

Development of the Speech-to-Text Chatbot Interface

Based on Google API

Nataliya Shakhovska[0000-0002-6875-8534], Oleh Basystiuk [0000-0003-0064-6584],

Khrystyna Shakhovska[0000-0002-9914-229X]

Lviv Polytechnic National University, Lviv 79013, Ukraine

nataliya.b.shakhovska@lpnu.ua, obasystiuk@gmail.com,

kristin.shakhovska@gmail.com

Abstract. The paper describes possibilities, which are provided by open APIs,

and how to use them for creating unified interfaces using the example of our bot

based on Google API. In last decade AI technologies became widespread and

easy to implement and use. One of the most perspective technology in the AI

field is speech recognition as part of natural language processing. New speech

recognition technologies and methods will become a central part of future life

because they save a lot of communication time, replacing common texting with

voice/audio. In addition, this paper explores the advantages and disadvantages of

well-known chatbots. The method of their improvement is built. The algorithms

of Rabin-Karp and Knut-Pratt are used. The time complexity of proposed algo-

rithm is compared with existed one.

Keywords: natural language processing, speech-to-text, Google API, Python,

Flask, chatbot, hashing, time complexity, prefix-function

1 Introduction

Today, the creation of programs simulating human communication remains relevant.

The simplest model of communication is the database of questions and answers to them

[1]. In this case, there is the problem of describing the knowledge base and the imple-

mentation of the interpreter program. The markup language of the knowledge base can

include question patterns and corresponding response patterns, as well as the back-

ground history of the dialogues to them and the name of the corresponding topic of

communication.

Chat bot can perform additional functions, such as music search, pictures, facts, cal-

culator, weather forecast, display of exchange rates. Most of these functions have an

implementation on the Internet and are available as an external API. The aim of the

paper is the recognition of user’s gender for making chatbot’s answer more likeness

that is human. The algorithm for analyzing and parsing the user's text for automatically

generating the response of the chatbot is developed. This algorithm takes into account

the topics of correspondence and morphology of the text. The algorithm's work will be

based on prefix function and hash function. To add, a comparison of the developed

algorithm with the existing ones will be made. This research will describe the way in

which was created an interface for Telegram chatbot (in future easily connect it to

https://orcid.org/0000-0003-0064-6584
https://orcid.org/0000-0002-9914-229X
mailto:nataliya.b.shakhovska@lpnu.ua
mailto:obasystiuk@gmail.com
mailto:kristin.shakhovska@gmail.com

Slack, Facebook, etc.), whose main aim is to translate audio (in the future video) mes-

sages into text.

2 State of art

The chatbots market after the stage of PR and experiments moved to the stage of tech-

nology race and measuring the effectiveness of the tool. The concept of "chat bot" is

replaced by a larger and more complete. Now it is a conversational artificial intelli-

gence, Conversational AI. Companies use it to communicate with customers on web-

sites, instant messengers, mobile applications and smart devices.

In order to "understand" the speech, the chat bot compares what has been said with

the phrases of a large number of other people in whom the bot has been trained. It finds

similarities with the phrase patterns, determines the topic of the question, and performs

the action programmed for this type of question.

A person gets the illusion that the bot understands him: he acts logically, reacts like

a person and maintains a conversation. The famous Turing test is based on this illusion:

if the judge could not determine if the bot communicates with him or the person, the

technology passes the test.

Understanding is a subjective “value” that is difficult to measure. Microsoft con-

ducted a study of the effectiveness of the speech recognition system and the system of

answers to questions on a given set of tests - in 2017-2018 both were more effective

than people, passing the test with a minimum of errors.

The main technology of modern bots is natural language understanding (NLU). It

allows the machine to understand users and run the necessary parameters for processing

requests. All technological solutions related to the processing of natural language are

needed for this.

These include the approach to processing (rule-based, statistical, hybrid), speech

recognition and speech synthesis technologies, chatbot deployment technologies in the

company's business processes (cloud or local). This is a huge and very promising mar-

ket, which experts predict growth to $ 16 billion by 2021.

