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Abstract. This paper presents a possible approach for the automated
analysis of 3D Computed Tomography (CT) images based on the us-
age of feature vectors extracted by a deep convolutional 3D autoencoder
network. Conventional classification models were used on top of the ”au-
toencoded” feature vectors as well as vectors of meta-information paired
with the images. The proposed CT image analysis approach was used by
participant UIIP (Siarhei Kazlouski) for accomplishing the two subtasks
of the ImageCLEF Tuberculosis task of the ImageCLEF 2019 interna-
tional competition. Employing the proposed approach allowed to achieve
the 2nd best performance on the TB Severity Scoring subtask and the
6th best performance in the TB CT Report subtask.
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1 Introduction

Automated analysis of 3D CT images is an example of a task that can be solved
during the development of computer assisted diagnosis systems which may be
used for lung disease screening for the early detection of pathology. While promis-
ing results have been shown in automated analysis of medical images of some
modalities [1,4,7–9], the task of CT image analysis remains challenging due to
the complexity and scarcity of data. A CT image is 3D data which can often
be represented as a set of 2D slices with the inter-slice distance varying between
0.5 and 5 mm. Variability in the sizes and shapes of CT image voxels implies
difficulties in the application of many image analysis algorithms, while low avail-
ability of CT imaging data makes it difficult to use data-greedy approaches, for
example, deep learning.

Despite the lack of data available, the approach for the analysis of 3D CT
images proposed with this study employs the idea of trying to get 3D image de-
scriptors by utilizing a 3D autoencoder network [6]. The motivation for this idea
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is the potential for maximum information usage as soon as the network is able to
work with the entire 3D image. Extracted features were further analyzed using
conventional classification models which were ensembled with models trained on
image metadata. One can note, that pure 3D classification networks could be
used instead of conventional models on top of autoencoded features. The advan-
tage of the used approach is its generality: once we got autoencoded descriptors,
a conventional classification model could be easily and quickly trained for ar-
bitraty labelling (either TB severity, or one provided in CT report findings, or
some arbitrary findings classes which are not mentioned in the competition), as
well as research interest.

2 Subtasks and datasets

The Tuberculosis task [2] of ImageCLEF 2019 Challenge [5] included two sub-
tasks: TB Severety (SVR) and CT Report (CTR), both dealing with 3D CT
images. The same CT imaging data was used in both subtasks and included
218 images in the training dataset and 117 in the test dataset. Along with the
CT images, the lungs masks [3] and additional information about the patients
was provided. The metadata included information about the presence of disabil-
ity, relapse, presence of TB symptoms, co-morbidity, bacillarity, drug resistance
status, patient’s education, being an ex-prisoner, smoking status and alcohol
addiction. The frequencies of occurrence of each metadata label are listed in
Table 1.

Table 1. Frequences of positive metadata labels for SVR subtask in the datasets, %.

Label In Training set In Test set

Disability 16 13
Relapse 35 36
SymptomsOfTB 54 40
Comorbidity 56 48
Bacillary 85 92
HigherEducation 13 16
ExPrisoner 12 10
Alcoholic 22 25
Smoking 52 60

The subtask #1 (SVR subtask) was dedicated to the problem of categorizing
TB cases into one of two classes: high severity and low severity. The task was to
predict TB Severity class (”HIGH”/”LOW”)

The subtask #2 (CTR subtask) was dedicated to the automated generation
of CT reports which indicate the presence of several types of abnormalities in the
lungs. Such automated annotation of CT scans is important for the development
of the dedicated image databases. The task was to predict the presence of six



types of findings in CT scans. Information about the corresponding labels is
listed in Table 2.

Table 2. Frequences of positive labels for Severity and CTR subtasks in the Training
dataset.

Finding In Training set

SeverityHigh 49
LeftLungAffected 72
RightLungAffected 81
LungCapacityDecrease 30
Calcification 13
Pleurisy 7
Caverns 40

3 Methods

This section contains a description of the methods used within the current study.

