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Abstract. This article focuses on the use of Bayesian networks for analyzing the 

growth relationship of Ukraine's gross domestic product (GDP) from the volume 

of investment in the transport industry and offers a comparative description of 

the use of different structural training algorithms. It is shown that Noisy-max 

nodes as compared to General nodes provide relatively high initial accuracy. 

General nodes require a repeated validation procedure. When using the Hirerical 

sampling method, the accuracy of the network result with General nodes re-

mains unchanged, and with Noisy-max nodes, it increases (in our case, by 

12.32%). However, Noisy-max nodes entail an increase in time and computa-

tional costs. 

Keywords: Transport industry; General nodes; Noisy-max nodes; Bayesian 

networks; Structural learning; Parametric learning; Sensitivity analysis; Valida-

tion. 

1 Introduction 

Successful implementation of the investment policy will contribute to the implemen-

tation of one of the main country's economy tasks to increasing the number of main 

domestic investment resources sources. This will create the necessary prerequisites 

for the production growth and expanded reproduction of GDP in order to increase the 

population's well-being. 

Therefore, it would be advisable to determine the informative investment indica-

tors that have the greatest impact on the dynamics of Ukraine’s GDP. It is necessary 

to develop a model of the relationship between capital investment and GDP. 
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In [1], the author defined investment as “the current increase in capital property 

values as a result of production activities during a given period,” or as a share of in-

come for a given period that was not used for consumption. 

It is believed that investment is the material basis for the economy's structuring. 

Solving the problem of investment will mean the beginning of not only the economy's 

restructuring but also its stabilization and subsequent growth [2]. 

The term "investment" has several meanings. First, it means the purchase of shares, 

bonds with the expectation of certain financial results. Secondly, real assets, for ex-

ample, machinery, equipment necessary for the production and sale of any goods. In 

the broadest sense, investments provide the mechanism necessary to finance the 

growth and development of the country's economy, region, industry or enterprise. 

Successful implementation of the investment policy will contribute to the imple-

mentation of one of the main tasks of the country's economy to increasing the number 

of main sources of domestic investment resources. This will create the necessary pre-

requisites for the production growth and expanded reproduction of GDP to increase 

the population well-being. 

An important problem is the identification of causal relationships between causes 

or factors affecting GDP. Therefore, it would be advisable to determine informative 

investment indicators that have the greatest impact on the dynamics of Ukraine's 

GDP. The results presented in the article concern research on the development of 

probabilistic deterministic models using Bayesian networks to identify the factors 

affecting investment in the transport industry of Ukraine’s GDP. 

Considering that one of the difficulties in the development of Bayesian networks is 

an exponential increase in the parameters number in their conditional probability ta-

bles (CPT), this study proposes a technique for using noisy-MAX nodes to simulate 

economic processes. 

The purpose of the study is constructing a Bayesian network model using noisy-

MAX nodes for analyzing the dependence of Ukraine's GDP growth on the volume of 

investments in the transport industry. 

2 Problem Statement 

For a set of events 
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parent vertices, such that          1j N j
P X X X , , \ . In this study, the Bayesian 

network of modeling investment processes in transport and their impact on GDP are 

built using noisy-MAX nodes. To do this, we have events 
 

1
i

X i N, , ,  that are 

affected by the uncertainties of a different nature. And also we have data describing 

these events.  

3  Review of the Literature 

There is a wide variety of Bayesian networks applications, including design [3], con-

sumer behavior [4], social behavior [4], support for clinical decision making [5, 6], 

system biology [6], ecology [7], and so on. 

The use of Bayesian networks in socio-economic research is widely considered in 

[8,9], where they are one of the mathematical tools for analyzing social behavior, 

since they allow describing, modeling and predicting any empirical data: quantitative, 

qualitative, and also data of mixed nature. Bayesian networks make it possible to use 

both probabilities obtained by analytical or statistical methods and expert estimates, 

as shown in [5, 6, 7]. 

The advantage of using Bayesian networks is their resistance to incomplete, inac-

curate and noisy information. In these cases, the result will reflect the most likely 

outcome of events [8, 10]. 

One of the main problems of Bayesian networks is the rapid increase in parameters 

while increasing the number of parents. To solve this problem, the most widely used 

are Noisy-MAX [11, 12], since they use multivalued variables. This approach has 

proven itself in many real-world applications [13, 14, 15]). A small amount of param-

eters, that will be enough to indicate the entire CPT is a major advantage. This allows 

improving the quality of the distributions extracted from the data [16], as well as re-

ducing the spatial and temporal complexity of the algorithms for the BN  [8,17]. 

4 Materials and Methods 

A pair <G, В> called a Bayesian network (BN), when the first part of G is a acyclic 

directed graph corresponding to random variables. When each variable is autonomous 

of its parents in G, so a graph is written as a composition of autonomous conditions. 

The second part of the pair, B, is the composition of parameters defining the network. 

It composed of parameters 
| ( )

Q ( | (X ))i i

i i
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i
 value from 

X
i
 and ( )ipa X  from ( )iPa X , where ( )iPa X  means the variable  X

i
 parents set in G . 