Machine learning technologies that are the most competitive in the market are based

on the neural networks principle, when a chatbot is trained in response samples. He is

shown examples of customer phrases, and he learns to put such phrases and words that

are similar to them in the right class. The more efficient the algorithm, the fewer exam-

ples you need to train a bot.

Speech recognition and speech synthesis technologies, natural language understand-

ing technologies, machine learning algorithms are behind the “conversational spirit”.

The company Just AI is developing the designer of conversational bots Aimylogic. The

best online artificial intelligence (AI) online chats are Mitsuku, Rose, Poncho, Right

Click, Insomno Bot, Dr. AI and Melody.

1. Mitsuku is one of the best bots in AI [2]. Also, is the current Laurel Laureate of

Loebner. This bot can talk about something, unlike other ones, done for a specific

task.

2. Rose. The ChatBot, which won the Loebner Prize in 2014 and 2015 [3].

3. RightClick. Launches a program that creates websites. He asks general questions

during the conversation: "What is the area of your interests?" and "Why do you want

to create a website?" Based on the analysis of the replies received, the chatbot creates

custom templates. Quite adequately responsive to non-site-related topics [4].

4. Poncho is a meteorological specialist. He sends notifications at least twice a day with

the user's consent and is smart enough to answer such questions as "Should I take an

umbrella today?" [5].

5. Insomno Bot is designed for “night owls”. This applies to all people with sleep prob-

lems. This bot has the ability to keep conversation on any topic [6].

6. Dr. AI bot asks for symptoms, body parameters and disease history then lists the

most and least likely causes of the symptoms and sorts them in order of severity [7].

7. Baidu melody. This application collects medical information about people and then

passes it to doctors in a form that facilitates their use for diagnostic purposes [8].

Nowadays, Speech-to-text methods and systems have been wide-spread to solve a va-

riety of tasks. Highly used in the artificial assistants’ field as a method to understand

users' desires. As a lot of these speech-to-text technologies is nowadays represented in

different APIs and frameworks, that means creating any new software for testing or

production based on these technologies become a really easy task, as each of famous

API provides samples [https://cloud.google.com/speech-to-text/docs/].

Today, based on the classic Speech-to-text methods, there are online solutions such

as APIs and libraries [15], where you can push information and in real time receive a

response. However, the classical neural network will provide more flexibility, but it

required prepared data for learning, in this case, it's possible to use open source audio

to text data [16], but collect own data, helps to understand users better, what kind of

requests they prefer, long or short, that themes, which words [17]. All information re-

ceived by this system based on Google API will provide answers to all these questions.

The natural language processing systems are carried out mainly on the analysis of

time series (data arrays). The time series include methods of nonlinear analysis and

unsupervised learning. Highly used in this field are RNN (Recurrent Neural Networks),

НММ (Hidden Markov Model), Bayesian network. RNN became a sophisticated solu-

tion for all kind of translation works because it's made it possible to work with different

input and output length, you need to use a recurrent neural network [17].

The papers [16 - 20] emphasizes the need to protect personal data. Security reasons

are well described in papers [20], as data need to be stored in the database, which will

help clearly understand and customize recognition algorithm.

This research will describe the way in which was created an interface for Telegram

chatbot (in future easily connect it to Slack, Facebook, etc.), whose main aim is to

translate audio (in the future video) messages into text.

3 The system architecture

3.1 Data collection

Audio and video data collection process consists of two main steps. The first one is the

remote storage of social network. Users will provide access to the data, so the main task

for this step is using audio or video data fetching, for our local storage. There are two

reasons, why this data needs to be fetched for the local storage. First, because we need

to upload files directly into the Google Speech-to-Text API. Second, because it'll be

useful for statistics of requests, tracking wrong and correct answers, and in future as the

database for learning own specific neural network, based on collected data.

The decision to use Google Speech-to-Text API was made because Google provides

clear documentation, with great examples of API features and they fully satisfied re-

quest of 100% uptime, reliability and has a lot of supporting languages, so it helps to

make the product interesting for more people.

Fig. 1. The simplified representation of created system

Based on the figure above, it’s become clear that software work as an interface to the

speech-to-text recognition system, so in this case we have some specific design require-

ments. There are two main ideas of how bot for the social network can works.

