
Uppsala University and Gavagai at CLEF
eRISK: Comparing Word Embedding Models

Elena Fano1,2[0000−0003−1597−2040], Jussi Karlgren2,3[0000−0003−4042−4919], and
Joakim Nivre1[0000−0002−7873−3971]

1 Uppsala University
2 Gavagai, Stockholm

3 KTH Royal Institute of Technology, Stockholm

Abstract. This paper describes an experiment to evaluate the perfor-
mance of three different types of semantic vectors or word embeddings—
random indexing, GloVe, and ELMo—and two different classification
architectures—linear regression and multi-layer perceptrons—for the spe-
cific task of identifying authors with eating disorders from writings they
publish on a discussion forum. The task requires the classifier to process
texts written by the authors in the sequence they were published, and
to identify authors likely to be at risk of suffering from eating disorders
as early as possible. The data are part of the eRISK evaluation task
of CLEF 2019 and evaluated according to the eRISK metrics. Contrary
to our expectations, we did not observe a clear-cut advantage using the
recently popular contextualized ELMo vectors over the commonly used
and much more light-weight GloVe vectors, or the more handily learnable
random indexing vectors.

Keywords: Semantic vectors · Word embeddings · Author classification

1 eRISK and the Challenge of Sequence Classification

This paper describes an experiment on classifying the risk that individual au-
thors on the Reddit discussion forum suffer from eating disorders, based on their
writings. The challenge consists in sequentially processing texts written by the
authors in the chronological order they were produced and to identify authors
at risk based on those texts. The task is a continuation with slight modification
from several years of experimentation of the eRISK evaluation lab of the CLEF
conference: the experimental data consist of writings by more than a thousand
authors, with on average several hundreds of texts per author over a lengthy
period of time. About ten per cent of the authors have been identified to suffer
from eating disorders. This is a specific case of text classification, in that more
information is made available over time and that the objective is both to be ac-
curate and to detect illness as early in the sequence as possible. The evaluation

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2019, 9-12 Septem-
ber 2019, Lugano, Switzerland.



metrics have been formulated to penalise missed cases, false positives, and late
detection [13].

Most authors in the test set discuss a broad range of innocuous topics unre-
lated to self-harm and eating disorders. Many authors discuss eating disorders
without themselves being afflicted, or even to discuss how they overcame their
ailments and no longer suffer from them. To some extent, the hypotheses of the
challenge task is that even other writings may reveal personality traits or social
context of relevance for a diagnosis, but mostly, the task is about identifying
relevant texts among many less relevant ones, and to do so quickly, since waiting
incurs a penalty.

2 Previous Work

In 2017, CLEF (Conference and Labs of the Evaluation Forum) introduced a new
laboratory, with the purpose to set up a shared task for Early Risk Prediction
on the Internet (eRisk). The first edition was mainly meant as a trial run to
chart the specific challenges and possibilities of this task.

The first full-fledged shared task was launched in 2018. In what follows, we
will go over some of the strategies used by the teams that submitted a system
for Task 2, detection of anorexia, focusing on the approached most similar to
ours.

Roughly, the solutions can be divided into traditional machine learning ap-
proaches and other approaches based on different types of document and feature
representations, but many teams used a combination of both. Some researchers
also came up with innovative solutions to deal with the temporal aspect of the
task.

A common theme was to focus on the difference in performance between
manually engineered (meta-)linguistic features and automatic text vectorization
methods. For example, contributions of [24] and [20] both dealt with this research
question. For a more detailed description of [24] see below. The other team used
a combination of over 50 linguistic features for two of their models, and doc2vec
[11], which is a neural text vectorization method, for the other three. When
they submitted their 5 runs, they used the feature-based models alone or in
combination with the text vectorization models, but they report that they did
not submit any doc2vec model alone because of the poor performance shown in
their development experiments.

