
The Virtual Query Language for Information
Retrieval in the SemanticLIFE Framework?

Hanh Huu Hoang and A Min Tjoa

Institute of Software Technology and Interactive Systems
Vienna University of Technology

Favoritenstraße 9-11/188
A-1040 Vienna, Austria

+43 1 58801 18861
{hanh, tjoa}@ifs.tuwien.ac.at

Abstract. Creating an innovative mediator environment such as graph-
ical user interfaces, lighter weight languages to help the users in the chal-
lenging task of making unambiguous requests is crucial in semantic web
applications. The query language in the Virtual Query System (VQS) of
the SemanticLIFE framework is designed for this purpose. The proposed
query language namely Virtual Query Language (VQL) is in a further
effort of reducing complexity in query making from the user-side, as well
as, simplifying the communication for components of the SemanticLIFE
system with the VQS, and increasing the portability of the system.

1 Motivation

Making unambiguous queries in the Semantic Web applications is a challeng-
ing task for users. The Virtual Query System (VQS) [7] of the SemanticLIFE
framework [1] is an attempt to overcome this challenge. The VQS is a front-end
approach for user-oriented information retrieval.

The issue is in the user-side, where users are required to make queries for
their information of interest. The RDF query languages are powerful but they
seem to be used for back-end querying mechanisms. To users, who are inexperi-
enced with them, these query languages are too complicated to use. Additionally,
the communication of components of the SemanticLIFE system with the VQS
requires the facility to transfer their requests without knowledge of the RDF
query language. Another important point is the portability of the system, i.e. if
the system is bound to specific RDF query language, we could have problems
when shifting to another one.

In the effort of coming over the above tackles, we, in this paper, present a
new query language namely Virtual Query Language (VQL). The language is
used by the VQS for information querying in the SemanticLIFE system. The

? This work has been generously supported by ASEA-UNINET and the Austrian
National Bank within the framework of the project Application of Semantic-Web-
Concepts for Business Intelligence Information Systems - Project No. 11284.

1062 Web Information Systems Modeling

VQL is a much lighter weight language than RDF query languages; but it offers
interesting features to complete the tasks of information querying in the Semantic
Web applications.

The rest of this paper is organized as follows: firstly, similar approaches is
briefly presented in Section 2. Next, details of the VQL are pointed out in Sec-
tion 3. Section 4 introduces VQL query operators; and the issues of mapping a
VQL query to the respective RDF query are then described in Section 5. Finally,
the paper is concluded with a sketch of the future work.

2 Related Work

There are two main approaches to reduce the difficulty in creating queries from
user-side in Semantic Web applications. The first trend is going to design the
friendly and interactive query user interfaces to guide users in making the queries.
The high-profiled examples for this trend are GRQL [2] and SEWASIE [4].

GRQL - Graphical RQL - relies on the full power of the RDF/S data model
for constructing on the fly queries expressed in RQL [8]. More precisely, a user
can navigate graphically through the individual RDF/S class and property defi-
nitions and generate transparently the RQL path expressions required to access
the resources of interest. These expressions capture accurately the meaning of
its navigation steps through the class (or property) subsumption and/or as-
sociations. Additionally, users can enrich the generated queries with filtering
conditions on the attributes of the currently visited class while they can easily
specify the resource’s class(es) appearing in the query result.

Another graphical query generation interface, SEWASIE, is described in [4].
Here, the user is given some pre-prepared domain-specific patterns to choose
from as a starting point, which he can then extend and customize. The refine-
ments to the query can either be additional property constraints to the classes
or a replacement of another compatible class in the pattern such as a sub or
superclass. This is performed through a clickable graphic visualization of the
ontology neighbourhood of the currently selected class.

The second approach of reducing complexity is the effort in creating much
lighter query languages than expressive RDF query languages. Following this
trend, the approach in [6] and another one known as GetData Query interface [10]
are hight-rate examples.

