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Abstract. Building automatic strategies for organising knowledge con-
tained in textbooks has a tremendous potential to enhance meaningful
learning. Automatic identification of prerequisite relation (PR) between
concepts in a textbook is a well-known way for knowledge structuring,
yet it is still an open issue. Our research contributes for better under-
standing and exploring the phenomenon of PR in textbooks, by providing
a collection of visualisation techniques for PR exploration and analysis,
that we used for the design of and then the refinement of our algorithm
for PR extraction.
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1 Introduction and Background

In our age we are experiencing an increasing availability of learning resources and
self-regulated learning. In this scenario, the development of automatic strategies
for structuring knowledge is motivated by the need of curricula planning. In par-
ticular, organising the knowledge contained in a textbook and structuring it as a
knowledge map that makes an explicit representation of prerequisite dependen-
cies between concepts has a formidable potential for building intelligent content,
authoring systems for instructional design and e-learning applications [9, 8, 19,
16]. However, the manual construction of structured knowledge from teaching
materials requires an additional and substantial workload provided by experts.
Consequently, the research presented in this paper pursues the extraction of
prerequisite relation [5, 10, 20, 14, 1] (PR, henceforth) and investigates the use
of information visualisation techniques for better understanding and exploring
this phenomenon and its characteristics in textbooks.

The PR relation is a dependency relation defining precedence between two
concepts tu and tv: it represents what a learner must know/study (concept tu)
before approaching concept tv, where a concept can be seen as an atomic piece
of knowledge of the subject domain. By definition, the main properties of a PR
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relation are the followings: (1) binary relation: it involves pairs of concepts; (2)
anti-reflexive relation: concept tu cannot be a prerequisite of itself; (3) transitive
relation: if tu ≺ tv and tv ≺ tz, than tu ≺ tz. As a result of these conditions, the
key concepts of the textbook can be represented as nodes in a directed acyclic
graph G related to each other by means of PR relations.

The effective integration of visualisation technologies in curricula with the
purpose of facilitating teaching and learning of abstract concepts has been al-
ready investigated (see for instance [17] for a study on visualisation and learner’s
engagement in Computer Science education). More recently, in Educational Data
Mining (see [18] for a survey), several studies are oriented toward visualising
different kinds of educational data. In the field of Learning Analytics, informa-
tion visualisation techniques have been studied to empower learning dashboards
with graphical representations of the learning process [7]. More in general, Vi-
sual Analytics aims to handle large amounts of multidimensional data by means
of interactive graphic interfaces and advanced visual representation techniques
during the process of analysis [11]. To the best of our knowledge, a specific
contribution on how information visualisation techniques can be applied to the
analysis of prerequisite relations in textbooks is still missing in the literature.
[15] employed two representations (Hierarchical Edge Bundling and Hive Plots)
on the structure of a book to show how these visualisations can deal with large
graphs that have a hierarchical nature. However, he did not further develop the
investigation on textbook prerequisites by means of visualisation.

Our research on PR extraction from textbooks is enhanced by the use of
Information Visualisation techniques in the following phases:

(i) Exploring and discovering insights of PR;
(ii) Refining the algorithm of PR extraction by means of visual analysis of

patterns and comparison between gold standard PR graphs vs extracted
PR graph.

In the first phase (i), visualisation analysis techniques were applied to a concept
map manually created by experts. The purpose of map creation was to make
explicit the pedagogical relations among concepts in the textbook, while the aim
of visualisation analysis was to discover new insights into PR. The dataset was
explored through matrix and graph visualisations, both enhanced with filtering
and ordering functions. This analysis supported the definition of the algorithm
in [1] for PR extraction.

In the second phase (ii), visualisation analysis was applied on a map au-
tomatically extracted from a textbook using the strategy described in [1]. We
applied visualisation analysis with the aim of improving pattern discovery, re-
fining the algorithm and better understanding how the automatic approach is
affected by changing the parameters. In this phase we relied on a gantt repre-
sentation of the algorithm results. Further analysis was conducted by “visually”
comparing the extracted map and the gold map with the purpose of analysing
graph differences at various levels.