Probably the most specific challenge of this task was building a model which
could take the temporal progression into account. One of the teams that ob-
tained the best scores, the UNSL team [6], built a time-aware system which
used algorithms invented specifically for this task. Among the other teams, [19]
use an approach that bears some resemblance to our system. They stacked two
classifiers, the first one which predicted what they call the “mood” of the texts
(positive or negative), and the second which was in charge of making a decision
given this prediction. The main difference is that they were operating with a
chunk based system, so they had to build models of different sizes to be able



to make a prediction without having seen all the chunks, whereas our second
classifier operates on a text-by-text basis. Furthermore, their first models uses
Bayesian inversion on the text vectorization models, whereas we used a feed-
forward neural network with LSTMs.

Other notable approaches were to look specifically at sentences which referred
to the user in the first person [15], or to build different classifiers that specialized
in accurately predicting positive cases and negative cases [2]. If one of the two
models’ output rose above a predetermined threshold of confidence, that decision
was emitted; if none of the models or both of them were above the threshold, the
decision was delayed. Another team used latent topics to help in classification
and focused on topic extraction algorithms [14].

The FHDO team [24] employed a machine learning approach rather similar
to ours for some their models. They submitted five runs to Task 2, and they
obtained the best score in three out of five evaluation measures. Models three
and four were regular machine learning models, whereas models one, two and
five were ensemble models that combined different types of classifiers to make
predictions. This team used some hand-crafted metadata features for their first
model, for example the number of personal pronouns, the occurrence of some
phrases like “my therapist”, and the presence of words that mark cognitive
processes.

Their first and second models consisted of an ensemble of logistic regression
classifiers, three of them based on bags of words with different term weightings
and the fourth, present only in their first model, based on the metadata features.
The predictions of the classifiers were averaged and if the result was higher than
0.4 the user was classified as at risk. These models did not obtain any high scores,
contrary to other models submitted by this team.

Their third and fourth models were convolutional neural networks (CNN)
with two different types of word embeddings: GloVe and FastText. The GloVe
embeddings were 50-dimensional, pre-trained on Wikipedia and news texts,
whereas the FastText embeddings were 300-dimensional, and trained on social
media texts expressly for this task. The architecture of the CNN was the same for
both models, with one convolutional layer and 100 filters. The threshold to emit
a decision of risk was set to 0.4 for model 3 and 0.7 for model 4. Unsurprisingly,
the model with larger embedding size and specifically trained vectors performed
best, reporting the highest recall (0.88) and the lowest ERDE50 (5.96%) in the
2018 edition of eRisk. ERDE stands for Early Risk Detection Error and is an
evaluation metric created to track the performance of early risk detection sys-
tems (see Section 4).

The fifth model presented in [24] was an ensemble of the two CNN models
and their first model, the bag of words model with metadata features. This model
obtained the highest F1 in the shared task, namely 0.85, and came close to the
best scores even for the two ERDE measures.



3 Experimental Conditions and Processing Pipeline

We have two experimental foci: the representation of lexical items, and the clas-
sification step given such representations.

3.1 Semantic Vectors or Word Embeddings

We represent lexical items in the posts under analysis as word embeddings, vec-
tors of real numbers, under the assumption that a vector space representation
allows for generalisation from the lexical items themselves to a more conceptual
level of semantics. By allowing the classification scheme to relax the represen-
tation to include near neighbours in semantic space, we hope to achieve better
recall than otherwise were possible. Semantic vectors are convenient as a learn-
ing representation, allowing for aggregation of distributional context, but if used
blindly, risk bringing in contextual information of little or even confounding
relevance. In general, semantic spaces built from similar data sets with similar
aggregation parameters should represent the same information and the actual
aggregation process is of less importance, but implementational details may have
effects on the usefulness of the semantic space. Parameters of importance have
obviously to do with size and selection of data set, but also how the distri-
butional context is defined, the dimensionality or level of compression of the
representation, weighting of items based on their information content, and how
rare or previously unseen items are treated. In these experiments we compare
three semantic vector models: Random Indexing which is used in commercial ap-
plications; GloVe, which is used in a broad range of recent academic experiments;
and the recently published ELMo, which has shown great promise to provide a
better and more sensitive representation for general purpose application.

