
UNSL at eRisk 2019: a Unified Approach for
Anorexia, Self-harm and Depression Detection

in Social Media

Sergio G. Burdisso1,2, Marcelo Errecalde1, and Manuel Montes-y-Gómez3

1 Universidad Nacional de San Luis (UNSL), Ejército de Los Andes 950, San Luis,
San Lius, C.P. 5700, Argentina

{sburdisso, merreca}@unsl.edu.ar
2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

3 Instituto Nacional de Astrof́ısica, Óptica y Electrónica (INAOE), Luis Enrique
Erro No. 1, Sta. Ma. Tonantzintla, Puebla, C.P. 72840, Mexico

mmontesg@inaoep.mx

Abstract. In this paper we describe the participation of our research
group at the CLEF eRisk 2019. The eRisk goal is the early detection of at-
risk people by means of machine learning techniques based on language
usage. This year eRisk edition was divided into three tasks, T1, T2,
and T3. The first two were focused on early detection of anorexia and
self-harm on Reddit users. T3 focused on measuring users’ severity of
depression. To carry out this task, models had to automatically fill the
standard BDI depression questionnaire based on the evidence found in
the user’s history of postings. We used the same classifier, SS3, to carry
out these three tasks with the same hyper-parameters configuration. SS3
is a recently introduced text classifier[1] that was created with the goal
to deal with early risk detection scenarios in an integrated manner: it
naturally supports incremental and early classification over text streams
and additionally, it has the ability to visually explain its rationale. The
final results for all these three tasks show that SS3 is a very robust
and efficient classifier. SS3 was the fastest method and obtained the
best ERDE and overall best ranking-based measures in all the tasks.
Additionally, it obtained the best Precision, F1 and F1latency for task
T2. Finally, in task T3, it obtained the best AHR and ACR values, and
the second-best ADODL and DCHR. This was quite remarkable taking
into account that the same classifier was used here to fill users’ BDI
questionnaires, which is a task completely different from the other two
“yes or no” tasks.

Keywords: SS3 · Early Risk Detection · Text Classification · Early
Classification. · Text Streams Classification

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2019, 9-12 Septem-
ber 2019, Lugano, Switzerland.

1 Introduction

The detailed description of each task and the used performance measures, and
full lists of results are given in [4]. Therefore, this paper will only focus on de-
scribing how we approached each task. All contributions we sent to the eRisk
2019 were implemented using a novel text classifier called SS3 which was recently
introduced in [1]. SS3 was specially built to deal with early risk detection (ERD)
tasks in an integrated manner since it naturally supports these 3 key aspects: (a)
incremental training and classification; (b) early classification; and (c) having the
ability to visually explain its rationale (i.e. provide the reasons for the classifica-
tion). SS3 is a generalization of the classifier we used in the last year eRisk[3] for
UNSLD and UNSLE runs. This year we decided not to use other models other
than SS3 because of the change in the way data was released, i.e. a more real-
istic item-by-item release of data. The other models we used last year based on
TVT[2] were no longer applicable since they were designed to work with chunks
and not text streams. Additionally, this year we decided to put the robustness
of SS3 into the test by using the same hyper-parameter configuration in all the
15 runs for the 3 tasks (T1, T2, and T3). Thus, the hyper-parameters values
were set to λ = ρ = 1 and σ = 0.455, which were the same values used in [1],
and for which SS3 has shown to be quite robust in terms of ERDE performance
measure.

2 The SS3 Text Classifier

As it is described in more details in [1], SS3 first builds a dictionary of words for
each category during the training phase, in which the frequency of each word is
stored. Then, using those word frequencies, and during the classification stage,
it calculates a value for each word using a function gv(w, c) to value words
in relation to categories. gv takes a word w and a category c and outputs a
number in the interval [0,1] representing the degree of confidence with which
w is believed to exclusively belong to c, for instance, suppose categories C =
{food,music, health, sports}, we could have:

gv(‘sushi’, food) = 0.85; gv(‘the’, food) = 0;
gv(‘sushi’,music) = 0.09; gv(‘the’,music) = 0;
gv(‘sushi’, health) = 0.50; gv(‘the’, health) = 0;
gv(‘sushi’, sports) = 0.02; gv(‘the’, sports) = 0;

Additionally, a vectorial version of gv is defined as:

−→gv(w) = (gv(w, c0), gv(w, c1), . . . , gv(w, ck))

where ci ∈ C (the set of all the categories). That is, −→gv is only applied to a word
and it outputs a vector in which each component is the gv of that word for each
category ci. For instance, following the above example, we have:

gv(‘sushi‘) = (0.85, 0.09, 0.5, 0.02); gv(‘the‘) = (0, 0, 0, 0);

The vector −→gv(w) is called the “confidence vector of w”. Note that each
category ci is assigned a fixed position in −→gv. For instance, in the example above
(0.85, 0.09, 0.5, 0.02) is the confidence vector of the word “sushi” and the first
position corresponds to food, the second to music, and so on.