Each variable X
i
 in graph G is suggested as a vertex. If we consider more than only 

one graph, then we use the notation to identify the parents ( )G iPa X  in graph G. 

The BN’s cumulative probability B is determined by the equation
1
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The BN represents a model for getting probabilistic dependencies, as well as the 

absence of these dependencies. At the same time, the A→B relationship can be caus-

al, when event A causes B to occur. So that is, at the time, when there is a mechanism 

by which value is accepted by A affects the value adopted by B. When all BN’s con-

nections are causal, so BN is called causal. 

From the existing discretization methods (hierarchical discretization, discretization 

on the same width of classes, discretization on the same number of points inside the 

classes) for the existing data set a hierarchical discretization method was chosen 

[18,19.]. 

Structural methods of BN training are algorithms, such as: the Bayesian Search, the 

Essential Graph Search, the TAN. In our study, the Greedy Thick Thinning algorithm 

is used.  

The essence of the Greedy algorithm for constructing the BN structure is as fol-

lows. The structure learning algorithm, called Greedy Thick Thinning (GTT), is found 

on the approach of Bayesian search. GTT was proposed in [6]. The GTT algorithm 

begins with the construction of an empty graph and then the stepwise multiple addi-

tions of an arc. This process occurs without creating a cycle. 

Arcs are added to maximize the marginal likelihood P (D | S). This process is re-

peated until the addition of the arc leads to a positive increase. This phase is called 

“thickening”. 

Then the arcs are removed step by step until the removal of the arc leads to a posi-

tive increase in P (D | S). This phase is called “thinning”. The algorithm is quite effec-

tive due to the fact that it is exposed to the trap of local maxima. In GTT, you can use 

two priorities. The priority of BDeu provides an equal score through the equivalent of 

Marcov’s classes. The priority of K2 is constant in all variables and, as a rule, is used 

to maximize P(G|D) when directly searching for a space of graphs. 

Validation of the developed network was carried out according to the algorithm of 

maximizing the expectation, which was proposed for the first time in 1977 in [20]. 

The algorithm finds local optimal estimates of the maximum likelihood of parameters. 

If the values of all nodes are known, then training (at some step M) would be simple, 

since we would have to have all the necessary information. 

Therefore, at stage E, calculations of the expected likelihood value (expectation of 

the likelihood) are made, including latent variables, as if we were able to observe 

them. In step M, the maximum values of parameters’ likelihood are calculated (max-

imum likelihood estimates) of the parameters using the maximization of the expected 

likelihood values obtained in step E. Next, the algorithm again performs step E using 

the parameters obtained in step M and so on. 

A whole series of such algorithms was developed, based on the algorithm of max-

imizing the expectation [21-23]. For example, the structural algorithm for maximizing 

the mathematical expectation (structural EM algorithm) combines a standard algo-

rithm for maximizing the mathematical expectation to optimize parameters, and an 

algorithm for the structural search of a selection model.  

This algorithm builds networks using penalty probabilistic values, which include 

values, derived from Bayesian information criteria, the principle of minimum descrip-

tion length, and others. 



Noisy-MAX node is made up of a child node Y, accepting 
Yn  values that may be 

tagged from 0 tо 1Yn  , and N parents,    1, , NPa Y X X , representing causes of 

Y. If 0=iX , it means the absence of 
iX . If all the reasons are missing, the result is 

also missing, then the Noisy-MAX are determined according to the formula [8]: 
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If the degrees’ maximum produced by X acted independently, the degree reached by 

Y is determined by the formula: 
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x represents a special combination of the parents of Y,  1,..., Nx x x . The probabili-

ties that the result will take a certain value of y, in the case when 
iX  equals a certain 

value of 
i

x , provided that all the other reasons for Y are absent , are the parameters 

for the link iX Y : 
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If Xi takes 
iX

n  values, so according to formula 1, the amount of parameters required 

for the link 
iX Y  will be    1 1

iX Y
n n   . This model needs a reference to only 

one parameter, if all the variables included in Noisy are binary. We can determine the 

new parameters using the following formula: 
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 the formula 2 can be represented as: 

 1
| , , ix

n y

i

P Y y x x C  , (5) 

CPT can be obtained given the following conditions: 
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5 Experiments and Results 

In developing the BN, the Genie 2.3 software environment was used. The initial 

nodes type is General, each node has 5 states from s1 to s5. 



The following macroeconomic indicators for the period from 2012 (1st quarter) to 

2017 (IV quarter) - 24 points were taken as experimental data for calculating the de-

pendence of Ukraine's GDP growth from the volume of investment in the transport 

industry: 

x1 - the volume of investments in land and pipeline transport of actual prices; 

x2 - the volume of investment in water transport; 

x3 - the volume of investment in air transport; 

x4 - the volume of investments in warehousing and auxiliary activities in the field   

of transport; 

x5 - the volume of investments in postal and courier activities. 

The variety of available data can be divided into two sets: 16 measurements is train-

ing sample A, 8 measurements is test sample B (Table 1). 