Random Indexing Random indexing is based on the Sparse Distributed Mem-
ory model formulated by Pentti Kanerva [10] which is intended to be both neuro-
physiologically plausible and efficiently implementable for large streaming data.
Random indexing is built for seamless online learning without explicit compila-
tion steps, and is based on a fixed-dimensional representation of typically around
1000 dimensions. The vectors are built by simple operations: each lexical item is
assigned a randomly generated sparse index vector and an initially empty con-
text vector. The latter is populated for each lexical item by, for each observed
occurrence of it, adding in index vectors of items observed within a context of
interest such as a window of preceding and succeeding items. If the objective of
the semantic space is to encode synonymy or other close semantic relations, a
window of two preceding and succeeding items is used as a context. Preceding
and succeeding items are kept separate to preserve sequential information in the
representation, implemented by applying separate permutations for preceding
and succeeding items [23]. In the present experiments, we use a large 2000-
dimensional semantic space trained on several years of social and news media
by Gavagai for inclusion in their commercial tools [22]. Vectors are normalised



to length 1 and items that are not found in the vocabulary are represented with
empty vectors and thus do not contribute to the classification.

GloVe Global Vectors (or GloVe for short) are semantic vectors which are built
to provide downstream processes with handy access to lexical cooccurrence data
from large data sets [17]. The vectors are populated with data from cooccurrence
within a 15-word window, thus providing a more associative relation between
items than the random indexing model above. The quality of the vectors has
proven useful for a wide range of tasks and GloVe vectors have in recent years
been used as a standard way of achieving a conceptual generalisation from simple
words in text. There are several GloVe vector sets that can be retrieved at no
cost, and in these experiments we chose a 200-dimensional set provided by the
Stanford NLP group trained on microblog data which we judged to be the closest
fit to the data under analysis.4 Items that are not found in the vocabulary are
replaced with a stand-in vector populated with values from a normal distribution
where the mean and standard deviation are obtained from all available vectors.

ELMo Semantic vector models in general produce vectors that are intended to
encode information from language usage in general (or language usage in the
training set). They do not accommodate to the specific task at hand and are
trained on large amounts of previous knowledge. Recent approaches try to ad-
dress the challenge of domain and task accommodation more explicitly by com-
bining a previously trained general representation with a more rapid learning
process on the data set under analysis. For linguistic data, ELMo (Embeddings
from Language Models) proposed by [18] is one such model. ELMo representa-
tions are different from traditional semantic vectors in that individual vectors
are generated for each token in the data under analysis, based on a large pre-
trained language model represented in a richer three-level representation trained
on sentence-by-sentence cooccurrences. The ELMo processing model incorpo-
rates a character-based model which means that no items will be out of vocab-
ulary: previously unseen items inherit a representation based on the similarity
of their character sequence to other known items. We use the AllenNLP python
package to generate vectors [7]. Each lexical item is represented by an average
of the three ELMo layers in one 1024-dimensional vector and they are passed in,
sentence by sentence to the classifier.

Baseline representation As a baseline we use randomly initialized word em-
beddings obtained from the Keras embedding layer. First a tokenizer is used to
obtain a list of all lexical items in the training set. Only the top most common
10,000 words are considered for the classification task, and they are converted
into 100-dimensional word vectors generated by Keras. These vectors thus con-
tain no information about previous usage of the lexical items.