It is worth mentioning that the computation of gv involves three functions,
lv, sg and sn, as follows:

gv(w, c) = lvσ(w, c) · sgλ(w, c) · snρ(w, c)

– lvσ(w, c) values a word based on the local frequency of w in c. As part of
this process, the word distribution curve is smoothed by a factor controlled
by the hyper-parameter σ.

– sgλ(w, c) captures the global significance of w in c, it decreases its value in
relation to the lv value of w in the other categories; the hyper-parameter λ
controls how far the local value must deviate from the median to be consid-
ered significant.

– snρ(w, c) sanctions lv in relation to how many other categories w is signifi-
cant (sgλ(w, c) ≈ 1) to. That is, The more categories ci whose sgλ(w, ci) is
high, the smaller the snρ(w, c) value. The ρ hyper-parameter controls how
sensitive this sanction is.

For those readers interested in how these functions are actually computed, we
highly recommend you to read the SS3 original paper[1], since the equations for
lv, sg and sn are not given here to keep the present paper shorter and simpler.
Note that using the gv function, it is quite straightforward for SS3 to visually
justify its decisions if different blocks of the input are colored in relations to it, as
can be seeing on an online demo available at http://tworld.io/ss3 in which users
can try out SS3 for topic categorization. This is quite relevant when it comes to
early detection tasks in which usually real people are involved, specialists should
be able to manually analyze classified subjects and this type of visual tools could
be really helpful to assist those specialists.

For all 3 tasks T1, T2 and T3 we carried out the classification of each user,
incrementally as in [1]. That is, the used summary operators for all levels were
the addition, .i.e ⊕j = addition for all j, which simplified the classification
process to the summation of all words’ −→gv vectors read so far, in symbols, for
every subject s:

−→
ds =

∑
w∈WHs

−→gv(w) (1)

where WHs is the subject’s writing history. Note that for all the tasks
−→
ds was

a vector with two components, one for the positive class and the other for the

http://tworld.io/ss3

Fig. 1: Task 3’s subject 968’s positive and negative confidence value variation
over time (writings).

Fig. 2: Task 1’s subject 968’s estimated score of the level of anorexia (d[positive]−
d[negative]) variation over time (writings).

negative one. The policy to classify a subject as positive was performed analyzing

how
−→
ds changed over time, as shown with an example in Figure 1. Subjects were

classified as positive when the positive value in
−→
ds exceeded the negative one4,

for instance, the subject in the figure was classified as anorexic after reading the
42nd writing.

Finally, this year, models performance were also evaluated based on ranking-
based measures for tasks T1 and T2. Thus, models were asked to provide an
estimated score of the level of anorexia/self-harm along with the binary decision
(0/1). To compute this score, SS3 performed the difference between the positive
confidence value and the negative one (i.e. d[positive]−d[negative]) and returned
it along with each decision. For example, in Figure 2 is shown how this score
changed as more writings were read, for the same user shown previously in
Figure 1.

3 Task 1: Early Detection of Signs of Anorexia

As mentioned earlier, we used the same classifier with the same hyper-parameters
for these 5 runs, and instead, we mostly focused on changing aspects related
to how we trained our models. For each one of the 5 runs, we performed the
following:

– UNSL#0 : we trained the model using only the data in the “train” folder,
i.e. we trained the model using the same data as for the eRisk 2018.

– UNSL#1 : the same as with the previous one but this time allowing SS3
to compute the global value not only for words but also for pair of words
(bigrams), i.e. SS3 learned to compute gv(w0, c) as well as gv(w0w1, c) for
each w0, w1 seen during training.

– UNSL#2 : the same as run#0 but training with all available data for training
this year, i.e. all the data in both “train“ and “test“ folders.

– UNSL#3 : the same as in the previous run, but this time also taking into
account bigrams of words (as in run#1).

– UNSL#4 : the same as in run#2 but letting SS3 to take into account only
words whose global value where greater than 0.3, i.e in Equation 1 SS3 as-
signed gv(w, ci) = 0 to all w and ci such that gv(w, ci) < 0.3.