Most of the information visualisation analysis tools that we propose are
meant for the analyst (e.g., researcher) who intends to discover new insights
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or confirm existing hypotheses on the PR. Nevertheless, some of these tech-
niques/tools give a graphical visualisation that can be potentially useful also
for learners, teachers or instructional designers [22, 7, 6]. For example, from this
perspective a graph representation can be proposed as a supporting tool in a
question answering scenario where the underneath knowledge structure is used
to retrieve the most appropriate learning path without leaving out prerequisite
concepts [2]. Such a tool can produce a graphical representation that reflects
and explicates the necessary prerequisite knowledge or deepening knowledge in
respect of the learner’s query. While the latter user and teacher-centric case is
left for future works, in the rest of this paper we will focus on (i) and (ii).

In the following we describe our approach, techniques and data used for
visualisation analysis for both the phases described above (i.e., PR exploration
in Section 2 and PR extraction and algorithm refinement in Section 3), and for
each phase we discuss the results. The visualisation analysis tools proposed in
this paper are available at (teldh.dibris.unige.it/projects/).

2 PR exploration

Gold Dataset Five experts were asked to read a network related chapter from
a Computer Science textbook [4] and annotate the prerequisite concepts of each
relevant term appearing in the text. Each annotator was provided with the same
initial set of concepts extracted with the semi-automatic strategy described in
[1]. Besides these terms, each expert could independently add new concepts to
the terminology if they regard them as relevant. Experts produced different sets
of concept pairs annotated with PRs and the final gold dataset resulted from
the combination of each expert annotation. To achieve this goal, all pairs of
concepts annotated by at least one expert were added to the dataset as positive
examples (i.e. showing a PR). Negative examples (i.e. non-PR concept pairs)
were automatically created by pairing all concepts. Only those pairs that were
not annotated by any expert were added as negative pairs. The final output is a
binary-labelled dataset presenting 124.609 concept pairs in total, obtained by all
possible combinations of 353 concepts. The dataset is really sparse since, among
all relations, only 1052 show a PR (0.84%).

Concept Graphs. Several variants of network-like representations (see for
instance Fig. 1) have been used during PR exploration to visually detect el-
ements such as loops (as resulting from human errors during the process of
annotation) and transitive edges. However, as the dataset becomes larger, a con-
cept graph becomes harder to explore, especially if no filtering functions are
implemented. In this case, other forms of visualisation are more effective.

Concept Matrix Chart. This is a dynamic and interactive representation
of a |T | × |T | asymmetric adjacency matrix M , where each colored cell Mi,j

represents a prerequisite relation between concepts i and j (see Fig. 2). Different
colors can help to visually differentiate clusters of concepts, as they have been
recognised by a community detection algorithm 1. Intuitively these clusters shows

1 In our implementation depicted in Fig.2 we used the Infomap algorithm.
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Fig. 1. A Concept Graph that allows decomposition in sub-graphs belonging to indi-
vidual annotators.

the membership of a concept within a thematic unit (e.g., concepts related to
network security, or to network classification, and so on). Different shades of
the same color can be used to encode different degrees of inter-agreement among
annotators (if M is used to visually depict a gold standard) or different scores (if
M represents the output of an automatic method). The matrix arrangement is
dynamic, i.e. the concepts along the matrix can be sorted according to different
criteria: order of first appearance in the text, alphabetical order, frequency and
cluster membership.

Discussions and Results. The analysis performed on the concept graph
built from the gold standard allowed to reveal interesting properties concerning
graph’s transitivity, topology and connectivity. By comparing subgraphs belong-
ing to different experts, we discovered that the number of transitive edges largely
varies from annotator to annotator. Thanks to this observation, we discussed the
phenomenon with the annotators, ascertaining that their choices depend on a
different interpretation given to the meaning of a distant or weak prerequisite
relation. Some of the experts tend to think in terms of graph paths, while others
in terms of didactic sequences. As an example, the relation between “computer”
and “local area network” (LAN) can be seen on the one hand as a transitive
relation (if one has in mind the path in the graph connecting the first concept
to the second by means of several bridging concepts in the middle), but on the
other hand it can also be seen as a direct prerequisite relation (if one realises that
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“computer” is a fundamental notion, without which a student cannot possibly
hope to understand what a LAN is). Concerning the topology, graph visualisation
confirmed our intuition that prerequisite relations do not necessarily replicate
ontological relations. As an example, let us take a pair of concepts such as “client
side” and “server side”: in a domain ontology these would very probably be rep-
resented as sibling nodes, but we cannot always expect the same behaviour when
approaching a didactic text. In similar contexts, even if a co-requisite relation
would seem the most natural choice of presenting these kind of concepts (i.e.,
the author explains them together, and the former is not a prerequisite of the
latter, nor vice versa), a prerequisite relation is still possible (e.g., if the au-
thor first explains the former and then relies on the knowledge gained by the
reader to explain the latter). As can be noted in the graph, hypernym-hyponym
and holonym-meronym relations deserve a similar discussion. External lexical
resources would typically categorise pairs of words such as “device” (broader,
hence at top-level) and “hub” (narrower, hence at bottom-level) or “byte” (the
whole) and “bit” (the part of) in a hierarchical manner. Conversely, in textbooks
(sometimes even in the same textbook) we can easily find both top-down and
bottom-up explanations. Lastly, the connectivity of the graph (which we dis-
cussed above as influenced by the annotators’ perception of what a prerequisite
relation is) also largely depends on the annotator’s level of domain knowledge.

