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Abstract. This paper presents an approach for automated analysis of
3D Computed Tomography (CT) images based on representing the 3D
CT data as a set of 2D projection images along all three axes. Such ap-
proach reduces the dimensionality of the input data and therefore allows
using less complicated models for image classification tasks. Deep Learn-
ing methods were used to predict most of the features of CT images
of patients with lung tuberculosis (TB). For part of the features, con-
ventional methods were used. Two different methods of segmentation of
lungs were employed including the registration-based scheme. The pro-
posed image analysis approach was utilized by United Institute of Infor-
matics Problems (UIIP BioMed) participant for accomplishing the two
subtasks of ImageCLEF Tuberculosis task of ImageCLEF 2019 interna-
tional competition. Employing the proposed approach allowed achieving
the best performance in both CT Report Generation and TB Severity
Scoring subtasks. Source codes implementing the proposed methods are
available on Github1.
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1 Introduction

Automated analysis of 3D CT images is an important step in many tasks con-
nected with the development of Computer-Aided Diagnosis systems, screening
of lung diseases, early detection of pathology and development of the dedicated
web-portals2 [10]. However, the task of CT image analysis nowadays remains
challenging due to a number of factors. Partly this is caused by the complex-
ity of 3D CT image data as well as by the diversity of representations of such
data. A CT image can often be represented as a set of 2D slices with inter-slice
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distance varying between 0.5 and 5 mm. Variable size and shape of CT image
voxels make it difficult to correctly apply many image analysis algorithms. The
other problem comes from low availability of CT imaging data compared to
some other biomedical image modalities such as X-ray [8, 14], histology [4, 13]
and microscopy images [1]. This strengthens with the complexity and high costs
of manual labeling of 3D CT images. Availability of good quality labeling sig-
nificantly eases the task of CT image analysis [6, 9].

The approach for analysis of 3D CT images proposed with this study employs
the idea of representing each 3D CT scan as a set of 2D projection images
along all three (X, Y and Z) axes: sagittal, frontal and axial projections. The
advantage of such an approach over the conventional slice-wise representation
consists in the fact that each projection obtained via averaging of voxel intensity
values contains information about all the slices present in the image. On the one
hand, such approach significantly reduces the complexity of the input data which
eases the task of training the Convolution Neural Networks on a limited amount
of training data. On the other hand, generating projections along different axes
(X, Y , Z) provides additional ”native” augmentation of the input data.

2 Subtasks and datasets

The tuberculosis task [2] of ImageCLEF 2019 Challenge [5] included two subtasks
all dealing with 3D CT images. Both subtasks shared the same CT imaging data
which included 218 images in the Training (also referred as Development) dataset
and 117 in the Test dataset.

The subtask #1 (SVR subtask) was dedicated to the problem of categorizing
TB cases into one of the two classes: high severity and low severity. In con-
trast to the previous year’s challenge, the task was only to predict TB Severity
class (”HIGH”/”LOW”) rather than to provide a Severity score from 1 to 5.
Also, along with the CT images of TB patients an additional information about
the patients was provided. The metadata included information about presence
of disability, relapse, presence of TB symptoms, co-morbidity, bacillarity, drug
resistance status, patient’s education, being ex-prisoner, smoking status and al-
cohol addiction. The task was aimed at automatic classification of TB Severity
into ”HIGH” and ”LOW” classes. The frequencies of occurrence of each meta-
data label are listed in Table 1.

The subtask #2 (CTR subtask) was the newly-introduces subtask which was
dedicated to automated generation of CT reports which indicated presence of
several types of abnormalities in lungs. Such automated annotation of CT scans
is important for development of the dedicated image databases. The task was to
predict the presence of six types of findings in CT scans. Information about the
corresponding labels is listed in Table 2.



Table 1. Presence of metadata labels for SVR subtask in the datasets.

