
Deep Segmentation: Using deep convolutional
networks for coral reef pixel-wise parsing

Aljoscha Steffens1, Antonio Campello1,2, James Ravenscroft1, Adrian Clark2,
and Hani Hagras2

1Filament AI, United Kingdom
2University of Essex, United Kingdom

Abstract. In this paper, we describe a deep-convolutional network based
method to segment coral reef images into different types of substrates.
The method described in the paper includes data preparation, model
summary, specific techniques to deal with class imbalance, and down-
stream post-processing computer vision tasks, such as morphological op-
erations and polygon generation from pixel segmentation. We present the
results of our method in the ImageCLEFcoral pixel-wise parsing task,
evaluated across the different classes of substrate.

1 Introduction

Semantic segmentation models have received significant attention in computer
vision due to their applicability in medical imagining, autonomous driving, and
full-scene understanding. In this paper, we consider the ImageCLEF 2019 pixel-
wise parsing competition [4], [9], which consists of segmenting pictures from coral
reefs into 13 different substrates. We are particularly interested in evaluating the
applicability of deep convolutional neural networks (DCNNs) to the coral images,
taken under real conditions in the ocean. A model that performs well on the task
of automatic segmentation of corals could be beneficial to the conservation of
reefs by measuring the amounts of different corals, their condition and other
characteristics.

This paper is organised as follows. In section 2 we explore the ImageCLEFco-
ral dataset [4], how to split it into training and validation set in order to keep the
distributions balanced, as well as a data augmentation approach. In section 3, we
describe DeeplabV3 [6], a DCNN designed for semantic segmentation, alongside
with our pipeline. Our method includes post-processing tasks such as morpho-
logical operations and polygon filling. Training, bootstrapping and inference are
also described. In section 4 we discuss possible routes to improve the results.

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2019, 9-12 Septem-
ber 2019, Lugano, Switzerland.



2 Data

The data that was provided consisted of 240 images of size 4032 × 3024 × 3
as well as a text file containing the polygons in the images for the following
classes/substrates:

Hard Coral - Branching Soft Coral
Hard Coral - Submassive Soft Coral - Gorgonian
Hard Coral - Boulder Sponge
Hard Coral - Encrusting Sponge - Barrel
Hard Coral - Table Fire Coral - Millepora
Hard Coral - Foliose Algae - Macro or Leaves
Hard Coral - Mushroom

Table 1: Substrate names

We mapped the 13 substrates to integers {0, 1, . . . 13} (the background corre-
sponding to 0) and created a 4032× 3024 integer matrix for each image defined
as

Mk
ij = c if pixel i, j corresponds to substrate c, (1)

with ties broken arbitrarily. The corresponding matrix acts as a per-class "mask"
for each substrate, an example can be seen in figure 1.

Fig. 1: Substrate mask and image for id 2018_0714_112417_024



The class-distribution of the pixel reflects the naturally occurring composition
of corals in the photographed area and is thus highly imbalanced, see figure 2.
Also, the class-distributions between two images can vary strongly as only a
limited selection of coral types will be present in each image. Both the overall
class-imbalance and the difference in inter-image class-distributions need to be
taken into account and are discussed in section 3.2 and 2.1 respectively.

2.1 Data Split

The data was split into a training and validation set with 204 images (85%)
for training and 36 for validation. Due to reasons discussed in section 2.2, we
chose to split the data on a per-image basis. This posed a problem given the
difference in inter-image class-distributions and the relatively small number of
images: for a random split it would be highly likely that the overall, training, and
validation class-distribution would differ strongly which would have an effect on
the evaluation of the model performance.

In order to achieve balanced distributions for the training and validation
set, we created N training and validation sets of constant size, with randomly
selected images and compared the resulting training/validation distributions by
using a cosine distance that is weighted by the overall class-distribution.

dist(v1, v2, w) =

∑d
i=1 wi

2 × v1i × v2i√∑d
i=1 wi × v1i

√∑d
i=1 wi × v2i

(2)

From those N splits, we chose the split that resulted in the lowest distance.
Afterwards, we selected one item from each set that, if swapped, resulted in the
biggest decrease in the weighted cosine distance. Swaps were performed until
there was no further decrease possible by swapping individual items. The whole
procedure - N random splits, choosing the best split, optimise by swapping -
was performed several times in order to increase the chance of finding an good
final split.

While the given approach does not result in an optimal solution, it is fast and
did achieve satisfying result for the given task. The three distributions (overall,
training, validation) can be seen in figure 2.