First, in general, is called polling, that’s mean like ones in a small period, bot re-

quests to the social network server, asking about if there are any new users requests to

him. This design solution has main pros that bot creation, based on polling system it’s

easier, you don’t need have fully created a web app, which will handle HTTP requests

and main cons that this method suitable for a small app, which won’t receive a signifi-

cant amount of messages.

Second - web hook. That’s mean, a web application is hosting and social network

servers, redirect all requests to this address, this type of bot become more independent,

less overloaded and handle requests faster. Visual representation of how both design

methods work on Fig 2.

Fig. 2. The simplified representation of webhook and polling technologies

3.2 Proposed method

The prefix function [9, 10] from the string S and the position i in it is the length k of the

largest prefix of the substring S [1 .. i], which is also a suffix of this substring. That is,

at the beginning of the substring S [1 .. i] of length i you need to find such a prefix of

maximum length k < i, which would be the suffix of the given substring

(S [1 .. k] == S [(i - k + 1).. i]). For line S it is convenient to represent a prefix function

in the form of a vector of length |S|-1. You can consider the prefix-function of the length

|S|, putting π (S, 1) = 0. Example of the prefix of the function for the line

«abcdabcabcdabcdab»:

Fig. 3. Example of the prefix of the function for the line «abcdabcabcdabcdab»

Hashing [11] is converting an array of input data of arbitrary length (an array of rows)

into (output) a bit string of fixed length executed by a certain algorithm. A hash func-

tion, or convolution function, is a function that converts the input data of any (usually

large) size to a fixed-size data. Hashing transforms the input array of data of arbitrary

length into a source bit string of fixed length. Output data is called an input array, key,

or message. Hash functions are linked with checksum, control digits, fingerprints, ran-

domization of functions, error-correcting codes, and ciphers. Although these concepts

coincide to some extent, each one has its own application and requirements and is de-

veloped and optimized in many ways.

The algorithm of the chatbot “Hashbot” will consist of searching for the keyword

(words) of the conversation and the formation of the person's termination of the verb.

We search for a keyword by means of hashing. To do this, we use the calculation

formula:

 ℎ(𝑆) = 𝑆[0] + 𝑆[1] ∗ 𝑃 + 𝑆[2] ∗ 𝑃2 + 𝑆[3] ∗ 𝑃3 + . . . + 𝑆[𝑁] 𝑃𝑁, (1)

where P is a simple number. We should choose P, which is approximately equal to the

number of characters in the input alphabet. If the strings are composed only of small

Ukrainian letters, then the good choice will be P = 37.

One of the most obvious and simple ways of hashing is the middle square method,

when the key is erected in a square and taken several digits in the middle. The key is

initially reduced to an integer, for carrying out arithmetic operations with it. However,

this method works well until a large number of zeros on the left or right is missing. If

the item of the table with the index from hash function is already occupied, a

concatenated list joins it. If for several different key values returns the same value of

the hash function, then at that address there is an indicator on the linked list that contains

all the values.

We use the Rabin-Karp algorithm to search the substring in the string for O (N)

combining it with hash-function.

Let us we have text T consisting from lines |S|. Each line consists of small Cyrillic

letters. It is necessary to find all occurrences of the line S in the text T for the time

𝑂(|𝑆| + |𝑇|). So, the chatbot answering algorithm “Hashbot” consists of two steps:

1. Keyword searching;

2. Verb ending finding.

The keyword search algorithm consists of the following steps:

1. To count the hash for line S.

2. To count the hash value for all prefixes of subclassesT.

3. To choose all subclasses T of the length |S|. Each of them can be compared with other

lines of length |S| in time O(1).

When the keyword has been found, you must define the individual verb ending. So, we

try to find the verb as the word located before or after the keyword found. We test the

ending using a prefix function: by Knutt-Pratt algorithm, which does not contain ex-

plicit line comparisons and is executed for O (n) actions.