Label In Training set In Test set

Disability 34 15
Relapse 76 42
SymptomsOfTB 117 47
Comorbidity 122 56
Bacillary 185 108
DrugResistance 149 91
HigherEducation 28 19
ExPrisoner 27 12
Alcoholic 49 29
Smoking 114 70

Table 2. Presence of labels for CTR subtask in the Training dataset.

Finding In Training set

LeftLungAffected 156
RightLungAffected 177
LungCapacityDecrease 64
Calcification 28
Pleurisy 16
Caverns 89

3 Methods

This section contains a description of the methods used with the current study.
Some results obtained for the CTR subtask were used for completion of the SVR
subtask.

3.1 Data pre-processing

The key idea of the approach proposed with this study consists in converting 3D
CT scans into 2D projections followed by analysis of the obtained 2D projection
images with use of Deep Learning and conventional methods.

For generation of the projections, two different versions of automatically ex-
tracted lung masks were used: the lung masks provided by the competition orga-
nizers [3] (”default”) and the masks obtained via a conventional segmentation-
through-registration scheme [12]. A short description of implementation of the
registration-based lung segmentation method can be found in [7]. Source codes
implementing this method are available on Github3. The lung masks obtained
via registration-based approach are in general less accurate compared to the
default ones but they appear useful in the cases of presence of large lesions in
lungs. Fig. 1 illustrates both versions of lung masks on a CT image of a patient
with pleurisy (Patient-ID: ”CTR TRN 013”). It can be seen that the default
lung masks tend to leave parts of large lesions outside of the segmentation.

3 https://github.com/skliff13/CT RegSegm



The process of generation of CT projection images considered performing the
following major procedures. The CT image voxel intensity values were increased
by the value of 1024 Hounsfield Units (HU) to ensure only positive intensity
values. To exclude the influence of image segmentation faults on the lung borders,
the lung masks were eroded using ellipsoidal structure elements of radius 10 along
XY plane. The radius along Z-axis was calculated respectively to the inter-slice
distance of the specific CT image. Image intensity values outside of the eroded
lung masks were zeroed. Optionally, an intensity threshold can be applied to
filter noisy voxels with low intensities.

Fig. 1. CT image of a TB patient having pleurisy with the default lung masks (top)
and the lung masks obtained via registration-based approach (bottom).

Each 2D projection image was represented as a pseudo-RGB image and had
three channels. The first (red) channel contained mean values of CT image in-
tensities along the specified axis. The mean values were finally divided on their
maximum value along the projection image. The second (green) channel con-
tained maximum intensity values along the specified axis divided by the value
of 1500 which corresponds to 1500 − 1024 = 476 HU in terms of the original
voxel intensities. The third (blue) channel was composed of the corresponding
Standard Deviation intensity values. As in the case of red channel, blue channel
values were divided by their maximum. Finally, the resultant 2D projection im-
ages were cropped using the bounding boxes of non-zero regions and resized to
256 × 256 pixels size. Projections were generated for each lung separately. The
general scheme of generation of 2D projections from 3D CT images is shown in
Fig. 2



Fig. 2. General scheme of generation of 2D projections from 3D CT images.

Using this scheme, six 2D projection images were generated for each CT scan
in the dataset: sagittal, frontal and axial projections for each of the two lungs.
Three versions of projection images were generated with use of different lung
masks and intensity thresholds. Details on the versions are shown in Table 3.

Table 3. Versions of 2D projections used with this study.

Version Lung masks used Intensity threshold

v1.0 Default No threshold
v1.1 Registration-based No threshold
v1.2 Default +1000 HU

Fig. 3 illustrates the v1.0 projection images along the three axes of left and
right lung of a CT scan which is labeled as having only right lung affected with
presence of caverns (Patient-ID: ”CTR TRN 037”). It can be seen from the
projection images that the upper lobe of right lung is affected by the disease.

3.2 Training and validation subsets

For correct validation of the developed image analysis algorithms, the Develop-
ment dataset provided by the organizers was split into training and validation
subsets. With this study, each 4-th CT image from the Development dataset was
labeled as validation image (54 cases), whereas all other CT cases were used for



Fig. 3. Examples of 2D sagittal (X), frontal (Y ) and axial (Z) projections of left and
right lungs.

training the algorithms (164 cases). This training/validation data split was used
at every stage for both subtasks without changes.