[6] describes an a simple expressive constraint language for Semantic Web
applications. At the core of this framework is a well-established semantic data
model with an associated expressive constraint language. The framework defines
a ‘Constraint Interchange Format’ in form of RDF for the language, allowing
each constraint to be defined as a resource in its own right.

Meanwhile, the approach of GetData Query interface [10] of TAP1 expresses
the need of a much lighter weight interface for constructing complex queries. The
reason is that the current query languages for RDF, DAML, and more generally

1 TAP Infrastructure, http://tap.stanford.edu/.

WISM'06 1063

for semi-structured data provide very expressive mechanisms that are aimed at
making it easy to express complex queries. The idea of GetData is to design
a simple query interface which enables to network accessible data presented as
directed labeled graph. This approach provides a system which is very easy to
build, support both type of users, data providers and data consumers.

Our approach, VQL, continues this trend to design an effective and lighter
weight query language to assist the users make queries in simple manner and
simplify the communication between components of the SemanticLIFE system
with the query module - the VQS.

3 The Virtual Query Language - VQL

3.1 The Goals of the VQL

A number query languages have been developed for the Semantic Web data such
as data in form of RDF (RQL [8], RDQL [11], SPARQL [9], and iTQL [12]). Why
do we need yet another query language?

These query languages all provide very expressive mechanisms that are aimed
at making it easy to express complex queries. Unfortunately, with such expressive
query languages, it is not easy to construct queries to normal users as well as to
ask abstract information. What we need is a much lighter weight query language
that is easier to use. A simple lightweight query system would be complementary
to more complete query languages mentioned above. VQL is intended to be a
simple query language which supports “semantic” manner from users’ queries.
In the context of the VQS and SemanticLIFE system, we can see the aims of
VQL as follows:

- VQL helps clients making queries without knowledge of RDF query lan-
guages. The user just gives basic parameters of needed information in VQL
queries, and would receive the expecting results.

- VQL assists users in navigating the system via semantic links or associations
provided in the powerful query operators based on ontologies.

- VQL simplifies the communication between Query module and other parts.
Since the components asking for information do not need to issues the RDF
query statement, which is uneasy task for them. As well as this feature keeps
the SemanticLIFE’s components more independent.

- VQL enables the portability of the system. Actually, the SemanticLIFE
and VQS choose a specific RDF query language for the its back-end database.
However, in the future, they probably could be shifted to another query language,
so that this change does not effect other parts of the systems, especially the
interface of the system database.

3.2 The Syntax of VQL

Query Document Syntax. Generally, a VQL query is a document having
four parts: parameters, data sources, constraints, and query results format as
the schema depicted in Fig. 1.

1064 Web Information Systems Modeling

Fig. 1. The schema for general VQL queries

The first part contains parameters of specifying the information of interest.
A parameter consists of a variable name, the criteria value, and additional at-
tributes for sorting or eliminating unneeded information from the results. The
second part is used for specifying the sources where the information will be re-
ferred to extract from. Obviously, the information need defined in the first part
must be related to the sources specified in this part.

Thirdly, the constraints of the query are defined in the third part of the
document. Here the relations between sources, parameters are combined using
the VQL operators. Finally, the format of query results is identified in the fourth
part. VQL supports four query results formats that are XML, text, RDF graph,
and serialized objects of query result sets. This provides flexibility for clients to
process the query results.

XML-based Format. A standard format for information exchange, a easy-
to-use and familiar-to-clients format, a widely accepted standard, and a flexible
and open format are the requirements for the VQL query document. We have
considered some alternatives and decided to choose XML as the format for VQL
query syntax. A XML-based VQL query is structured as follow (Fig. 2):

- The top level or the body of query is <query> element. Here, the type of
the query must be specified in type attribute. The reserved terms used for this
attribute are "data", "schema", "itql1" and "itql2" for different VQL query
types (see section 3.4). For example, <query type="data"> is a VQL data query.