The analysis performed on the Concept Matrix Chart built from the gold
dataset revealed an important insight for the direction of the prerequisite rela-
tion. After applying the first sorting criterion (i.e., order of first appearance),
the matrix tends towards an upper triangular, with colored cells mostly con-
centrated in the area that is slightly above the diagonal. This pattern confirms
the hypothesis that prerequisite relation is highly correlated with co-occurrence
and temporal order . Consequently, the temporal order of concepts is a reliable
criterion to assign a direction to relations that are automatically extracted by an
algorithm. The most notable exception in this pattern is represented by concepts
such as “computer” or “network”, which tend to be spread across the entire row
of the matrix. However, this phenomenon is due to the fact that these are the
main concepts of the whole chapter of the textbook, hence they frequently re-
occur along the entire text and moreover they could commonly be prerequisites
(rather than subsidiaries) of many other concepts.

The analyses above supported the definition of the algorithm presented in [1]
for PR extraction, which is based on Burst analysis and temporal order.

3 Algorithm Refinement

Burst Dataset The method devised to obtain the Burst Map dataset exploits
burst analysis [12] based on co-occurrence of relevant terms in a text and com-
bined with temporal ordering, as described in [1]. Burst analysis is based on the
observation of burst intervals of a phenomenon, that is the periods of time when
the phenomenon is particularly relevant along a time series (i.e., its occurrence
rises above a certain threshold) [12]. Following [21, 13], we applied burst analysis
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Fig. 2. Concept Matrix Chart

to detect the bursting intervals of relevant terms along the textbook chapter and
analyse different types of temporal patterns established by two concepts by ap-
plying spatial-temporal reasoning on the extracted patterns in order to identify
PR relations. To capture and formalise their temporal relations, we exploited a
subset of temporal relation defined by Allen’s interval algebra [3]. Our selection
is shown Fig. 3. The result of the process is a concept graph with 353 concept
nodes and 124,256 possible pairs of distinct concepts related by a PR.

Burst Gantt Chart. This is a Gantt diagram showing bursts of concepts
along the horizontal temporal axis (time can be measured in sentences or tokens),
while concepts are arranged along the vertical axis, according to their temporal
order (see Fig. 4). The main purpose of this visualisation is facilitating the
analysis of temporal patterns between intervals of different concepts.

Moreover, as the chart incorporates data taken from three different sources
(the output of the burst algorithm, the gold dataset and the textbook itself), we
can use it to perform further kinds of analysis and textbook exploration. For in-
stance, by clicking on a concept label in the vertical axis, we can compare Allen’s
temporal relations and gold relations and thus investigate possible matches (see
Fig. 5).

By clicking on a burst we can instead read the portion of the textbook covered
by that interval (see Fig. 6). This procedure enables us to easily find blocks of
sentences where a concept is introduced for the first time, then resumed (with
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Fig. 3. Allen’s patterns that map PR relations betwen Burst of concepts X and Y.

or without another concept) and eventually left behind. Vertical partition lines
have been drawn to indicate boundaries between sections, while other sorts of
markers can be traced near the temporal axis to identify sequences of sentences
that according to experts are particularly rich of prerequisite relations.

Concept Graph with Allen’s Relations. For investigating Allen’s tem-
poral patterns and prerequisite relations, we also propose to transform the Burst
Gantt Chart into a weighted directed and edge-labeled graph GA, where edges
are labelled using Allen’s algebra. For each two distinct concepts X and Y in
the Burst Gantt Chart, if a pair of bursts Bx,i and By,j is related n times by
Allen’s relation a, we represent this configuration in GA as X →(a,n) Y , where
(a, n) are the edge label and edge weight respectively.