The main global results obtained in this task could be summarized as follows:

– As it is shown in Table 1, UNSL#0 obtained the best ERDE5 and UNSL#4
the best ERDE50. Note that most of the ERDE values are relatively close
to each other, this is due to the way ERDE was computed.5 The larger and
more unbalanced the dataset is, the asymptotically flatter and closer the

4 Except for task T3 in which we did not perform an ”early stop”, and therefore every
user was classified after processing the entire writing history.

5 cfp = #positive users
#users

therefore each user, misclassified as false positive, added a value

of cfp
#users

= #positive users
#users2

= 73
8152

= 0.0001 to the final/reported ERDE (and 0.001

in case of false negative or true positive after the o threshold).

Table 1: Results for Task 1, decision-based evaluation. Best results are also shown
for comparison.

Team#run P R F1 ERDE5 ERDE50 F1latency F2latency

UDE#0 .51 .74 .61 8.48% 3.87% .58 .64
lirmm#1 .77 .60 .68 9.09% 5.50% .62 .57
lirmm#2 .66 .70 .68 9.24% 5.80% .60 .60
Fazl#2 .09 1 .16 17.11% 11.22% .14 .28
CLaC#0 .45 .74 .56 6.72% 3.93% .54 .63
CLaC#1 .61 .82 .70 5.73% 3.12% .69 .75
CLaC#2 .60 .81 .69 6.01% 3.13% .68 .73
CLaC#3 .63 .81 .69 6.27% 3.54% .68 .74
CLaC#4 .64 .79 .71 6.25% 3.42% .69 .73
LTL-INAOE#1 .47 .75 .58 7.74% 4.19% .55 .64
INAOE-CIMAT#0 .56 .78 .66 9.29% 3.98% .62 .68
INAOE-CIMAT#3 .67 .68 .68 9.17% 4.75% .63 .69
INAOE-CIMAT#4 .69 .63 .66 9.12% 5.07% .61 .59
UNSL#0 .42 .78 .55 5.53% 3.92% .55 .66
UNSL#1 .43 .75 .55 5.68% 4.10% .55 .65
UNSL#2 .36 .86 .51 5.56% 3.34% .50 .67
UNSL#3 .35 .85 .50 5.59% 3.48% .49 .66
UNSL#4 .31 .92 .47 6.14% 2.96% .46 .65

Table 2: Participating teams for Task 1: number of runs, number of user writ-
ings processed by the team, and the time taken for the whole process and for
processing each writing (i.e TotalT ime

#writings×#runs). (*) This value was originally 5,
but we replaced it by the actual number of models used.

Time
Team #runs #writings Total Per writing

UppsalaNLP 5 2000 2d 7h 20s
BioInfo@UAVR 1 2000 14h 25s
BiTeM 4* 11 4h 5m 30s
lirmm 5 2024 8d 15h 1m 12s
CLaC 5 109 11d 16h 31m
SINAI 3 317 10d 7h 15m 36s
HULAT 5 83 18h 2m 36s
UDE 3* 2000 5d 3h 1m 12s
SSN-NLP 5 9 6d 22h 3h 42m
Fazl 3 2001 21d 15h 5m 12s
UNSL 5 2000 23h 8s
LTL-INAOE 2 2001 17d 23h 6m 30s
INAOE-CIMAT 4* 2000 8d 2h 1m 30s

ERDE values are (as it was with this task). Thus, decimals do matter a lot
when it comes to ERDE measure. For instance, in this task, just a small
difference of 0.009 (0.9%) in ERDE actually means that 12% of either all

Table 3: Ranking-based evaluation results for Task 1. Here it is shown the best
results for SS3, UNSL #2 and #4, along with the other 3 best ones, LTL-INAOE
and UDE #0 and #1.

1 writing 100 writing
Team#run P@10 NDCG@10 NDCG@100 P@10 NDCG@10 NDCG@100

UNSL#2 .8 .82 .55 1 1 .83
UNSL#4 .8 .82 .52 .9 .94 .85
LTL-INAOE#0 .8 .75 .34 1 1 .76
UDE#0 .2 .12 .11 .9 .92 .81
UDE#1 .6 .75 .54 .9 .94 .81

500 writing 1000 writing
Team#run P@10 NDCG@10 NDCG@100 P@10 NDCG@10 NDCG@100

UNSL#2 1 1 .83 1 1 .84
UNSL#4 1 1 .85 .9 .94 .84
LTL-INAOE#0 .9 .92 .73 .7 .78 .65
UDE#0 .9 .93 .85 .9 .94 .86
UDE#1 1 1 .87 1 1 .88

anorexic users or non-anorexic ones were not properly classified, which is a
significant difference.