- The second level contains required sub-elements. Depending on the type of
a VQL query the elements are used respectively: for the data query, elements of

WISM'06 1065

Fig. 2. An XML-based VQL Query Example

<params>, <sources>, and <relations> are used once for each. These elements
have their children specified in the third level. Fig. 2 is an example. For the
schema query or the iTQL type 1 query, we use only one <statement> element
which contains a RDF query statement (Fig. 3). For the iTQL2 query, elements
of <select>, <from>, <where>, <orderby>, <limit> and <offset> are used in
the same way, where last three are optional as described in Fig. 4. Moreover
at this level, we must identify the query results format in the <resultformat>
element by a term among "xml", "text", "rdf", or "object".

- The third level elements are only applied for the VQL data queries. The
elements are children of <params>, <sources>, and <relations>; and the tags
consequently are <param>, <source>, and <relation> with their own attributes.

- <param> element : each parameter is identified by this element with required
attributes: show and name. While show is set to 1 or 0 that means the result
of this parameter is shown in the result sets or not; name has two parts: a
variable and the meta − information which are put together with ":", i.e.
variable:metainfo. Besides, this element has two optional attributes known as
order="1"/"0" and exclude="string". The order attribute is used for sorting,
while exclude is for excluding some information from query results. The element
is enclosed with an optional value for filtering.

- <source> element : names of concerned sources for users’ requests will be
put here. This element has only one attribute name which is an internal name of
data sources. This internal name is assigned automatically by the system.

- <relation> element : contains a constraint of the VQL query. The required
attributes of each constraint are: id=“number”, param=“variable”, source=“source-
name”, and optional or=“id”. The id is assigned a number, variable in the re-
lated <param> is used in this param attribute. Attribute source is identified with
source − name or left empty in the case of only one data source specified; and
or is assigned by id of another <relation> in order to make an OR expression.
The operator for the constraint is put as value of the <relation> element.

1066 Web Information Systems Modeling

3.3 Operators and Expression in VQL

Logic Operators. VQL’s logic operators consist of AND, OR and NOT. While
NOT is defined in each <param> element by using the exclude attribute, AND
and OR operators are identified in <relation> items. OR is defined by the "or"
attribute, e.g. or="2" means that the current constraint will be combined with
the constraint number “2” using logic OR operator. AND is implied in a relation
without "or" attribute.

Comparison Operators. The comparison operators are used in <relation>
part of VQL queries. These operators are presented as follow:

equal An equal comparison in form of triples which is used by leaving the
<relation> item empty.

gt The operator means GREATER-THAN which is used for comparing values of
basic data types such as String, numbers.

lt Similarly to the previous one, the operator means LESS-THAN.
dt:gt This operator is used for comparing the date/time value AFTER a point

of time. Value format of this type confronts XML Schema (XSD) data types.
dt:lt Similarly to the dt:lt operator; but it means for the date/time value

BEFORE a point of time.
str:match This is the pattern matching operator for strings. This comparison

operator uses common pattern expression.
ft:match This is the powerful operator relying the full-text index applied in

SemanticLIFE’s metastore. It is used for searching the full-text data such as
content of a file or email attachments, or stored WWW pages.

Expressions. In order to formulate the expressions for the query criteria, VQL
uses "or" attribute in <relation> elements as boolean OR operator to combine
these constraints first, and then it uses boolean AND to combine into the final
expression. The sequence of <relation> elements are important in combining
expressions.

3.4 The VQL Query Types

Data Query Type. VQL data query type is commonly used for information
querying. A query of this type consists of the four parts as discussed above.
In order to inform VQL parser to process the query as a VQL data query, we
identify "data" term in the query: <query type="data">.

An example for this query type is shown in Fig. 2: the query retrieves mes-
sages’ time-stamp of files uploaded and browsed web pages in the SemanticLIFE
repository in November 2005.

From this query type, we obtain deductive queries for special operations in
semantically information retrieval. These operations help users easily get infor-
mation of interest and obey the principle of VQL design: “ask less, get more.”
The deductive queries, so-called VQL query operators, are detailed in Section 4.