3.3 Utilized neural network model

Convolutional Neural Networks (CNNs) were used to predict most of CT im-
age characteristics. A deeply modified version of a popular VGG16 [11] neural
network was used with this study.

Conventional VGG16 architecture includes 13 convolutional layers in five
blocks and three fully-connected layers (13 + 3 = 16). Considering the limited
amount of the available data, the employed neural network model was simplified
by (i) reducing the number of convolutional layers to one per block (5 layers),
(ii) using global maximum pooling after the last convolutional block instead of
flattening, and (iii) reducing the number of nodes in the fully-connected layers
to 128. All this significantly reduces the number of trained parameters of the
network model which minimizes the effect of over-fitting. The resultant network
model included eight trainable layers: 5 convolutional and 3 fully-connected.

3.4 Prediction of labels for the CTR subtask

Training CNN for lung-wise detection of abnormalities. Most of the
metadata labels provided with this challenge (TB Severity class, presence of
certain lesions) were assigned at the level of CT scans. On the other hand, Left-
LungAffected and RightLungAffected labels from the CTR subtask metadata can
be used to train image classification models to detect presence of abnormalities
at single lung level.



At this step, a Convolutional Neural Network was trained to classify a 2D
lung projection image as either healthy (”normal”) or affected by TB (”abnor-
mal”). The training and validation data was composed of lung projection images
along X, Y and Z axes, left and right lungs were considered separately. Thus,
the total number of input samples was 164 × 2 (lungs) ×3 (projections) = 984
for training and 54 × 2 × 3 = 324 for validation. The size of the network input
was 256 × 256 × 3 which corresponded to a projection image of a single lung.
Categorical cross-entropy was used as the cost function. Additional on-the-fly
data augmentation was applied which included random rotations with 10 degree
range, width and height shifts and random re-scaling.

The network training for lung-wise ”normal”/”abnormal” classification was
performed with use of lung projections v1.0, Adam optimizer and learning rate
set to 10−5 within 120 training epochs. Network weights were initialized ran-
domly. Here and further the training was performed with use of Keras frame-
work with Tensorflow backend on a personal computer equipped with a GPU of
Nvidia TITAN X type with 3072 CUDA Cores and 12 GB of GDDR5 on-board
memory.

The trained CNN was evaluated on the lung projection images generated
from the validation CT scans to produce the confidence scores. Projection-wise
comparison to the ground truth data resulted in 0.865 Area Under ROC-Curve
(AUC). However, 2D projections generated along different axes from the same
3D image must have the same label (”normal” or ”abnormal”). Therefore, the
confidence scores obtained for the three projections of each lung were combined
to increase the lung-wise classification quality. The best performance of lung-wise
”normal”/”abnormal” classification was achieved by means of using maximum
among the three confidence values which corresponded to X, Y and Z axes
(AUC = 0.920).

Detection of caverns and lung capacity decrease. Similar approach was
used for detection of caverns and lung capacity decrease. In this case, the cor-
responding labels were specified at CT image level, therefore the input data
consisted of projections of both lungs. The corresponding neural network model
had the input of size 256 × 512 × 3 which corresponded to two concatenated
projection images. Lung projections v1.1 were used.

Weights of the convolutional layers were initialized with the corresponding
weights of the CNN previously trained for lung-wise ”normal”/”abnormal” clas-
sification. The networks for detection of lung capacity decrease and caverns were
trained for 50 and 120 epochs respectively. Evaluation of the trained CNNs on
the validation data resulted in 0.832 AUC for lung capacity decrease and 0.809
AUC for caverns detection at projection level. Averaging the confidence values
obtained for X, Y and Z projections gave the CT-wise detection performance
of 0.856 AUC for lung capacity decrease and 0.879 AUC for caverns.