– Regarding the new F1latency, we did not obtain remarkable results, being
0.13 points below the best one. This is mainly due to this new measure being
introduced this year and only after the tasks ended. Therefore, SS3 could not
be optimized to obtain a better F1latency value. As said before, we used the
same hyper-parameters for the 15 runs of the 3 tasks, these hyper-parameters
were selected to optimize ERDE measures, which in turns produced an SS3
model that prioritizes the recall6 and speed7 above the precision, which is
not bad taking into account that we are dealing with early risk detection
tasks (every positive subject not detected is a life at risk!). Despite this,
our best F1latency value (.55) was quite above the average (0.38) and was
positioned 11th out of the 50 contributions and 5th out of the 13 research
groups. Additionally, we also decided to compute the F2latency which gives
a little more of importance to recall than to precision. This improved our
results, making our best F2latency value (.67) to be positioned 7th out of the
50 contributions and 3rd out of the 13 research groups, and only 0.07 points
below the best one.

– As it is shown in Table 2, SS3 was the fastest method to process the writings
from each server response, processing each users’ writing in about 8s8, this

6 This is due to the way ERDE measure is computed, the false positive cost (cfp) is
really small compared to the false negative cost (cfn).

7 On average, SS3 classified users after reading the 2nd or 3rd post.
8 Note that much of this 8s were wasted waiting for network communication, since

this number includes the latency of receiving and sending the response from and to
the API RESTful server.

contrast with other methods that obtained a better F1latency but required
more time, such as CLaC, INAOE-CIMAT or lirmm. For instance, CLaC
was 232 times slower than SS3 and took 11 days and 16h to process only
109 of the 2000 writings, whereas SS3 processed all the 2000 writings for the
5 runs in only 23h. This could suggest that some research groups possible
incorporated some sort of offline (or manual) processing into their models.
It is worth mentioning that the fact that SS3 was the fastest model was
not due to the type of machine we used9 but rather due to SS3 naturally
supporting incremental classification. To put this point in context, it is im-
portant to note that ERD is essentially a problem of analysis of sequential
data. That is, unlike traditional supervised learning problems where learning
and classification are done on “complete” objects, here classification must be
done on “partial” objects which correspond to all the data sequentially read
up to the present, from a (virtually infinite) data stream. Algorithms capa-
ble of naturally dealing with this scenario are said to support incremental
classification. As it is described in more details in [1], unlike most state-of-
the-art classifiers, SS3 supports incremental classification since it does not
necessarily “see” the input stream as an atomic n-dimensional vector (i.e. a
document vector) that must be computed entirely before making a predic-
tion. In consequence, when working with a sequence of documents, common
classifiers must re-compute the input vector each time new content is added
to the sequence10. Formally, if n is the length of the stream/sequence of
items, when working with SS3, the cost of the early classification algorithm
for every subject, according to the number of processed items, is equal to
n (since each item needs to be processed only once). On the other hand,
for classifiers not supporting incremental classification (such as SVM, LO-
GREG, KNN or any type of non-recurrent Neural Networks), this cost is
equal to n × (n + 1)/2 = 1 + 2 + ... + n (since the first item needs to be
processed n times, the second n − 1, the third n − 2, and so on). Thus, we
have classifiers supporting stream classifications, such as SS3, belonging to
O(n) whereas the others to O(n2).

– SS3 was the method that obtained the best overall performance in ranking-
based evaluation since, as shown in Table 3: it obtained the best ranking per-
formance P@10 and NDCG@10 for all the 4 rankings; the best NDCG@100
for rankings made after processing 1 and 100 writings (.55 and .85 respec-
tively); and additionally, for the ranking made after processing 500 ob-
tained the second-best NDCG@100 (.85, first was .87) and the third-best
NDCG@100 (.84, first was .88) for the ranking made after processing 1000

9 We coded our script in plain python 2.7 and only using built-in functions and data
structures, no external library was used (such as numpy). Additionally, to run our
script we used one of the author’s personal laptop which had standard technical
specifications (Intel Core i5, 8GB of DDR4 RAM, etc.).

10 Since the “input document” is a stream, the input is a “document” that grows over
time!

Fig. 3: Top-100 words selected by global value (gv) from the model trained for
the task T1. Words are sized by gv.

writings.11 Note that these results are not a minor aspect, since they are
implying that both: (a) the score (confidence value) given by SS3 correctly
values/ranks positive subjects, that is, the global value, gv, is correctly cap-
turing the degree of importance of each word for the positive class12 (see
Figure 3 for a top-100 word cloud selected by gv); and (b) since SS3 is valu-
ing/ranking users correctly, it means there is much room for improving the
classification performance by choosing a better policy to actually classify
them —perhaps using global information across different users could lead
us to better classification performance, instead of classifying them locally,
simply and prematurely just when the positive value exceeds the negative
one.