3.1 Data preprocessing

Since the key idea of the approach proposed is based on using an autoencoder
network, the extremely small amount of data samples we have becomes the main
challenge, especially keeping in mind the sample dimensionality. The second issue
is the sample dimensionality itself, which restricts possible model architectures
due to GPU memory limitations.

In order to overcome the mentioned issues the following concepts were used:
a) image size was reasonably decreased, b) the autoencoder was trained not on
per-CT, but on per-lung basis which simultaneously doubled the training dataset
size and decreased the sample dimensionality two times. Data augmentation was
also used. Detailed steps of data preprocessing during the training stage were as
follows:

1) Each CT image was split into two parts, each containing one lung. The split
was performed roughly, into equal parts by splitting on the middle Y coordinate.
The part containing the left lung was used as it is, and the part containing the
right lung was reflected along Y axis in order to make the right lung oriented
similar to left one. Lung images were normalized to 0-1 scale. The provided lungs
masks were treated the same way (except for normalization).

2) For each lung a random transformation was generated and applied to the
lung and its mask. The mask was binarized after the transformation and applied
to the lung image (all voxels outside of the masked lung area were set to zero).
The resulting image was resized to 128 x 128 x 128 pixels and normalized once
again. Transformations included 3D shift, rotation, scale, crop and shear, and
were applied sequentially with a probability of 50% for each transform. The
ranges of parameters used for the transformation are presented in Table 3.



Table 3. Parameters of augmentation applied to the Training dataset.

Transform Parameter value

Shift, pixels up to 5% of each side (X, Y, Z) size
Rotation center Shifted from image center up to 3% of each side (X, Y, Z) size
Rotation angle up to 5 degrees
Scaling up to 5%
Shear up to 0.01 absolute value, each of six components

3.2 Training and validation subsets

The training dataset provided by the organizers was split into training and val-
idation subsets for models development.

Two splits were used, one for autoencoder model training, and another one
for classification models training. For autoencoder training, a randomly sampled
90% of training data was used for training and the remaining 10% was used
for validation. For classification models the fixed random 5-fold cross-validation
split was used. Smaller validation size in the autoencoder case is motivated by
maximizing training set size, while validation loss for the autoencoder model is
less important. For classification tasks scoring is crucial, so cross-validation was
used.

3.3 Autoencoder Training

A custom convolutional architecture was used for the autoencoder model. Several
trials with different hyperparmeters (number of layers, kernel size, filter number)
were exectuted and the model with the best achieved validation loss was selected.
The selected architecture is presented in Table 4. Each convolutional layer had a
kernel size of (3,3,3) and was followed by a 3D max pooling layer with parameters
(2,2,2) in the encoder part and a 3D upsample layer with parameter (2,2,2) in
the decoder part. This setup resulted in an encoded feature vector of size 256.

The autoencoder model was trained using Adam optimizer and was per-
formed in three stages. On the first stage the model was trained on the mixture
of left and right lung images using data augmentation as described before. The
training was performed until any significant improvements in validation loss were
observed. Specifically, model trained for 72 epochs was selected on this stage. On
the second stage the retrieved pretrained model was finetuned with a 10 times
smaller learning rate separately for the left and right lungs using data augmen-
tation, resulting in two different models, one for the left and one for the right
lungs. Training stop criteria was the same, resulting in 20 epochs of training. So,
on the first two stages 92 randomly augmented versions of each original CT were
used for model training. Finally, learning rate was decreased 10 times again and
each of the two models were finetuned for 2 epochs on competition data without
data augmentation.

On the inference stage both autoencoder models were used to generate feature
vectors for the left and right lung of each CT image, so the resulting feature



Table 4. Autoencoder architecture.