Here is an algorithm scheme:

1. To count the value of the prefix function π [i] for i ∈ [1..N-1] (π [0] = 0).

2. To calculate the current value π [i], use the variable j, which indicates the length of

the current sample considered. First time j is equal j = π [i-1].

3. To test a sample of length j, for which we compare the characters s [j] and s [i]. If

they are the same, then we consider π [i] = j + 1, i= i + 1. If the characters are differ-

ent, then we reduce the length j, assuming it is equal to π [j-1], and repeat this step

of the algorithm from the beginning.

4. If we have reached the length of j = 0 and so did not find the same characters, then

stop the sampling process and consider π [i] = 0, i = i + 1.

The general schema of proposed method is given in fig. 4.

Fig. 4. The general schema of Hashbot algorithm

4 Results

4.1 Technical part

The program is implemented on Python language and web framework Flask. Solution

based on direct communication with Telegram API, using direct communication is

faster and more efficient for speech-to-text chatbot, but it’s also possible to use librar-

ies, pyTelegramBotAPI is the main library for interacting with the Telegram API via

Python. Heroku Cloud Application Platform supports for an impressive range of lan-

guages, large documentation with tutorials for beginners, a user-friendly interface for

the complete work with the application, including access via the console, the presence

of databases. An important factor is the ability to "spin" on the server around the clock.

The chatbot is built using a rule-based approach. To make possible interaction with

Google API, we need to fetch voice message from chat and uploaded it to Google end-

point in one of the supported encodings. File storage is possible to organize in two

ways: download and store in some directory with assigning a unique id for each audio

file or download file and store all related data in the database. In the basic implementa-

tion of chatbot, which is represented in this article, storage was organized as a directory

with files, so one of the main features to make a chatbot interface more flexible in the

future is possible to implement file storage, for example in ORDBMS PostgreSQL. In

the process, it is worth adding the use of a virtual environment with all related libs

uploaded and included into it such as one of the important framework (Flask), google-

speech-api, requests, etc.

Main script for chatbot given below, all script you can review on GitHub repository

[18]:

def get_text_from_audio(file_name):

 """Transcribes the audio file."""

 from google.cloud import speech

 from google.cloud.speech import enums

 from google.cloud.speech import types

 client = speech.SpeechClient()

 with io.open(file_name, 'rb') as audio_file:

 content = audio_file.read()

 audio = types.RecognitionAudio(content=content)

config=types.RecognitionConfig(encoding=enums.

RecognitionConfig.AudioEncoding.OGG_OPUS,sample_rate_hertz=16000

)

response = client.recognize(config, audio)

print("Before recognition")

result = 'Seems this file is empty'

for result in response.results:

 result = result.alternatives[0].transcript

 print("Ready to send result")

 return result

@app.route('/', methods=['POST', 'GET'])

def index():

 if request.method == 'POST':

 fetched_request = request.get_json()

 if "message" in fetched_request:

 send_response_message(fetched_request)

 return "ok!", 200

 return render_template('index.html')

And the last main point for organization interface is communication with Google API.

Three possible communication solutions are: using client libraries, gcloud tool and

command line requests, for chatbot more suitable is client library usage. To make it

work we need set up google-client in the virtual environment, create a project in Google

Cloud Platform dashboard, generate unique access credentials and download private

key in JSON format and include it into the project and set up global environment vari-

able GOOGLE_APPLICATION_CREDENTIALS to the file path of private key [19].

4.2 Algorithmic part

Due to big complexity of well-known algorithm, they are not as effective as we wish.

According to this, we propose the usage of Rabin-Karp and Knut-Pratt algorithms, due

to their effectivity. In consequence of hashing, we reduce a quantity of comparison,

which let the algorithm works faster. To add, we can find special endings with linear

complexity. Results of research can be used not only for chatbots and for finding key-

words in the text.

An aggregated comparison of algorithms is given in Table 1.

As you can see, the Hashbot algorithm does not dominate only KMP-search in the

case when we immediately find the required sample.