4 https://nlp.stanford.edu/projects/glove/



3.2 Classifier

The first step in our processing pipeline involves building a text classifier. Texts
are classified to be written either by authors with eating disorders or by au-
thors without eating disorders. This is in keeping with the underlying hypoth-
esis above, that some characteristics of authors with eating disorders may be
discernible even in texts about other topics. Text classification is done with a
Recurrent Neural Network (RNN) implemented with Long Short-Term Memory
cells (LSTMs). Recurrent neural networks are neural architectures where the
output of the hidden layer at each time step is also used as input for the hid-
den layer at the next time step. This type of processing model is particularly
suitable for tasks that involve processing of sequences, for example sentences
in natural language. LSTM cells retain information over longer distances than
regular RNN cells [8]. Our neural architecture consists of an embedding layer,
two hidden layers of size 100 and a fully connected layer with one neuron and
sigmoid activation (as illustrated in Figure 3.2). The embedding layer differs ac-
cording to which type of representations we use for each model, whereas the rest
of the model is equivalent for all of our neural models. The output layer with a
sigmoid activation function makes sure that the network assigns a probability to
each text instead of a class label. We set the maximum sentence length to 100
words and the vocabulary to 10,000 words in order to make the training process
more efficient.

Fig. 1. The diagram illustrates the architecture of the text classifier.

This recurrent neural network takes care of the text classification task: it
outputs the probability that each text belongs to the 1 (at risk) class. The
output of the text classifier is passed on as input to a second author classifier in
a feature vector composed of the following elements:

– The number of texts seen up to that point, min-max scaled to match the
order of magnitude of the other features

– The average score of the texts seen up to that point
– The standard deviation of the scores seen up to that point
– The average score of the top 20% texts with the highest scores



– The difference between the average of the top 20% and the bottom 20% of
texts.

We experimented with two architectures for the author classifier: logistic regres-
sion and multi-layer perceptron. Logistic regression is a linear classifier that uses
a logistic function to model the probability that an instance belongs to the de-
fault class in a binary classification problem. A multi-layer perceptron, on the
other hand, is a deep feed-forward neural network, and therefore a non-linear
classifier. We tested their performance by feeding each architecture with iden-
tical input from the text classifier. We varied different hyperparameters such
as embedding size, hidden layer size, number of layers, vocabulary size, etc., to
find the best combination, also taking practical issues such as training time into
account. One important factor to keep in mind is that we wanted to compare
word embedding methods, so it was desirable to have the same (or very similar)
settings for all models. During our development phase we found that often a hy-
perparameter setting that worked well for one model was not ideal for another
model, and compromises had to be made.

3.3 Practical Considerations

For the implementation we use Sci-kit learn [16] and Keras [3], two popular
Python packages that support traditional machine learning algorithms as well
as deep learning architectures, and we use NLTK for preprocessing purposes [1].
We pre-processed the documents in the same way for all our runs: we used the
stop-word list provided with the package Natural Language Toolkit, but we did
not remove any pronouns, as they have been found to be more prominent in the
writing style of mental health patients. We replaced URLs and long numbers
with ad hoc tokens and the Keras tokenizer filters out punctuation, symbols and
all types of blank space characters.

We only took into consideration those messages where at least one out of the
text and title fields was not blank. Similarly, at test time we did not process
blank documents, instead we repeated the prediction from the previous round if
we encountered an empty document. If any empty documents appeared in the
first round, we emitted a decision of 0, following the rationale that in absence of
evidence we should assume that the user belongs to the majority class.

The text classifier is trained on the training set with a validation split of 0.2
using model checkpoints to save the models at each epoch, and early stopping
based on validation loss. Two dropout layers are added after the hidden LSTM
layers with a probability of 0.5. Both early stopping and dropout are intended to
avoid overfitting, given that the noise in the data makes the model more prone
to this type of error.

For the author classifier, we experimented with different settings for logistic
regression and the multi-layer perceptron. For the logistic regression classifier, we
used the SAGA optimizer [4]. We used balanced class weight to give the minority
class (the positive cases) more importance during training. For the multi-layer
perceptron, we used two hidden layers of size 10 and 2.