Layer Number of filters

Convolution3D 128
Convolution3D 64
Convolution3D 64
Convolution3D 32
Convolution3D 32
Convolution3D 32
Flatten
Convolution3D 32
Convolution3D 32
Convolution3D 32
Convolution3D 64
Convolution3D 64
Convolution3D 128

vectors of CT were a concatenation of the left and right lung encoded descriptors,
with 512 components in total.

Analysis of encoded vectors showed that around half of the components of
the vector are very close to zero for all images, which probably reflects the non-
optimal architecture and/or weights of model. As soon as no better model could
be retrieved in experiments, it was decided just to drop the ”zero” components
of the encoded vector, which resulted in the final version of the encoded CT
images descriptors containing 220 components each.

3.4 Prediction of CT Report labels and TB Severity.

Since all of the predictions in both subtasks are binary classification problems,
they were treated and solved in the same way. The idea may be formulated
as follows: for each of the requested binary class labels (which are: Severity-
High, LeftLungAffected, RightLungAffected, LungCapacityDecrease, Calcifica-
tion, Pleurisy, Caverns) build a binary classification model which will take en-
coded image descriptors and available meta information about patients as input
features.

Because of the different nature of encoded image descriptors and image meta
information it was decided to train separate classification models for each feature
type and then ensemble the models’ output rather than concatenating feature
vectors.

Conventional classification models were used for working with both types of
features and included scikit-learn package implementation of SVM, K-neighbors
classifier (kNN), random forest classifier (RF) and AdaBoost classifier. Hyper
parameters for each of the models were tuned by cross-validation using random
parameter search.

In case of meta information features were used ”as is”, while for autoencoded
image features their PCA-transformed presentation with 3,5,10,50 components
were used as well.



The resulting algorithm can be described as follows.
1) For each of 5 folds, take the autoencoded features and fit PCA using

the training set and transform validation set using 3, 5, 10, 50 components.
Thus six alternative feature vectors were presented for each image in each cross-
validation split: meta information (META), encoded features (AEC), and PCA-
transformed encoded features with 3, 5, 10, 50 components (PCA3, PCA5,
PCA10, PCA50).

2) Sample random hyper parameters for each of 4 classifier types. Parameter
ranges are presented in Table 5 (only valid parameters combinations were used).

For each of the target labels:
3) Get the mean AUC-ROC score at cross-validation for all models and sam-

pled hyper parameters.
4) Select the best models according to the achieved scores. Models selection

was performed not just by the top score value, but using the following heurisctic:
1) classifier-feature type combination were used only once, 2) in the case that
scores are reasonably close, more simple models have priority (examples: a) if
the kNN model with 11 neighbors scores 0.80 and with 2 neighbors scores 0.78,
the second one is used; b) if the same model scores 0.8 on the 50 component
PCA features and 0.77 on the 3-component, the second one is used).

Table 5. Classifier parameters search ranges.

Classifier Parameters range (format: min .. max .. step)

KNeighborsClassifier neighbors number: 1 .. 20 .. 1)
RandomForestClassifier estimators number: 1 .. 100 .. 5

max tree depth number: 1 .. 6 .. 1
AdaBoostClassifier estimators number: 1 .. 200 .. 5

learning rate : 0.1 .. 1 .. 0.2
SVM C: 10e-5 .. 10e5 .. by power of 10

degree : 1 .. 7 .. 1
kernel: ’linear’, ’poly’, ’rbf’

The application of the described algorithm resulted in the selection of from
1 to 4 best models for each target class prediction, which were ensembled during
final prediction by the simple averaging of class probabilities. A summary on the
selected models and their validation performance is presented in Table 6.

4 Submissions and results

As the result of this study, the described method was applied to generate predic-
tions for the competition test dataset. Predictions were submitted by participant
UIIP for the CTR and SVR subtasks. The full list of the submitted results for
both subtasks is available at the task web page1.

1 https://www.imageclef.org/2019/medical/tuberculosis/



Table 6. Selected classification models.