2.2 Data Augmentation

Splitting the data on image level was mainly done due to how we prepared
the data before feeding it into the Neural Network. With their large spatial
dimensions that resulted in both rich details and many different coral types per
image, it seemed sensible to use random cropping as a main preparation step.
For each image that was loaded into memory during training, 16 random crops
with square sizes between 400× 400 and 1400× 1400 were performed. The crops
were then bi-linearly scaled to 256 × 256 and randomly flipped in vertical and



horizontal direction before they were fed into the network. Both the flipping
and the random cropping served as a data augmentation method that ensured
that the network was exposed to a variety of relative coral sizes, orientations,
and image-compositions. This way, the network never saw the exact same image
twice which reduced overfitting.

For the validation data, random crops and re-scaling were done prior to
training the network and thus always the same. This was done to make the
metrics that were computed after each epoch comparable.

Fig. 2: Class distributions overall and for training and validation split

3 The model

We used DeeplabV3 [6], a deep convolutional neural network that improves over
existing networks. In particular, DeeplabV3 extends Deeplab [5] and avoids the
need of a post-processing machine learning model (such as conditional random
fields). Nevertheless, since the challenge is evaluated over polygons, we needed to
apply image processing techniques (in particular, morphological transformations
and region-filling algorithms) in order to generate the final file. Note that the
polygon-filling operations have more degrees-of-freedom than the training pre-
processing, therefore adding extra parameters to the model. These operations
are described in more details in 3.5. A high-level operational diagram of the
model and evaluation can be found below. More details will be described in the
next sections.



Fig. 3: Training and inference flows.

3.1 DeeplabV3

Deeplab V3 is a Deep Convolutional Neural Network (DCNN) for semantic im-
age segmentation proposed by Chen et al in [6] in 2017. It is a state-of-the-art
network architecture that, with pretraining on the ImageNet [7] and JFT-300M
[10] dataset resulted in a mIOU of 86.9% on the PASCAL VOC 2012 test set [6].
The model consist of two parts: The first part is a feature extracting backbone
that is not strictly limited to be of a given type - in the paper the authors use
a ResNet-50 and ResNet-101 but other architectures can be employed as well.
The second part is where the novelty happens with an extensive use of atrous
convolutions. An atrous convolution filter kernel layout is defined by the normal
size of say 3x3 and in addition to that, an atrous rate that specifies how many
0-values are between the individual filter entries along the spatial dimensions.
With 0-values between, the atrous convolution would be the same as a normal
convolution; inserting one zero between two neighbouring values in a 3x3 convo-
lution would make it have the same receptive field as a 5x5 convolution, while
only employing 9 weights instead of 25. Deeplab V3 uses atrous convolutions for
constructing feature pyramids. Feature pyramids are used to combine features
from different scales into one feature map, which is done by using atrous con-
volutions with different rates on the same feature map and concatenating the
individual outputs to a new feature map. For our submission we used a PyTorch
implementation of DeepLab V3 found from [3] with a ResNet101 backbone [8]
and an output-stride of 16



Prior to polygon-filling post-processing, the model outputs, for every pixel,
a probability that such pixel belongs to a class, or more formally:

fkij(c) = probability that pixel ij on image k belongs to class c (3)

3.2 Class imbalance and weighted loss function

As discussed in section 2, the class-distribution of the data is highly skewed.
This is a problem, as the model will emphasize more on classifying frequent
classes correctly to achieve lower errors if no counter-measures are in place. One
approach that is often used - and that was used here as well - is to weigh the
loss function based on the class distribution. We used a pixel-wise cross-entropy
loss and weighted the individual components with following weights:

w(c) =
1

log(α+ p(c))
(4)

with p(c) being the relative occurrence of class c and α being a hyper-parameter
that scales the weights (in our submission α = 1.025 yielded good results).
This was done as there are orders of magnitudes between the individual relative
occurrences, and the model would over-emphasize on the infrequent classes if we
just used the reciprocal.

The final cross-entropy loss is as follows:

1

N × height× width
×

N∑
k=1

height∑
i=1

width∑
j=1

C∑
c=1

−ykij(c)×w(c)× log

(
exp(fkij(c))∑
exp(fkij(c))

)
,

(5)
where fkij(c) and ykij(c) describe the predicted confidence (f) and ground truth
(y) for image k at position ij and class c respectively and N is the number of
images that are included in the loss.

3.3 Training and Bootstrapping

We trained the Neural Network for 50 epochs, with a batch size of 32 (2 images
per batch, 16 crops per image) on a Nvidia GeForce GTX 1080 Ti. After the
training, we used the network to predict the training images and cropped out
areas where the network was particularly bad. The network was then trained on
those images for another 30 epochs.

3.4 Inference

In order to predict a full-sized image at inference time, we used a sliding win-
dow approach. With window-sizes of 500 × 500, 1000 × 1000, and 1500 × 1500
corresponding step-sizes of 400, 800, and 1200 we cut each 4032 × 3024 image
into 112 partially overlapping sections. Each section was then scaled to 256×256



and fed into the Neural Network. The results were scaled to their original size
and added at their respective position to a 4032× 3024× 14 confidence matrix
C. For each position Ci,j the number of votes were stored (meaning how often
a given pixel was predicted) so that the average confidence could be calculated
subsequently. The final classification for pixel i, j was then given by

c = argmax
k∈{0,...,13}

Ci,j(k) (6)

By using sliding windows with different window-sizes we made sure that each
pixel was predicted at several different resolutions and thus also with different
amounts of context.