Detection of calcification and pleurisy. Scores for prediction of calcification
were calculated using the mean intensity values of v1.2 projection images. These



values reflect the number of voxels in lung regions of the original CT images
with intensities exceeding 1000 HU threshold. Evaluation of such scores on the
Development dataset resulted in 0.726 AUC value.

Since the lung masks provided by the organizers tend to exclude pleurisy from
lung segmentation (see Fig.1), the scores for detection of pleurisy were calculated
as difference between the volume of lung masks obtained via registration-based
scheme and the volume of lung masks provided by the organizers. Evaluation of
such scores gave 0.776 AUC value on the Development dataset.

Summary on the CTR subtask. The results of evaluation of the prediction
algorithms for the CTR subtask are shown in Table 4. All the AUC values were
assessed on the validation dataset.

Table 4. Prediction performance for the CTR subtask evaluated on the validation
data.

Label AUC

LeftLungAffected 0.906
RightLungAffected 0.957
Calcification 0.765
Caverns 0.879
Pleurisy 0.824
LungCapacityDecrease 0.856

Mean AUC 0.864
Min AUC 0.765

3.5 Prediction of TB Severity in the SVR subtask

The approach used with this study for prediction of TB severity consisted of two
major stages.

The first stage considered training a CNN for prediction of severity class
with use of only CT projection images. At this stage, the VGG16 network was
trained to classify TB severity into ”HIGH” and ”LOW” classes. Similarly to
the detection of caverns and lung capacity decrease in the CTR subtask, in-
put for the CNN for severity classification was composed of projections of both
left and right lungs. Weights of all trainable layers (convolutional and fully-
connected) of the network were initialized with the corresponding weights of the
CNN previously trained for lung-wise ”normal”/”abnormal” classification. The
network was trained on v1.0 projection images during 60 epochs. Evaluation of
the trained network on the validation set resulted in 0.768 AUC value.

At the second stage, the output of a trained CNN (confidence score) was
combined with the available metadata features for prediction of TB severity with
use of Linear Regression classifier. Several more classifiers were tested including
Random Forests, Logistic Regression and Support Vector Machine, but Linear



Regression gave the best AUC on the validation subset. Two sets of the metadata
features were used: all available metadata features and the subset of four selected
features which gave the same AUC on the validation subset. The subset of four
features included DrugResistance, HigherEducation, ExPrisoner and Alcoholic
labels.

AUC values assessed on the validation data using different combinations of
metadata features and CNN outputs obtained from different projection images
are shown in Table 5. The testing results presented with the table suggest that
2D projection images generated along X axis were the most informative for
prediction of TB Severity class by the neural network. Utilizing projections along
Z axis did not improve the results compared to the prediction using only X and
Y projections.

Table 5. Prediction performance for the SVR subtask using different combinations of
the metadata features and trained CNN outputs.

Metadata CNN outputs (projections used) AUC

All - 0.785
Four - 0.785
- X only 0.804
- Y only 0.801
- Z only 0.707
- X and Y only 0.818
- X, Y and Z 0.793
All X only 0.844
All X and Y only 0.830
All X, Y and Z 0.820
Four X only 0.852
Four X and Y only 0.876
Four X, Y and Z 0.849

Among the combinations which used all available metadata features, the
one which used CNN outputs from X projections showed the best performance
with 0.844 AUC on the validation subset. The overall best performance on the
validation data was achieved using the subset of four metadata features along
with CNN outputs from X and Y projections. These two combinations were
used in the two submitted runs for the SVR subtask.

4 Submissions and results

As the result of this study, three runs were submitted by UIIP BioMed for the
CTR subtask and two for the SVR subtask. Full list of the submitted results for
both subtasks is available at the task web page4. Network models and classifiers

4 https://www.imageclef.org/2019/medical/tuberculosis/



used for predicting the Test data were trained on the training subset of Develop-
ment data (see subsection 3.2). All the computed prediction scores were scaled
to the range from 0 to 1 to fit the submission requirements.