Label Classifier Features AUC-ROC

LeftLungAffected RF(E*=20, D**=1) PCA5 0.77
SVM(linear, C=10e5) PCA5 0.81

RightLungAffected RF(E=20, D=1) PCA5 0.79
SVM(rbf, C=10e5) PCA5 0.77

Calcification SVM(poly, d=2, C=0.01) META 0.84
RF(E=16, D=1) PCA10 0.80

kNN(neighbors=11) PCA5 0.82
SVM(linear, C=10e3) AEC 0.90

Caverns AdaBoost(E=15, lr=0.2) AEC 0.89
Pleurisy RF(E=6, D=2) META 0.82

RF(E=20, D=1) AEC 0.89
RF(E=10, D=1) PCA10 0.90

LungCapacityDecr. RF(E=6, D=2) META 0.78
RF(E=20, D=1) AEC 0.83

SVM(linear, C=10e3) PCA5 0.72
Severity kNN(neighbors=11) PCA5 0.71

RF(E=8, D=2) PCA10 0.82
RF(E=30, D=2) AEC 0.87

*estimators number
**max depth

Before generating the final submission, the autoencoder model and selected
classifiers used for predicting the test data were trained on the whole available
training dataset. Final probabilities of each target class were calculated as the
average probability of the selected classification models.

Table 7 shows the best results achieved by the participants in the CTR
subtask. The run submitted by UIIP achieved the 6th best mean AUC, while
also demostrating the worst minimum AUC for the prediction of the presence
of lung abnormalities. The average mean result on the contrary to the worst
minimum AUC demonstrate, that selected models might work pretty well for
some of the target labels in the report, while failing for other labels. Since all
targets demonstrate similar performances on the validation set, test results may
be caused by overfitting to validation and the different distribution of train and
test sets in the competition, or by some errors in validation set generation (in
particular, the uneven distribution of meta information and targets classes itself
was not carefully treated in experiments).

Table 8 shows the best results achieved by the participants in the SVR sub-
task. The run submitted by UIIP achieved the 2nd highest value for AUC, and
shared the 1st best accuracy with UIIP BioMed participant. Achieved AUC
correlates with validation scores and demonstrates the efficiency of the used
approach.



Table 7. The best participants’ runs submitted for the CTR subtask.

Group Name Mean AUC Min AUC Rank

UIIP BioMed 0.7968 0.6860 1
CompElecEngCU 0.7066 0.5739 2
MedGIFT 0.6795 0.5626 3
San Diego VA HCS/UCSD 0.6631 0.5541 4
HHU 0.6591 0.5159 5
UIIP 0.6464 0.4099 6
MostaganemFSEI 0.6273 0.4877 7
UniversityAlicante 0.6190 0.5366 8
PwC 0.6002 0.4724 9
LIST 0.5523 0.4317 10

Table 8. The best participants’ runs submitted for the SVR subtask.

Group Name AUC Accuracy Rank

UIIP BioMed 0.7877 0.7179 1
UIIP 0.7754 0.7179 2
HHU 0.7695 0.6923 3
CompElecEngCU 0.7629 0.6581 4
San Diego VA HCS/UCSD 0.7214 0.6838 5
MedGIFT 0.7196 0.6410 6
UniversityAlicante 0.7013 0.7009 7
MostaganemFSEI 0.6510 0.6154 8
SSN College of Engineering 0.6264 0.6068 9
University of Asia Pacific 0.6111 0.6154 10
FIIAugt 0.5692 0.5556 11

5 Conclusions

The results of this study allow us to draw the following conclusions:

– Despite data scarcity, deep autoencoder networks may be used for extracting
reasonable descriptors of 3D CT data if some tricks for training set extension
are used.

– Meta information about patients are helpful for the more accurate predic-
tions of TB characteristics.

– Although the used approach demonstrated good performance in the SVR
subtask, it was not very reliable for the generation of the CT report, which
means the suggested method is not very stable or at least needs more careful
validation.
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