3.5 Post-processing

After calculating the classification mask for a predicted image, we used several
basic computer vision algorithm for post-processing and transforming the data
into the given submission format.

1. Find connected components.
2. Morphological opening with kernel size = (31, 31)
3. Morphological closing with kernel size = (31, 31)
4. Flood fill
5. Polygon approximation using Douglas-Peucker algorithm [2], with maximum

distance to correct output ε equals 0.1% of the contour arc-length for that
connected component.

We used the OpenCV 3.4.2 implementations [1] of the corresponding algo-
rithms.

4 Final results and further work

The average intersection over union for all classes, as reported in the official
ImageCLEF 2019 Coral competition, over the test set, is described in Table 2.
Soft corals and hard corals (boulder) performed relatively well in comparison to
the other classes, which was expected, anticipated by the class abundance, as
shown in figure 2. Surprisingly, mushroom pixels have been correctly identified
21%, in spite of the small number of samples. A full analysis and visualisation
of the results per class is left for future investigation.

There are a number of areas where our pipeline can potentially be improved
in the future and things that can be investigated:

– Increasing the input size to the model
– Increase the batch size
– Test different model backbones
– Tuning hyper-parameters (both for training and for post-processing)
– Investigate the impact of crop sizes
– Investigate the impact of bootstrapping
– Try different methods to counteract the class-imbalance



Substrate mIoU (%)
Hard Coral - Branching 9.58
Hard Coral - Submassive 0.0
Hard Coral - Boulder 16.59
Hard Coral - Encrusting 4.46
Hard Coral - Table 0.0
Hard Coral - Foliose 0.65
Hard Coral - Mushroom 21.9
Soft Coral 13.0
Soft Coral - Gorgonian 1.86
Sponge 5.73
Sponge - Barrel 8.89
Fire Coral - Millepora 0.0
Algae - Macro or Leaves 0.07

Table 2: Accuracy per class

References

1. Open source computer vision library 4.1.0. https://docs.opencv.org/4.1.0/,
2019.

2. Opencv contour features. https://docs.opencv.org/3.1.0/dd/d49/tutorial_
py_contour_features.html, 2019.

3. pytorch-deeplab-xception. https://github.com/jfzhang95/
pytorch-deeplab-xception, 2019.

4. J. Chamberlain, A. Campello, J. P. Wright, L. G. Clift, A. Clark, and A. García
Seco de Herrera. Overview of ImageCLEFcoral 2019 task. In CLEF2019 Working
Notes, volume 2380 of CEUR Workshop Proceedings, 2019.

5. L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell., 40(4):834–848,
2018.

6. L. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking atrous convolution
for semantic image segmentation. CoRR, abs/1706.05587, 2017.

7. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-
Scale Hierarchical Image Database. In CVPR09, 2009.

8. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, June 2016.

9. B. Ionescu, H. Müller, R. Péteri, Y. D. Cid, V. Liauchuk, V. Kovalev, D. Klimuk,
A. Tarasau, A. B. Abacha, S. A. Hasan, V. Datla, J. Liu, D. Demner-Fushman, D.-
T. Dang-Nguyen, L. Piras, M. Riegler, M.-T. Tran, M. Lux, C. Gurrin, O. Pelka,
C. M. Friedrich, A. G. S. de Herrera, N. Garcia, E. Kavallieratou, C. R. del Blanco,
C. C. Rodríguez, N. Vasillopoulos, K. Karampidis, J. Chamberlain, A. Clark, and
A. Campello. ImageCLEF 2019: Multimedia retrieval in medicine, lifelogging, se-
curity and nature. In Experimental IR Meets Multilinguality, Multimodality, and
Interaction, Proceedings of the 10th International Conference of the CLEF Asso-
ciation (CLEF 2019), Lugano, Switzerland, September 9-12 2019. LNCS Lecture
Notes in Computer Science, Springer.

https://docs.opencv.org/4.1.0/
https://docs.opencv.org/3.1.0/dd/d49/tutorial_py_contour_features.html
https://docs.opencv.org/3.1.0/dd/d49/tutorial_py_contour_features.html
https://github.com/jfzhang95/pytorch-deeplab-xception
https://github.com/jfzhang95/pytorch-deeplab-xception


10. C. Sun, A. Shrivastava, S. Singh, and A. Gupta1. Revisiting unreasonable effec-
tiveness of data in deep learning era. ICCV, 2017.


	Deep Segmentation: Using deep convolutional networks for coral reef pixel-wise parsing