Since we need to focus on early prediction of positive cases and on recall,
precision in our system tends to suffer. In order to improve precision as much as
possible, we experimented with different cut-off points for the probability scores
to try to reduce the number of false positives as much as possible. We ended up
using a high cut-off probability of 0.9 for a positive decision, because we found
that this did not affect our recall score too badly, and it did help improve preci-
sion. We made the practical assumption that a good balance between precision
and recall would more useful in a real-life setting than really good scores on the
early prediction metrics.

4 Evaluation Metrics

Precision and Recall Precision and recall are calculated over only the positive
items in the test set and they are combined into the F1 score in the traditional
way.

ERDE Originally proposed by the eRisk organisers in 2016 [12] and applied
in every year since, the Early Risk Detection Error (ERDE) score takes into
account both the correctness of the decision and the number of texts needed
to emit that decision. ERDE assigns each classification decision—in this case,
identifying a user to be ill or healthy—by a system an editorially determined
cost: cfn for false negatives, cfp for false positives, ctn for true negatives, and ctp
for true positives. The true positive score ctp is weighted by a latency cost factor
lc(o, k), where k is the number of texts seen by the system before a decision is
made and o is a parameter to control for how many texts are considered to be
acceptable or expected before a decision is made. The lc(o, k) factor increases
rapidly after o texts have been seen. The objective is to minimise this score. In
the 2019 evaluation cycle, ctn was set to 0, cfn to 1, cfp to the relative frequency
of the positive items in the test set, ctp to 1, and o variously to 5 and 50, shown
as ERDE5 and ERDE50 respectively.

Latency Proposed by Sadeque et al [21], the latency measure is the median
of the number of documents seen by the system until it makes a determination
that a user is at risk. This is only computed for true positives, and thus carries
no penalty for false or missed positives. The latency score is can be reformulated
as a speed factor which is used to rescore the raw F1 score to a latency-weighted
Flatency score. A system which identifies positive items from their first writing
will have F1 = Flatency.

Ranking based metrics: P@10, nDCG@10, nDCG@100 The participat-
ing systems were required to rank the users in order of assessed risk, and then
the precision of that list was measured at 10 items, and compared to a per-
fect ranking at 10 and at 100 using the normalised discounted cumulative gain
measure (nDCG) [9].



5 Results

5.1 Official Results

We submitted 5 runs to the official test phase, the maximum number allowed for
each team. They are listed in Table 1. A total of 13 teams successfully completed
at least one run in eRISK. Some teams stopped processing texts before the
stream of 2000 texts was exhausted. Unfortunately, due to a processing error,
our submissions were among them: we only processed the first round of texts
and emitted our decisions based on that. Our official scores are thus not based
on the entire test material but are an extreme case of early risk detection, based
on the first text round only. The results are given in Tables 2 and 3.

Run ID
Vector type

for
text classifier

Author classifier

0 Baseline
Logistic
Regression

1 Baseline
Multi-layer
Perceptron

2 GloVe
Logistic
Regression

3 GloVe
Multi-layer
Perceptron

4
Random
indexing

Multi-layer
Perceptron

Table 1. Summary of the models used in the 5 runs submitted to the eRisk 2019
shared task.

Table 2. An extract of the results table provided by the organizers for the decision-
based evaluation, concerning our team UppsalaNLP.

The model with the best performance was run 4, with random indexing vec-
tors and a multi-layer perceptron. This holds for both the decision-based eval-
uation and the ranking-based evaluation. The only exception to this is the best



Table 3. An extract of the results table provided by the organizers for the ranking-
based evaluation, concerning our team UppsalaNLP.

recall score, obtained by the baseline model with a logistic regression classifier.
In development experiments we found that the random indexing model had the
least number of false positives and that the multi-layer perceptron balances pre-
cision and recall well. We believe that the GloVe model, in combination with the
multi-layer perceptron, is too conservative to give a good performance after only
one round of texts, whereas the random indexing model strikes a better balance
early on in the data stream.