WISM'06 1067

Schema Query Type. The syntax of this query type consists of two parts: the
first one is the <statement> element containing a RDF query statement; and
the second part is used to set the query results format. Necessarily, "schema"
must be identified in the query body. A schema query example is illustrated in
Fig. 3.

Fig. 3. An example of VQL SCHEMA query

However, the question is that how does the user create RDF query state-
ments? Actually, the schema or ontology queries are offered to clients in form
query templates or programmatic VQL API.

iTQL Query Types. Similarly, with ‘iTQL query types’ RDF query statements
are wrapped in VQL query documents. The name of ‘iTQL query type’ comes
from the RDF query language used in the system. Since the SemanticLIFE
framework uses Kowari [12] as its back-end, so that iTQL RDF query language
is used for query statements. We also distinguish two ways of embedding the
RDF statements: firstly, a whole statement is embedded; while their parts is
embedded separately in the second type.

Fig. 4. An example of a VQL iTQL query type 2.

The format of the first iTQL query type, so-called VQL iTQL query type
1, is similar to the schema query depicted Fig. 3, where the term "itql1" is
used instead of "schema" in the <query> tag. Meanwhile, in VQL iTQL query
type 2, each parts of RDF query statement, such as select and from, are put in
respective query parts. With the iTQL’s SELECT statement, its parts are: select,
from, where, orderby, limit, and offset.

Fig. 4 is an example of VQL iTQL query of type 2, in which "itql2" is
specified in <query> tag. As depicted in the figure, the expressions of clauses of
the RDF query statement are filled in respective elements of the VQL query.

1068 Web Information Systems Modeling

3.5 Query Results Format.

In order to increase the flexibility in query results processing, VQL provides
four query results formats that are XML format, text format, RDF graph, and
serialized query results. In a VQL query, we identify the query results format in
the <resultformat> element at the second level.

Query Results XML Format: <resultformat>xml</resultformat>
VQL query results XML format is similar to a W3C’s format for SPARQL

query results presented in [3]. This XML format has two main parts: the first
one is the list of the query’s parameters and needed additional information. The
second part is the list of found instances.

Query Results Text Format: <resultformat>text</resultformat>
The text format of VQL query results is structured as following: the variable

and its value of each item are then paired in form of VAR_NAME = VALUE. These
pairs are connected by semicolons, and one row is for each items.

Query Results RDF Format: <resultformat>rdf</resultformat>
The RDF-graph format of query results is designed for semantic web client

applications, here they prefer semantic enriched data. The query results will be
transformed to RDF graphs before returning them to the clients.

Serialized Query Results Object: <resultformat>object</resultformat>
Concerning with the inside components communication in the SemanticLIFE

system, components sometimes would like to use query results object without
format transformation. The VQL serializes the results and send the serialized
objects back to the asking component.

4 Query Operators of VQL

In this section, we present deductive queries for special operations in making
complex queries in simpler manner which helps users “ask less, get more.” This
is the principle of building user-centered applications [5].

4.1 GetInstances Operator

GetInstances operator is the common form of VQL data queries. The operator
retrieves appropriate information according the criteria described in parameters,
sources, constraints of the query. The properties with show attribute set to "1"
will be involved in the query results.

Fig. 2 is an example of GetInstances operator. As depicted, the query is
about retrieving the message’s time-stamp from 01/11/2005 to 30/11/2005 of
uploaded files and browsed WWW pages. The operators in the constraint part,
"dt:gt" and "dt:lt", are combined using boolean ‘AND’.

4.2 GetInstanceMetadata Operator

This query operator assists the user easily retrieve all metadata properties and
their values of resulting instances. This query operator is very useful when the

WISM'06 1069

user does not care or not know exactly what properties of data instances are.
The case could happen when he/she makes request; or he/she would like to get
all metadata of these data items by the simplest way.