Subsection 3.4 describes the methods used for the last (”CTR run3 ...”) sub-
mission for the CTR subtask. The previous submissions differed with the ways
of predicting LungCapacityDecrease, Pleurisy and Caverns and demonstrated
poorer performance on the validation data. In ”CTR run1 ...”, these three find-
ings were predicted by a single neural network trained for multi-class multi-label
classification (0.844 mean AUC on validation). In ”CTR run2 ...”, LungCapaci-
tyDecrease and Caverns labels were predicted using separate CNNs trained for
binary classification which gave better results (0.852 mean AUC on validation).
Table 6 shows results achieved by the participants in the CTR subtask, one best
run for each participating group. The run submitted by UIIP BioMed achieved
the highest values of both mean and minimum AUC for prediction of presence
of lung abnormalities.

Table 6. The best participants’ runs submitted for the CTR subtask.

Group Name Mean AUC Min AUC Rank

UIIP BioMed 0.7968 0.6860 1
CompElecEngCU 0.7066 0.5739 2
MedGIFT 0.6795 0.5626 3
San Diego VA HCS/UCSD 0.6631 0.5541 4
HHU 0.6591 0.5159 5
UIIP 0.6464 0.4099 6
MostaganemFSEI 0.6273 0.4877 7
UniversityAlicante 0.6190 0.5366 8
PwC 0.6002 0.4724 9
LIST 0.5523 0.4317 10

The methods used for submissions in the SVR subtask are described in sub-
section 3.5. The first submitted run (”SRV run1 ...”) used all metadata features
and X projections for TB Severity classification and achieved the overall best
performance in both AUC (0.7877) and Accuracy (0.7179). The second submis-
sion ”SRV run2 ...” used the subset of four metadata features along with X and
Y projections. This approach demonstrated better performance on the valida-
tion data. However, on the Test data it resulted in lower AUC (0.7636 vs. 0.7877)
but higher Accuracy (0.7350 vs. 0.7179). Results of the participants’ submissions
with the highest AUC values are shown in Table 7.

5 Conclusions

The results of this study allow to draw the following conclusions:



Table 7. The best participants’ runs submitted for the SVR subtask.

Group Name AUC Accuracy Rank

UIIP BioMed 0.7877 0.7179 1
UIIP 0.7754 0.7179 2
HHU 0.7695 0.6923 3
CompElecEngCU 0.7629 0.6581 4
San Diego VA HCS/UCSD 0.7214 0.6838 5
MedGIFT 0.7196 0.6410 6
UniversityAlicante 0.7013 0.7009 7
MostaganemFSEI 0.6510 0.6154 8
SSN College of Engineering 0.6264 0.6068 9
University of Asia Pacific 0.6111 0.6154 10
FIIAugt 0.5692 0.5556 11

– 2D projections of lungs generated from 3D CT scans preserve basic informa-
tion about the lungs structure which is sufficient for detection of abnormal-
ities of different sort.

– TB Severity can be assessed based on the analysis of CT scans, however
additional information on clinical data, drug resistance and patient’s social
status are helpful for more accurate scoring of TB Severity.

– Usefulness of different methods of lungs segmentation may vary depending of
the specific task being solved. Combining multiple lung segmentation meth-
ods may provide additional information which can be useful for detection of
certain abnormalities in lungs.
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Blanco, C.R., Rodŕıguez, C.C., Vasillopoulos, N., Karampidis, K., Chamberlain,
J., Clark, A., Campello, A.: ImageCLEF 2019: Multimedia retrieval in medicine,
lifelogging, security and nature. In: Experimental IR Meets Multilinguality, Mul-
timodality, and Interaction. Proceedings of the 10th International Conference of
the CLEF Association (CLEF 2019), vol. 2380. LNCS Lecture Notes in Computer
Science, Springer, Lugano, Switzerland (September 9-12 2019)