Compared to the other submissions, our scores for the decision-based eval-
uation were excellent in terms of latency, speed, and ERDE5, since we always
made our decisions at the first possible time. On most other evaluation param-
eters our offical scores were ranked in the lower third, if compared to the best
scores of the other participants. For the ranking results, given in Table 3, the
results were more respectable (although due to the processing error, they did
not change as more data was processed).

5.2 Continued Experimentation

After the official testing period was over, the organizers made the test set avail-
able to the participating teams. This allowed us to carry out continued exper-
iments, including ELMo which was not practicable during the official training
period due to lengthy processing times. Table 4 shows the performance of our
models on the official test set. We used a script provided by the organizers to
evaluate precision, recall, F1, and ERDE, so the results should be comparable
to the official ones. These results should be comparable to the results reported
in the table, because they are obtained under the same testing conditions. We
found that once the processing error was sorted out, we were able to produce
scores on par with the top participants: our best F1 score on the test set was
0.68, whereas the best F1 in the shared task was 0.71, and we obtained a recall
of 0.9 which is close to the best score of 1.0, obtained by a team that heavily
sacrificed precision. For ERDE5 and ERDE50 more than one team shared the
first place with the same non-perfect scores of respectively 0.06 and 0.03. These
values are likely rounded up the the nearest percentage point, and if we do the
same thing with our continued results, we actually obtain an ERDE5 of 0.04
for all the vector representations in using the logistic regression model, and an
ERDE50 of 0.02 for our GloVe/ELMo and logistic regression models. More de-



tails about these further experiments can be found in a comprehensive report
by Fano [5].

Baseline Rand. Ind. GloVe ELMo Best official score

LSTM
classifier

Accuracy 96.17 96.57 96.79 96.67

Logistic
regression
classifier

Accuracy 96.33 95.8 93.76 95.64
Precision 0.35 0.34 0.4 0.41 0.77
Recall 0.89 0.89 0.9 0.9 1.0
F1 0.5 0.49 0.55 0.56 0.71
ERDE5 4.01 4.22 4.49 3.64 6
ERDE50 2.68 2.58 2.45 2.27 3

Multi-layer
perceptron
classifier

Accuracy 97.76 97 97.48 98.13
Precision 0.49 0.64 0.68 0.65 0.77
Recall 0.77 0.63 0.67 0.7 1.0
F1 0.6 0.63 0.68 0.67 0.71
ERDE5 5.08 6.51 6.98 6.81 6
ERDE50 3.46 4.46 4.3 3.85 3

Table 4. The results of our experiments on the test set. The scores are reported in
percentages, except precision, recall and F1 which are reported in decimal points.

6 Lessons Learnt

We found that in the continued experiments, the model with GloVe embeddings
and the multi-layer perceptron classifier had the best precision, without sacrific-
ing recall. ELMo vectors did not make much of a difference for the multi-layer
perceptron condition, but held a slight edge on the generally lower performing
logistic regression classifier. In general, the benefit of using knowledge from the
generalised vector models was relatively small. Compared to the baseline, the
three pre-trained models show a better balance between precision and recall, and
they also show worse ERDE scores, which are a symptom of a more conservative
behavior, especially in the early phases.

Regarding the difference between the logistic regression and multi-layer per-
ceptron classifiers, we could detect a clearer trend on the test set than we had on
the development set. We had already observed that logistic regression seemed to
lead to worse precision scores, but on the test set we could also determine that
it also gave rise to better ERDE scores. This result can be explained as follows:
if the system incurs in many false positives, it will likely also be able to correctly
identify the true positives, and zooming in on many true positives early on also
leads to good ERDE scores.

The more far-reaching conclusions that can be drawn from our experiments
is that the choice of representation and classifier does have some effect on the



results, and that the chronological aspect of this task made clear the compound
effect of learning curves and robustness of the combination of the two: more
conservative models which are likely to perform better in the long run suffer
from not daring to pronounce a decision early in the sequence.