In order to make a GetInstanceMetadata operator, we must put one param-
eter in the query document with the reserved string "METADATA". The other
parameters could be used for the criteria of the query to filter the query results.
The rest of the query document is similar to a normal data query. Fig. 5 describes
a example of this operator.

Fig. 5. VQL GetInstanceMetadata Query Operator.

Here, the query is about getting the metadata and their values of uploaded files
which are sent from 01/11/2005, as well as the timestamps of these files.

4.3 GetRelatedData Operator

In semantic web applications, particularly in the SemanticLIFE system, finding
relevant or associated information plays an important role. When we make a
query to search for a specific piece of information, we also would like to see
associated information to what we found. For example, when we are looking for
an email message with a given email address, we also want to see the linked data
to this email such as the contact having this email address, appointments of the
person in the email, web pages browsed by this person. Obviously, this operator
shows the VQL power and obeys the principle of “ask less, get more” for users.

In order to make a request of this operator, we must identify a parameter
containing the a reserved word "RELATED-WITH" in the query document. The
<sources> element is used to limit a range of data sources in searching associated
information as presented in following figure (Fig. 6).
In this example, the query asks for instances of Email data source containing a
specific email address, e.g. hta@gmx.at; and from found messages, the related
information in the appreciate data sources, which are identified in <sources> of
the query, will be located as well.

1070 Web Information Systems Modeling

Fig. 6. VQL GetRelatedData Query Operator.

4.4 GetLinks Operator

This query operator operates by using the system’s ontology and RDF graph
pattern traversal. The operator aims at finding out the associations/links be-
tween instances and objects. For instance, we are querying for a set of instances
of emails, contacts and appointments, and normally, we receive these data sepa-
rately. However, what we are expecting here is that the links between instances
(as well as objects) provided additionally. The links are probably properties of
email addresses, name of the persons, locations, and so on.

GetLinks operator helps us to fulfill this expectation. This operator is sim-
ilar to GetInstanceMetadata in the way of exploiting the metastore. While
GetInstanceMetadata operator tries to get related instances based on analysis
of a given link or information and the ontologies, GetLinks extracts the associa-
tions in instances or objects. In order to make a GetLinks operator, the reserved
word "SLINKS" (semantic links) must be identified in one <param> element.

Fig. 7. VQL GetLinks Query Operator.

We distinguish the detecting links between instances and objects as following:
if sources are specified in the query document without any parameters except

WISM'06 1071

"SLINKS", then the links will be detected between objects. Otherwise, if some
parameters are shown, the links are implied for instances’ associations. An exam-
ple of GetLinks query operator is described in Fig. 7. The query will return the
associations between instances having the given receiver’s email and the contact
name in three data sources Email, Contact, and Calendar.

By providing these operators, VQL offers a powerful feature of navigating the
system by browsing data source by data source, instances by instances based on
found semantic associations.

4.5 GetFileContent Operator

The SemanticLIFE system covers a large range of data sources, from personal
data such as contacts, appointments, emails to files stored in his/her computer,
e.g. the office documents, PDF files, media files. Therefore, a query operator to
get the contents of these files is very necessary.

Fig. 8. VQL GetFileContent Query Operator.

Normally, to carry out this task, we must define two parameters in the query
document, the first one is the file path got from the previous query; and the sec-
ond one is defined with reserved word "CONTENT". In the <source> element of
the query, a data source is identified as a reference; and the constraint part is of-
ten left empty. The query is described in Fig. 8 is an example of GetF ileContent
operator, where a content of the file having name "CFP_WISM_06.pdf" with its
full path will be extracted from the metastore.

5 VQL Parser: VQL - RDF Query Languages Mapping

The VQL parser translates the VQL query to correspondent RDF query state-
ments; accesses the metastore to get results, then transforms them to the appre-
ciate format and sends the processed results back to the user. In this section, we
present the first stage of a query process in the VQS [7] using VQL that is the
mechanism to map VQL queries to RDF queries. The mappings consist of three
phases: expressions mapping, syntax mapping; and semantic mapping.