Table 1. Statistical data of capital investments and gross domestic product 

x1 x2 x3 x4 x5 y 

1992,1 35,7 275,3 2820,1 20,4 292894 

4378,5 26,8 176 3642,6 35,4 347842 

2601,8 41,7 133,5 3581,9 168 389213 

3691,8 28,4 195,2 4140,5 172,4 381289 

587,8 6,3 98,6 1779,2 5 303753 

1189,4 37,3 137,6 2042 5,1 354814 

1440,2 31,8 131,6 3039 8,2 398000 

1650,3 21,4 155,3 3929,4 202,1 408631 

590,3 29,3 73,3 1876,8 3,8 316905 

1140,6 41 79,2 2230,4 4,1 382391 

652,3 89 71,4 1820,4 9,1 440476 

1072,6 48,8 96,2 3921,9 105,5 447143 

1805,6 23,1 116,3 904,4 4,9 375991 

874,6 96,2 193,7 1935,6 2,8 456715 

2386,9 111,6 125,6 2083,2 5,3 566997 

2150,9 102,9 223,1 3058,7 72,6 588841 

1952,2 36,6 99,2 1439,6 13,3 455298 

2256,5 38 177,7 2114,6 22,5 535701 

3365,5 53,3 218,4 2646,5 18,7 671456 

7383 106,2 202,3 2527,1 66,5 722912 

3693 50,8 210,2 1454 6,6 591008 



4181,9 55,4 260,4 1979 51,8 664760 

4627,7 56,9 372,2 2852,1 53,7 833130 

9455,6 74,6 340,4 5640,6 285,3 894022 

At the first stage of the available in the GeNie2.3 Academic software environment, 

the methods of structural learning select the appropriate method. Figure 1 presents the 

results of selection. 

 

Fig. 1. Selection of a structured learning method 

As a result of the experiment, a Bayesian network consisting of 6 nodes was obtained. 

After parametric learning, primary validation was carried out. The model has 

achieved 22.9% level of accuracy during the test. After revalidation, the accuracy of 

the model was 54.34%. 

In the next step, we changed the type of all nodes to Noisy with five states from s1 

to s5, the resulting node Y. The network remains the same, the data file also does not 

change. We conduct parametric learning,  primary validation and sensitivity analysis. 

Comparison of accuracy is presented in the table 2: 



Table 2. Comparison of accuracy after primary validation and revalidation. 

Next, we apply Hirerical discretization method. We use the Greedy algorithm, we 

repeat all the steps: structural training, parametric training, validation, sensitivity 

analysis and re-validation. the accuracy of the result remained unchanged 54,34%. 

Comparison of accuracy after changing the sampling method is given in table 3. 

We apply Hirerical discretization method now to Noisy nodes, then using the 

Greedy algorithm, we repeat all the steps: structural learning, parametric learning, 

validation, sensitivity analysis and repeated validation. The accuracy of the entire 

network decreased slightly - 21.21%, but the accuracy of the result was higher by 

12.32% and amounted to 66.66%. 

Table 3. Comparison of accuracy after changing the discretization method. 

 Discretization method 

Weigher 

Discretization method 

Hirerical 

 Overall net-

work accura-

cy,% 

Accuracy of 

the  

result ,% 

Overall net-

work accura-

cy ,% 

Accuracy of 

the  

result ,% 

General  nodes 22,53 54,34 22,83 54,34 

Noisy-max  nodes 25,46 54,35 21,21 66,66 

6 Discussion 

During the selection of the structural learning algorithm, it was revealed that the 

Greedy algorithm turned out to be an adequate method when working with the exist-

ing data set. 

With Noisy-max nodes, the required resulting accuracy is achieved immediately 

after the initial validation. This suggests that for a network with this type of nodes 

there is no need for sensitivity analysis and re-validation (Table 2). 

When using the Hirerical discretization method, the accuracy of the result with the 

General nodes remains unchanged, and with Noisy-max nodes, it increases by 12.32% 

(Table 3). 

When using General nodes, the EM execution time during the validation process 

was 13 seconds. For Noisy nodes, the EM algorithm spent three times as much com-

 The initialaccuracy Accuracy after last  

validation 

 Overall  

network  

accuracy,% 

Accuracy of 

the  

result ,% 

Overall net-

work accuracy 

,% 

Accuracy  

of the 

 result,% 

General  nodes 22,53 23,00 22,83 54,34 

Noisy-max  nodes 25,46 54,34 27,83 54,35 



puting time (37 seconds). On small data sets with a small BN size, such time costs can 

be neglected. However, as the network increases, the time costs (and hence the com-

puting power) will be tangible and this will have to be taken into account. 

7 Conclusion 

Noisy-max nodes, compared to General nodes, provide relatively high initial accura-

cy. General nodes require a repeated validation procedure. When using the Hirerical 

discretization method, the accuracy of the network result with General nodes remains 

unchanged, and with Noisy-max nodes, it increases (in our case, by 12.32%). Howev-

er, Noisy-max nodes entail an increase in time and computational costs. 

In future studies, it is planned to use the dynamic Bayesian network approach in 

order to trace the levels of key indicators in different time slices. 
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