11 Those first NDCG@100 values, .87 and .88, were obtained by UDE#1. It is worth
mentioning that it took UDE 1 day and 6h to process those 500 writings (or 2 days
and 12h for those 1000 writings) whereas it took SS3 only 5h to process them (9
times faster).

12 which, as we will see later, this is also reflected by the promising results obtained in
task T3.

Table 4: Results for Task 2, decision-based evaluation. Best results are also shown
for comparison.

Team#run P R F1 ERDE5 ERDE50 F1latency F2latency

BiTeM#0 .52 .41 .46 9.73% 7.62% .46 .43
Fazl#2 .12 1 .22 22.66% 13.23% .19 .35
UNSL#0 .71 .41 .52 9.00% 7.30% .52 .45
UNSL#1 .70 .39 .50 9.02% 7.60% .50 .43
UNSL#2 .20 .90 .32 9.19% 6.86% .32 .53
UNSL#3 .31 .85 .45 8.78% 5.44% .45 .63
UNSL#4 .31 .88 .46 8.20% 4.93% .45 .64

4 Task 2: Early Detection of Signs of Self-harm

For this task, unlike T1, the training set was not provided, and therefore we had
to build our own dataset to train SS3. To achieve this, we tried out creating
different datasets, for instance, collecting tweets and Reddit posts related to
self-harm, or using the datasets already available for anorexia and depression,
as it is described in more details below:

– UNSL#0 : we collected Reddit posts related to self-harm and stored them
in a single txt file to represent the positive class. For the negative class, we
used the negative documents in the “train” folder for task T1 (anorexia).
This run obtained the best precision (.71) but, among the other 4 runs, the
lowest recall (.41) along with UNSL#1 (.39), both using the same dataset.

– UNSL#1 : this run used the same dataset as the previous one, but this time
SS3 took into account also bigrams of words (as in UNSL#1 for T1).

– UNSL#2 : for this run, we trained SS3 using a dataset built using the Reddit
posts (the same used in the runs above) and tweets related to self-harm. We
created a single file with all these tweets and posts related to self-harm
(about 40MB in size) and used it to learn the positive class. For the negative
class, we used the negative training documents for the eRisk 2018 depression
task. Additionally, as in run#4 of T1, SS3 was configured to ignore words
whose global value was less than 0.3. Among the other 4 runs, this one had
the best Recall (.9) but the worst values for precision (.2) and F1 (.32).

– UNSL#3 : here we trained SS3 using the training documents for T1 (anorexia)
and also using the training documents for the eRisk 2018 depression task.
This run had a similar performance to run#4, although its recall was a little
bit worse.

– UNSL#4 : SS3 was trained using the same documents as in the previous run
(i.e. anorexia + depression 2018) but this time adding those of run#0. This
run had the best F2latency (.64) and ERDE values, 8.20% and 4.93% for
ERDE5 and ERDE50 respectively.

Since no training data was released, we did not have any validation set to
check if our models were learning properly, i.e. we did not know on which data

(a) Words (b) Word bigrams

Fig. 4: Top-100 words and word bigrams selected by global value (gv) from the
model trained for the task T2. Both are sized by gv.

Table 5: Participating teams for Task 2: number of runs, number of user writ-
ings processed by the team, and the time taken for the whole process and for
processing each writing (i.e TotalT ime

#writings×#runs). (*) This value was originally 5,
but we replaced it by the actual number of models used.

Time
Team #runs #writings Total Per writing

BiTeM 2* 8 3m 11.2s
BioInfo@UAVR 1 1992 4h 7.2s
Fazl 3 1993 18d 21h 272s
UNSL 5 1992 13h 4.6s
UDE 4* 1992 1d 2h 11.7s
LTL-INAOE 4 1993 17h 7.6s
lirmm 5 2004 2d 22h 25.1s
CAMH 5 1992 1d 19h 15.5s

our models were going to be evaluated. In order to know whether the learned
model made sense or not, after training, we asked SS3 to give us a list of words
ordered by global value for the positive class, and checked if the list made sense
to us. Fortunately, as shown in Figure 4, the generated list of words matched
what we expected.

The global results obtained in this task could be summarized as follows:

Table 6: Ranking-based evaluation results for Task 2. Here it is shown the best
results for SS3 along with the other best one, Fazl#1.