6. Kalinovsky, A., Liauchuk, V., Tarasau, A.: Lesion detection in CT images us-
ing Deep Learning semantic segmentation technique. In: International Work-
shop ”Photogrammetric and computer vision techniques for video surveillance,
biometrics and biomedicine”. The International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, vol. XLII, pp. 13–17.
Moscow, Russia (May 2017). https://doi.org/10.5194/isprs-archives-XLII-2-W4-
13-2017, http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-
2-W4/13/2017/

7. Liauchuk, V., Kovalev, V.: ImageCLEF 2017: Supervoxels and co-occurrence for
tuberculosis CT image classification. In: CLEF2017 Working Notes. CEUR Work-
shop Proceedings, CEUR-WS.org <http://ceur-ws.org>, Dublin, Ireland (Septem-
ber 11-14 2017)

8. Liauchuk, V., Kovalev, V.: Detection of lung pathologies using deep convolutional
networks trained on large X-ray chest screening database. In: Proceedings of the
14th international conference on Pattern Recognition and Information Processing
(PRIP’2019). Minsk, Belarus (May 21-23 2019)

9. Liauchuk, V., Tarasau, A., Snezhko, E., Kovalev, V.: ImageCLEF 2018: Lesion-
based TB-descriptor for CT image analysis. In: CLEF2018 Working Notes. CEUR
Workshop Proceedings, CEUR-WS.org <http://ceur-ws.org>, Avignon, France
(September 10-14 2018)

10. Rosenthal, A., Gabrielian, A., Engle, E., Hurt, D.E., Alexandru, S., Crudu, V.,
Sergueev, E., Kirichenko, V., Lapitskii, V., Snezhko, E., Kovalev, V., Astrovko,
A., Skrahina, A., Taaffe, J., Harris, M., Long, A., Wollenberg, K., Akhundova,
I., Ismayilova, S., Skrahin, A., Mammadbayov, E., Gadirova, H., Abuzarov, R.,
Seyfaddinova, M., Avaliani, Z., Strambu, I., Zaharia, D., Muntean, A., Ghita, E.,
Bogdan, M., Mindru, R., Spinu, V., Sora, A., Ene, C., Vashakidze, S., Shubladze,
N., Nanava, U., Tuzikov, A., Tartakovsky, M.: The TB Portals: an open-access,
web-based platform for global drug-resistant-tuberculosis data sharing and analy-
sis. Journal of clinical microbiology 55(11), 3267–3282 (2017)

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014)



12. Sluimer, I., Prokop, M., van Ginneken, B.: Toward automated segmentation of the
pathological lung in ct. IEEE Transactions on Medical Imaging 24(8), 1025–1038
(Aug 2005). https://doi.org/10.1109/TMI.2005.851757

13. Veta, M., Heng, Y.J., Stathonikos, N., Bejnordi, B.E., Beca, F., Wollmann,
T., Rohr, K., Shah, M.A., Wang, D., Rousson, M., Hedlund, M., Tellez, D.,
Ciompi, F., Zerhouni, E., Lanyi, D., Viana, M., Kovalev, V., Liauchuk, V.,
Phoulady, H.A., Qaiser, T., Graham, S., Rajpoot, N., Sjblom, E., Molin,
J., Paeng, K., Hwang, S., Park, S., Jia, Z., Chang, E.I.C., Xu, Y., Beck,
A.H., van Diest, P.J., Pluim, J.P.: Predicting breast tumor proliferation from
whole-slide images: The TUPAC16 challenge. Medical Image Analysis 54,
111 – 121 (2019). https://doi.org/https://doi.org/10.1016/j.media.2019.02.012,
http://www.sciencedirect.com/science/article/pii/S1361841518305231

14. Zaidi, S.M.A., Habib, S.S., Van Ginneken, B., Ferrand, R.A., Creswell, J., Khowaja,
S., Khan, A.: Evaluation of the diagnostic accuracy of computer-aided detection
of tuberculosis on chest radiography among private sector patients in Pakistan.
Scientific reports 8(1), 12339 (2018). https://doi.org/10.1038/s41598-018-30810-1