1072 Web Information Systems Modeling

5.1 Expression Mapping

Expressions in VQL queries are likely to be mathematical ones, while the “ex-
pressions” in RDF queries are in form of the triples. Therefore, an accurate
expression mapping from normal expressions in VQL queries to triple expres-
sions in RDF queries is crucial. VQL carries out this task as following steps:

1. Forming mathematical expressions from elements of a VQL query.
2. Representing the final aggregated expression into an expression tree.
3. From the expression tree, we traverse and formulate triple expressions for

RDF query with referring to ontologies and related sources in the VQL query.

Example: Looking back at Fig. 2 as an example, an expression will be formed
from described query’s parts as follows (here msgTS is used instead of
messageT imeStamp for shorter representation):

(msgTS ≥ #01/11/2005#) ∩ (msgTS ≤ #30/11/2005#)

From this expression, we can create the expression tree as depicted in Fig. 9.

Fig. 9. The expression tree for the Example 4.

Using this tree, we generate the triple expressions for the RDF query by
traversing the tree. The generated triple expressions are described below in
iTQL RDF query language:

(<slife:msgTS> <tucana:after> ’2005-11-01T00:00:00Z’) and

(<slife:msgTS> <tucana:before> ’2005-11-30T00:00:00Z’)

where, "slife" is the namespace for the ontology and data schema of
SemanticLIFE metastore; and <tucana:after> and <tucana:before> are
comparison operators of iTQL.

Furthermore, the data sources are taken into account during mapping ex-
pressions. The specified data sources in the VQL query document (in sources
part and <relation> elements) are used for either identifying the expression
applied on them or generating correspondent queries for them. Hence from a
VQL query, more than one RDF query are probably generated.

WISM'06 1073

5.2 Syntax Mapping

Syntax mapping takes care the issue of translating from VQL query syntax to
a RDF query language syntax. VQL queries are actually interpreted as SELECT
statements of RDF query languages. The iTQL’s SELECT statement contains
three required clauses select, from, where, and optional clauses such as orderby,
and exclude. The syntax mapping will parse VQL query’s parts to the clauses
of RDF SELECT statement(s).

First of all, the select clause of the RDF query will be filled by <params>
parts of the VQL query. The parameters set to "1" will be put as variables of the
select clause, and unshown parameters (set to "0") are used for forming the
criteria only. Additionally, some extra variables will be added in the clause to
get the message’s URI and the name of data sources. Secondly, the from clause
will be generated automatically by VQL parser. For the time being, all data
sources are stored in one huge metastore with a unique network address. And this
network address plugged access protocol will be placed in from clause. Thirdly,
generated triple expressions will be used for the where clause. As discussed, the
process of generating the triple expression combines all three parts of the VQL
query - params, sources, and relations - along a further analysis by adding
more expressions to clarify the criteria.

Last but not least, we have two optional attributes, order and exclude,
for each parameter. If the order is set to "1", then the variable will be added
into orderby clause. And if an exclude is specified, an expression in form of
exclude($param $op $exclstr) will be added into the where clause.

5.3 Semantic Mapping

The semantic mapping takes part in both mapping tasks above to resolve se-
mantic ambiguity problems. This is the vital and decisive mapping task of the
VQL. The semantic mapping is going to solve the following concerns during
query generating process from the user’s initial VQL query:

– Disambiguating query items
– Resolving semantic conflicts

Disambiguating query items. The inaccuracy of a query is mainly due to
the ambiguities inside itself. Coping with ambiguous items in the VQL query
made by a user is a decisive step in parsing it later on. Here the ambiguity could
be in terminological manner, i.e. requested data properties are not clear. For
example, a "Name" property in a query is ambiguous because the query parser
can not identify which “name” will be extracted, contact name or name of email
sender/receiver.

