]. We use this link
to obtain complexity upper and lower bounds. In fact, L concept separability is
NExpTime-complete for L ∈ {ALC,ALCI,ALCQ} while ALCQI concept sep-
arability is only ExpTime-complete. This refers to combined complexity where
all components of the learning instance are part of the input. We also study
data complexity where the ABox is the only input while the TBox is fixed. In all
expressive DLs above, concept separability is Σp

2 -complete in data complexity.

For Horn DLs, we establish characterizations based on products of universal
models and simulations. Based on these, we show that (LT , EL) concept separa-
bility is ExpTime-complete for LT ∈ {EL, ELI}, both in combined complexity
and in data complexity. We find the high data complexity of this problem rather
remarkable. We also prove that ELI concept separability is undecidable, a result
that came as a surprise to us.

We finally consider a mix of expressive DLs and Horn DLs, that is, (LT ,LS)
concept separability where LT is any of the expressive DLs mentioned above and
LS is EL or ELI. These problems again turn out to be undecidable, thus ruling
out terminating and complete learning systems. The proof exploits a connection
to a certain version of query based conservative extensions between ALC KBs [3].

We also consider a stronger version of concept separability that is also con-
sidered in the literature requires that K |= ¬C(a) for all a ∈ N , rather than only
K 6|= C(a).
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