In this representation, bursts are collapsed into one node for each concept,
while multiple edges are maintained and a weight is assigned to them according
to how many times that temporal relation occurs between bursts of those two
concepts. The aim of this conversion is producing a graph that can be compared
with the gold standard graph, as a means for achieving more confidence on the
weights that should be assigned to the different Allen’s patterns. The result
of the conversion is a highly connected graph which needs to be explored with
filters, e.g., filtering concepts that have different relevance, or filtering by specific
Allen’s relation or combination of relations, as well as filtering according to edges
or nodes weights. As displayed in Fig. 7, different colors for edges show different
Allen’s relations, while the width is proportional to the number of times an
Allen’s relation is founded between two concepts. The dimension of a node is
proportional to the importance of the concept (this value can be measured using
frequency, relevance or summing all the lengths of its bursting periods in the
text). In our implementation we also used different colors to encode concepts
that in the gold standard are sources, sinks or internal nodes. In the first case
the node has zero indegree and this means that for annotators it represents a
primary notion—a concept already known by the learner; in the second case the
node has zero outdegree and thus it may be intended as a final learning outcome.

Discussions and Results. Allen’s patterns allow to capture PR relations
quite well [1], however they overestimate the PR relations. This comes as a
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Fig. 4. Burst Gantt Chart

Fig. 5. Analysis of temporal patterns.
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Fig. 6. Textbook Exploration with Gantt

Fig. 7. Concept Graph with Allen’s Relations
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straightforward observation considering the Concept Allen Graph visualisation.
As it can be seen, the number of detected Allen’s relations is much bigger than
the set of relations identified by the experts (even when transitive closure is ap-
plied on the experts’ graph in order to reduce variety in the number of transitive
edges).

Therefore, the Burst Gantt Chart was used to analyse possible combinations
of Allen’s patterns and more sophisticated conditions that should be satisfied
between bursts of two concepts. As a result of the aforementioned analyses, we
observed that Allen’s Algebra, as used in our Burst-based algorithm, is likely
to fail when an Allen relation is identified between bursts of concepts X and Y,
but no bursts of X are present in the text before that relation. This is consistent
with the intuitive consideration that concept X should be introduced before
Y in order to be a prerequisite of Y, and thus for two concepts X and Y, a
necessary but not sufficient condition in order to have X prerequisite of Y is that
X should be previously explained, i.e., |BX | > 1. Considering bursts instead of
simple occurrences of a term allows to exclude cases where X occurs before Y
and X is not really explained but rather simply introduced (the analysis of the
text showed for example several cases where the content of the next section is
mentioned before, as a guide for the reader).

As future work, we plan to implement refinements of the algorithm that take
this into account. This is not trivial, since for instance the condition |BX | > 1
does not apply in cases where X is a primary notion, namely a concept already
known by the learner as background knowledge.

Furthermore, we plan to use Concept Allen Graph to explore combinations of
Allen’s patterns by filtering them in conjunction or disjunction and comparing
the results with the gold standard.

4 Conclusion

In this paper we presented a collection of visualisation techniques conceived to
help researchers and analysts in their effort of better understanding the issue of
prerequisite dependencies in textbooks and developing more powerful strategies
for the automatic extraction, with the final aim of giving a contribution to the
field of intelligent textbooks. The results of our analysis support the hypotheses
regarding the correlation between PR direction and temporal concept ordering.
Furthermore, visual analysis of the PR algorithm provides valid insights on the
burst patterns combination. The tools for PR exploration presented in this paper
are available online2 as a support for the community of researchers working on
the analysis of prerequisite relations.

Our future work includes enhancing these techniques with further functional-
ities and applying them, in conjunction with new techniques as well, in different
contexts of use and a larger variety of educational texts. New functionalities can
be implemented in order to broaden the scope of practice allowed by the visual-
isation tools. For instance, the Gantt Chart could also be used as an instrument

2 Prerequisite Extraction from TextBooks at http://teldh.dibris.unige.it/projects/



Visualisation Analysis for Exploring Prerequisite Relations in Textbooks 11

for doing validation, i.e. thanks to it the expert can validate the individual pat-
terns revealed by the algorithm. The Matrix Chart can be used not only for
exploring PR in the experts’ annotation (i.e. phase (i)), but also for algorithm
refinement (phase (ii)), for example in cases of co-occurrence and/or temporal
based algorithms. Finally, we are also working on techniques that more directly
address the needs of learners and teachers in their common activities of selecting,
accessing, exploring and organising learning materials.
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