1 writing 100 writing
Team#run P@10 NDCG@10 NDCG@100 P@10 NDCG@10 NDCG@100

UNSL#0 .7 .79 .48 .9 .94 .61
UNSL#1 .6 .74 .48 .9 .94 .60
UNSL#3 1 1 .67 .9 .94 .84
UNSL#4 1 1 .64 .9 .93 .86
Fazl#1 .2 .27 .36 .9 .94 .83

500 writing 1000 writing
Team#run P@10 NDCG@10 NDCG@100 P@10 NDCG@10 NDCG@100

UNSL#0 .9 .94 .66 .9 .94 .66
UNSL#1 .9 .94 .65 .9 .94 .65
UNSL#3 .7 .63 .75 .7 .63 .75
UNSL#4 .7 .67 .79 .8 .74 .78
Fazl#1 .9 .94 .84 .9 .94 .84

– As it is shown in Table 4, UNSL#0 obtained the best precision (.71), F1 (.52)
and F1latency (.52), and UNSL#4 the best ERDE5 (8.20%) and ERDE50

(4.93%).

– Once again SS3 was the fastest method, processing all the writing of each
response in about 5s (as shown in Table 5).

– Again, SS3 was the method that obtained the best overall performance in
ranking-based evaluation since, as shown in Table 6: it obtained the best
ranking performance P@10 and NDCG@10 for all the 4 rankings; the best
NDCG@100 for rankings made after processing 1 and 100 writings (.67 and
.86 respectively). Additionally, for the ranking made after processing 500
and 1000 writings, SS3 obtained the second-best NDCG@100 (.79 and .78
respectively), the first ones were obtained by Fazl#1 (.84). It is worth men-
tioning it took Fazl 4 days and 17h to process those 500 writings (or 9 days
and 10h for the 1000 writings), whereas it took SS3 only 3h (almost 60 times
faster!).

It is worth mentioning that, unlike the other runs, UNSL#3 was trained
only using data from anorexia and depression and yet it obtained good results.
In fact, if we had sent only this run, among all participants, SS3 would have
still obtained the best ERDE values (8.78% and 5.44%), the best F2latency (.63)
and the second best F1latency (.45, first would have been .46). This, added to
the results obtained by the other 4 runs, shows us that SS3 is a classifier quite
robust to deal with cross-domain scenarios.

5 Task 3: Measuring the severity of the signs of
depression

This task was really difficult since it was not a single “yes or no” problem but
a problem involving multiple decisions, one for each one of the 21 questions.
To make things even harder, as with Task 2, no training data was released
either. Fortunately, early depression detection is a task we had some previous
experience working with since we had participated in the two previous eRisk
labs (2017[1] and 2018[3]). Therefore, we decided to train SS3 using the dataset
for the eRisk 2018 depression detection task. However, the main problem was
deciding how to turn this “yes or no” classifier into a classifier capable of filling
BDI questionnaires. We came up with the idea of using the confidence vector,−→
d in Equation 1, to somehow infer a BDI depression level between 0 and 63.
To achieve this, first, we converted the confidence vector into a single confidence
value normalized between 0 and 1, by applying the following equation:

confidence value =
d[positive]− d[negative]

d[positive]
(2)

Then, after SS3 classified a subject, the obtained confidence value was di-
vided into 4 regions, one for each BDI depression category. This was carried out
by the following equation:

c = bconfidence value× 4c (3)

And finally, the subject depression level was predicted by mapping the per-
centage of confidence value left inside the predicted c region to its correspond-
ing BDI depression level range (e.g. (0.5, 0.75] −→ [19, 29] for c = 2 = “moderate
depression”) by computing the following:

depression level = minc+b(maxc−minc+1)×(confidence value×4−c)c (4)

Whereminc andmaxc are the lower and upper bound for category c, respectively
(e.g. 19 and 29 for “moderate depression” category).

In order to clarify the above process, we will illustrate it with the example
shown in Figure 5. First, SS3 processed the entire writing history computing the
confidence value (given by Equation 2) and then, the final confidence value
(0.941) was used to predict the depression category, “severe depression” (c = 3),
by using the Equation 3. Finally, the depression level was computed by the
mapping given by Equation 4, as follows:

depression level = 30 + b(63− 30 + 1)× (0.941× 4− 3)c
= 30 + b34× (3.764− 3)c = 30 + b34× 0.764c
= 30 + 25 = 55

(5)

Fig. 5: Diagram of the depression level computation process for subject 2827.
As reader can notice, after processing all the subject’s writings, the final confi-
dence value (0.941) was mapped into its corresponding depression level (55).