References

1. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing
text with the natural language toolkit. O’Reilly Media, Inc. (2009)

2. Cacheda, F., Iglesias, D.F., Nóvoa, F.J., Carneiro, V.: Analysis and experiments
on early detection of depression. In: Working Notes of CLEF 2018 - Conference
and Labs of the Evaluation Forum (2018)

3. Chollet, F., et al.: Keras. https://keras.io (2015)

4. Defazio, A., Bach, F.R., Lacoste-Julien, S.: SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. Computing
Research Repository (CoRR) (2014), http://arxiv.org/abs/1407.0202

5. Fano, E.: A comparative study of word embedding methods for early risk prediction
on the Internet. Master’s thesis, Uppsala University (2019)

6. Funez, D.G., Ucelay, M.J.G., Villegas, M.P., Burdisso, S.G., Cagnina, L.C.,
Montes-y Gómez, M., Errecalde, M.L.: Unsls participation at erisk 2018 lab. In:
Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum.
vol. 2125 (2018)

7. Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N.F., Peters,
M., Schmitz, M., Zettlemoyer, L.S.: Allennlp: A deep semantic natural language
processing platform. In: arXiv (2017)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8) (1997)

9. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS) 20(4), 422–446 (2002)

10. Kanerva, P., Kristoferson, J., Holst, A.: Random indexing of text samples for latent
semantic analysis. In: Proceedings of the 22nd Annual Meeting of the Cognitive
Science Society (CogSci). vol. 22 (2000)

11. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International conference on machine learning. pp. 1188–1196 (2014)

12. Losada, D.E., Crestani, F.: A test collection for research on depression and language
use. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction -
7th International Conference of the CLEF Association (2016)

13. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk 2019: Early Risk Pre-
diction on the Internet. In: Experimental IR Meets Multilinguality, Multimodality,
and Interaction. 10th International Conference of the CLEF Association (2019)

14. Maupomé, D., Meurs, M.J.: Using topic extraction on social media content for the
early detection of depression. In: Working Notes of CLEF 2018 - Conference and
Labs of the Evaluation Forum (2018)

15. Ortega-Mendoza, R.M., López-Monroy, A.P., Franco-Arcega, A., y Gómez, M.M.:
Peimex at erisk2018: Emphasizing personal information for depression and
anorexia detection. In: Working Notes of CLEF 2018 - Conference and Labs of
the Evaluation Forum (2018)



16. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011)

17. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word represen-
tation. In: Proceedings of the 2014 conference on Empirical Methods in Natural
Language Processing (EMNLP) (2014)

18. Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettle-
moyer, L.: Deep contextualized word representations. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Lin-
guistics (2018)

19. Ragheb, W., Moulahi, B., Azé, J., Bringay, S., Servajean, M.: Temporal mood
variation: at the clef erisk-2018 tasks for early risk detection on the internet. In:
CLEF: Conference and Labs of the Evaluation. p. 78. No. 2125 (2018)

20. Ramiandrisoa, F., Mothe, J., Benamara, F., Moriceau, V.: Irit at e-risk 2018. In:
E-Risk workshop. pp. 367–377 (2018)

21. Sadeque, F., Xu, D., Bethard, S.: Measuring the latency of depression detection in
social media. In: Proceedings of the 11th ACM International Conference on Web
Search and Data Mining (WSDM). ACM (2018)

22. Sahlgren, M., Gyllensten, A.C., Espinoza, F., Hamfors, O., Karlgren, J., Olsson,
F., Persson, P., Viswanathan, A., Holst, A.: The Gavagai living lexicon. In: Pro-
ceedings of the Language Resources and Evaluation Conference (LREC). ELRA
(2016)

23. Sahlgren, M., Holst, A., Kanerva, P.: Permutations as a means to encode order in
word space. In: Proceedings of The 30th Annual Meeting of the Cognitive Science
Society (CogSci) (2008)

24. Trotzek, M., Koitka, S., Friedrich, C.M.: Word embeddings and linguistic metadata
at the clef 2018 tasks for early detection of depression and anorexia. In: Working
Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum. vol. 2125
(2018)