Clarifying these properties could be done by using data source specified in the
query and the ontologies of the system. Based on the data sources, the appreciate
properties in the ontology will be detected and used instead of ambiguous items.
For instance, concerning the "Name" property is described above, this mapping

1074 Web Information Systems Modeling

task must rely on the related source described either in source or constraints
elements, e.g. Contact; after on, based on ontologies, appreciate properties will
be located such as contactFirstName, contactLastName.

Resolving semantic conflicts. In a further disambiguation users’ queries,
especially when the user asks for information using an ambiguous entity over
many data sources. The issue is that how to identify user’s “intended” properties
for which data sources. For example, "Name" property is constrained with Email
and Contact. If the "Name" properties is constrained with a source identified in a
<relation> element, then the issue is similar to the discussion above. Otherwise,
the query has to:

– get all related properties in system ontology based on specified data sources.
In this case, there are probably more than one query generated; or

– suggest the most related properties from ontology based on a semantic sim-
ilarity of properties in the same query. For instance, if other properties are
major requesting for Contact items, so that the “names” of Contact object
would be suggested.

The semantic mapping is applied for all types of the VQL query. Generally,
all user-entered queries should be check for implied semantic problems as well
as the syntax of them.

6 Conclusion and Future Work

In this paper we have presented the Virtual Query Language, a design of a query
language aiming at a significant complexity reduction in formulating semantic
meaningful queries.

As the next steps of VQL, the issues of improving by considering RDF as
the alternative format for VQL, and building a graphical interface on top of this
language will be discussed consequently in the details. We see the advantages of
the RDF as standard for the Semantic Web applications, so that coding the VQL
in RDF as ‘RDF forms’ would be considered. As well as, a powerful interface for
VQL in context of the VQS will be taken into account.

References

1. M. Ahmed, H. H. Hoang, S. Karim, S. Khusro, M. Lanzenberger, K. Latif, E.
Michlmayr, K. Mustofa, T. H. Nguyen, A. Rauber, A. Schatten, T. M. Nguyen,
and A. M. Tjoa. Semanticlife - a framework for managing information of a hu-
man lifetime. In Proceedings of the 6th International Conference on Information
Integration and Web-based Applications and Services, September 2004.

2. N. Athanasis, V. Christophides, and D. Kotzinos. Generating on the fly queries
for the semantic web: The ics-forth graphical rql interface (grql). In Proceedings
of the 3rd International Semantic Web Conference, pages 486–501, 2004.

WISM'06 1075

3. D. Beckett. Sparql query results xml format. Technical report, W3C Working
Draft, August 2005.

4. T. Catarci, P. Dongilli, T. D. Mascio, E. Franconi, G. Santucci, and S. Tessaris.
An ontology based visual tool for query formulation support. In Proceedings of the
16th European Conference on Artificial Intelligence, pages 308–312, 2004.

5. E. Garcia and M.-A. Sicilia. User interface tactics in ontology-based information
seeking. PsychNology Journal, 1(3):242–255, 2003.

6. P. Gray, K. Hui, and A. Preece. An expressive constraint language for semantic web
applications. In Proceedings of the 7th International Joint Conference on Artificial
Intelligence, 2001.

7. H. H. Hoang, A. M. Tjoa, and T. M. Nguyen. Ontology-based virtual query system
for the semanticlife digital memory project. In Proceedings of the 4th International
Conference on Computer Sciences, February 2006.

8. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. Rql
- a declarative query language for rdf. In Proceedings of the Eleventh International
World Wide Web Conference, pages 592–603. ACM Press, August 2002.

9. E. Prud’hommeaux and A. Seaborne. Sparql query language for rdf. W3C Working
Draft, November 2005.

10. R. M. R. Guha. Tap: a semantic web platform. International Journal on Computer
and Telecommunications Networking, 42(5):557–577, August 2003.

11. A. Seaborne. Rdql - a query language for rdf. Member submission, W3C, 2004.
12. D. Wood, P. Gearon, and T. Adams. Kowari: A platform for semantic web storage

and analysis. In Proceedings of the 14th International WWW Conference, 2005.

1076 Web Information Systems Modeling