At this point, we have transformed the output of SS3 from a 2-dimensional
vector, d, into a BDI depression level (a value between 0 and 63). However,
we have not covered yet how to actually answer the 21 questions in the BDI
questionnaire using this depression level. Regardless of the method, we decided
that for all those users whose depression level was less or equal to 0, all the
BDI questions were answered with 0. For the other users we applied different
methods, depending on the run, as described below:

– UNSLA: using the predicted depression level our model filled the question-
naires answering the expected number (bdepression level21 c) on each question. If
this division had a remainder, the remainder points were randomly scattered
so that the sum of all the answers always matched the predicted depression
level given by SS3.

– UNSLB : this time, only the predicted category, c, was used. Our model filled
the questionnaire randomly in such a way that the final depression level
always matched the predicted category. Compared to the following three
ones, these two models were the ones with the worst performance.

– UNSLC : this model and the followings were more question-centered. Once
again, as in UNSLA, our model filled the questionnaires answering the ex-
pected number derived from the predicted depression level (bdepression level21 c).
But this time, answering this number only on questions for which a “textual
hint” for a possible answer was found in the user’s writings, and randomly
and uniformly answered between 0 and ddepression level21 e otherwise. To find
this “textual hint”, our model split the user’s writings into sentences and
searched for the co-occurrence of the word “I” or “my” with at least one

(a) If expected answer is 0 (b) If expected answer is 1

(c) If expected answer is 2 (d) If expected answer is 3

Fig. 6: Discrete probability distribution for each possible expected answer.

word matching a regular expression specially crafted for each question.13

This method obtained the best AHR (41.43%) and the second-best DCHR
(40%).

– UNSLD : the same as the previous one, but not using the “textual hints”,
i.e. always answering every question randomly and uniformly between 0 and
ddepression level21 e. This model was mainly used only with the goal of measur-
ing the actual impact of using these “textual hints” to decide which questions
should be answered with the expected answer (bdepression level21 c).

– UNSLE : the same as UNSLD, but this time not using a uniform distribu-
tion. More precisely, from the overall depression level predicted by SS3, once
again the expected answer was computed (bdepression level21 c) and, depending
on the value of the expected answer, actual answers were given following
the probability distributions shown in Figure 6. Note that, unlike uniform

13 e.g. “(sad)|(unhappy)” for question 1, “(future)|(work out)” for question 2, “fail\w*”
for question 3, “(pleasure)|(enjoy)” for question 4, etc.

Table 7: Results for Task 3. Best results are also shown for comparison.
run AHR ACR ADODL DCHR

CAMH GPT nearest unsupervised 23.81% 57.06% 81.03% 45%
UNSLA 37.38% 67.94% 72.86% 30%
UNSLB 36.93% 70.16% 76.83% 30%
UNSLC 41.43% 69.13% 78.02% 40%
UNSLD 38.10% 67.22% 78.02% 30%
UNSLE 40.71% 71.27% 80.48% 35%

Table 8: Results for Task 3. Now our runs results are shown using a 95% confi-
dence interval.
run AHR ACR ADODL DCHR

UNSLA 38.13% ± 2.29% 68.30% ± 0.84% 72.62% 30%
UNSLB 38.97% ± 2.65% 69.77% ± 1.98% 74.72% ± 2.82% 30%
UNSLC 40.19% ± 3.14% 69.26% ± 1.75% 77.53% ± 1.92% 29.91% ± 8.70%
UNSLD 39.26% ± 3.21% 68.72% ± 1.81% 77.56% ± 1.86% 30.86% ± 11.14%
UNSLE 38.18% ± 3.41% 69.61% ± 1.95% 82.94% ± 2.17% 38.42% ± 10.14%

distribution (used in UNSLD), when using these probability distributions
the expected answer is more likely to be selected over the other ones. This
model obtained the best ACR (71.27%) and the second-best AHR (40.71%)
and ADODL (80.48%, best was only 0.54% above).

The obtained results are shown in Table 7. As mentioned above, we ob-
tained the best AHR (41.43%) and ACR (71.27%), and the second-best ADODL
(80.48%) and DCHR (40%). However, since most of our models’ answers are
randomly generated, it implies that all of these measures are also stochastically
generated.14 The natural question in cases like this is “How do we know these
results properly represent our models’ performance and we did not obtain them
just by pure chance?”. In order to clarify this, we run each model 1000 times
and calculated the values for AHR, ACR, ADODL and DCHR each time15. After
this process finished, we ended up with a sample of 1000 values for each mea-
sure and model, which we then used to produce the results shown in Table 8.
Results have been replaced by intervals with 95% of confidence, which better
represent our performance. One can notice that, in fact, when we participated
we had a little bit of bad luck, especially for UNSLE’s ADODL, because the ac-
tual value we obtained (80.84%) is almost a lower bound outlier. Another thing
that we can notice, comparing UNSLC and UNSLD, is that the use of “textual
hints” slightly improves the Average Hit Rate (AHR) but does not impact on the
other measures. UNSLE is considerably the best method to estimate the over-
all depression level since it takes values within a range that is quite above the