Table 1. Comparison of algorithms

Algorithm Complexity

Hashbot algorithm 𝑂(|𝑆| + |𝑇|)

Linear search О ((T-S + 1) * T)

KMP-search from 𝑂(|𝑆| + |𝑇|) to О ((T-S + 1) * T)

LSA O (n 2 k 3), n=|S| |T|

SVM with tf-idf scheme 𝑂(|𝑄||𝑆||𝑇|)

5 Conclusions

The paper presents scalable software solution for collecting and processing audio in-

formation to text. The program is implemented on Python language and web framework

Flask. According to the results of research and after analysis of collected data set of

audios and texts, will be developed a custom model based on Keras library using a

recurrent neural network for training. Creation of such custom system will be the next

phase of research.

After analyzing existing methods, we see that the complexity of the developed algo-

rithm Hashbot for finding keywords is less than of well-known algorithm. Using the

prefix function to form a bot response allows you to work with Cyrillic texts. The pro-

posed algorithm improves the work of chatbots, which determines the gender of the

interlocutor. This brings the bot closer to the level of human conversation

6 References

1. Shevat, Amir. Designing bots: Creating conversational experiences (First ed.). Sebastopol,

CA: O'Reilly Media. ISBN 9781491974827 (2017).

2. Mitsuku: http://www.mitsuku.com/, last accessed 2019/01/21

3. Rose: https://www.robeco.nl/service-contact/index.jsp, last accessed 2019/01/21

4. Right click: https://rightclick.io/#/, last accessed 2019/01/21

5. Poncho: https://poncho.is/, last accessed 2019/01/21

6. Insomnobot: http://insomnobot3000.com/, last accessed 2019/01/21

7. Dr.A.I: https://www.healthtap.com/login?redirect_to=/symptoms, last accessed 2019/01/21

8. Baidu Melody’s: http://research.baidu.com/baidus-melody-ai-powered-conversational-bot-

doctors-patients/, last accessed 2019/01/21

9. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.. Introduction to algorithms. MIT

press (2009).

10. Knuth, D. E., Morris, Jr, J. H., & Pratt, V. R.. Fast pattern matching in strings. SIAM journal

on computing, 6(2), 323-350 (1977)

11. Knuth, D. E. Sorting and Searching, 2nd edn. The Art of Computer Programming, vol. 3

(1998)

12. Shakhovska, N., & Shvorob, I. The method for detecting plagiarism in a collection of docu-

ments. In Scientific and Technical Conference" Computer Sciences and Information Tech-

nologies"(CSIT), 2015 Xth International (pp. 142-145). (2015).

13. Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (Eds.). Handbook of latent

semantic analysis. Psychology Press (2013).

http://www.mitsuku.com/
https://www.robeco.nl/service-contact/index.jsp
https://rightclick.io/#/
https://poncho.is/
http://insomnobot3000.com/
https://www.healthtap.com/login?redirect_to=/symptoms
http://research.baidu.com/baidus-melody-ai-powered-conversational-bot-doctors-patients/
http://research.baidu.com/baidus-melody-ai-powered-conversational-bot-doctors-patients/

14. Aizawa, A. An information-theoretic perspective of tf–idf measures. Information Processing

& Management, 39(1), 45-65 (2003).

15. Shakhovska, N., Medykovskyj, M., Bychkovska, L. Building a smart news annotation sys-

tem for further evaluation of news validity and reliability of their sources. Przeglad Elektro-

techniczny, 91 (7), 43-44 (2015)

16. du Preez, S. J., Lall, M., & Sinha, S. An intelligent web-based voice chatbot. In IEEE

EUROCON 2009 386-391. (2009).

17. Boyko, N., Basystiuk, O., & Shakhovska, N. Performance Evaluation and Comparison of

Software for Face Recognition, Based on Dlib and Opencv Library. In 2018 IEEE Second

International Conference on Data Stream Mining & Processing (DSMP) 478-482 (2018).

18. https://github.com/obasys/harry-bot

19. Cloud Speech-to-Text Documentation, https://cloud.google.com/speech-to-text/docs/

20. Huang, J., Zhou, M., & Yang, D. Extracting Chatbot Knowledge from Online Discussion

Forums. In IJCAI 7, 423-428 (2007).

https://cloud.google.com/speech-to-text/docs/