14 Only ADODL and DCHR for UNSLA and DHR for UNSLB are deterministically
determined by depressionlevel and c.

15 Just as if we had participated 1000 times in this task.

others. Additionally, another important point is that taking into account these
95% confidence intervals, the obtained values would be among the best ones
even in the worst cases. Finally, since all the methods we used are based on the
depression level predicted by SS3, this shows us that SS3 is correctly inferring
the depression level from the textual evidence accumulated while processing the
user’s writings, i.e. SS3 is correctly valuing words in relation to each category
(depressed and non-depressed) which is consistent with the results obtained for
the ranking-based measures for task T1 and T2. Additionally, this could also im-
ply that could really be a relationship between how subjects write (what words
they use) and the actual depression level they have.

6 Conclusions and Future Work

In this article, we described the participation of our research group16 at the
CLEF eRisk 2019[4]. We described how we approached each one of the three
tasks using the same SS3 classifier with the same hyper-parameter configura-
tion. We showed how we mostly focused on aspects related to how we trained
this classifier to create the different runs. For example, in task T2 we described
for every run what data we used to train our model with. For this task, we also
highlighted the cross-domain robustness that SS3 showed by the final results,
in particular for UNSL#3 that obtained quite good performance despite being
trained with data from anorexia and depression. For task 3, we described how we
converted SS3 into a model capable of predicting a BDI depression level (from
0 to 63) which was later used to fill the questionnaires using different methods.
The final results for all these three tasks showed that SS3 is a very robust and
efficient classifier. SS3 was the fastest method and obtained the best ERDE
and the overall best ranking-based measures in all the tasks. Additionally, it
obtained the best Precision, F1 and F1latency for task T2. In task T3, it ob-
tained the best AHR and ACR values, and the second-best ADODL and DCHR.
The results obtained for this task, along with those based on ranking measures,
showed us strong evidence that SS3 properly values words in relation to how
relevant they are to each category and therefore, the final confidence value prop-
erly values the text created by the subjects. Finally, overall results showed us
that SS3 is a robust method since it obtained a remarkable overall performance
in the three tasks despite using the same hyper-parameter configuration. For
future work, we plan to mainly focus on three aspects. Given the interesting
nature and implications of results in task T3, we will analyze in more details
the obtained results, including a more qualitative analysis in which individual
subjects could be analyzed. Additionally, we will explore different variations to
improve the predicted depression level. Regarding task T1, we will explore dif-
ferent hyper-parameter values to improve the performance in terms of the new
F1latency measure. Finally, based on the good results obtained for ranking-based
measures, we plan to design better early classification policies in the future. Cur-
rent policy tends to be “too hasty” so, we hope that delaying the decision until

16 From the Universidad Nacional de San Luis (UNSL), San Luis, Argentina.

there is “enough confidence” to correctly classify subjects along with the use
of global information across all the subjects could help to improve classification
performance.

References

1. Burdisso, S.G., Errecalde, M., y Gómez, M.M.: A text classification frame-
work for simple and effective early depression detection over social me-
dia streams. Expert Systems with Applications 133, 182 – 197 (2019).
https://doi.org/10.1016/j.eswa.2019.05.023, http://www.sciencedirect.com/
science/article/pii/S0957417419303525

2. Errecalde, M.L., Villegas, M.P., Funez, D.G., Ucelay, M.J.G., Cagnina, L.C.: Tempo-
ral variation of terms as concept space for early risk prediction. In: CLEF (Working
Notes) (2017)

3. Funez, D.G., Ucelay, M.J.G., Villegas, M.P., Burdisso, S.G., Cagnina, L.C., Montes-
y Gómez, M., Errecalde, M.L.: Unsls participation at erisk 2018 lab

4. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk 2019: Early Risk Predic-
tion on the Internet. In: Experimental IR Meets Multilinguality, Multimodality, and
Interaction. 10th International Conference of the CLEF Association, CLEF 2019.
Springer International Publishing, Lugano, Switzerland (2019)

https://doi.org/10.1016/j.eswa.2019.05.023
http://www.sciencedirect.com/science/article/pii/S0957417419303525
http://www.sciencedirect.com/science/article/pii/S0957417419303525

	UNSL at eRisk 2019: a Unified Approach for Anorexia, Self-harm and Depression Detection in Social Media

