
Computations in Extensions of Multisorted Algebras

Michael Lvov
[0000-0002-0876-9928]

Kherson State University, 27, Universytets’ka St., 73000 Kherson, Ukraine

Lvov@ksu.ks.ua

Abstract. Development of algorithms of algebraic computations is one of the

main problems, which arises with realization of mathematical software based on

symbolic transformations. Multi-sorted algebraic systems (MAS) are mathemat-

ical model for this problem.

Present paper deals with the solution of this problem. We propose the approach

to realization of interpreters of multi-sorted algebraic operations by its specifi-

cations, based on constructive improvement of notion of extension of multi-

sorted algebraic system. This approach is illustrated by examples of realization

of interpreters of operations in the field of rational numbers, ringing of one var-

iable polynomial over the field, algebra of Boolean functions. Practice of this

approach using for development of mathematical educational software shows its

effectiveness and even universality.

Keywords. systems of computer mathematics, symbolic computations, multi-

sorted algebras, extensions of algebras, interpreters of algebraic operations.

Introduction

Development of algorithms that perform algebraic computations is one of the main

problems that arise when one implements mathematical systems based on symbolic

transformations. A mathematical model of this problem is the notion of a multi-sorted

algebraic system (MAS). The practice of development of simple educational mathe-

matical systems [1, 2, 3] showed that implementation of algebraic computations re-

quires careful preliminary design of MAS via development of MAS sort hierarchies

and specifications of interpreters of multi-sorted algebraic operations [8]. Due to a

number of reasons [9], for implementing calculations based on symbolic trans-

formations we use the system of algebraic programming APS [4, 5, 6] which was

adapted for our purposes by V. Peschanenko [10].

APS uses an algebraic programming technology based on rewriting systems and

rewriting strategies. Thus, an interpreter of an algebraic operation is defined by a sys-

tem of rewriting rules.

mailto:Lvov@ksu.ks.ua

1 Problem formulation

In the paper we propose an approach to implementing interpreters of multi-sorted

algebraic operations in accordance with their specifications which is based on the

constructive refinement of the concept of an extension of a multi-sorted algebraic

system. The definitions of a MAS and its (constructive) extension are given in para-

graph 1. A typical example of a constructive extension is the example of the field of

rational numbers as an extension of the ring of integers (example 2).

Constructive MAS extensions are classified as static, linear or binary dynamic ex-

tensions (definition 1.3.1, 2.1.).

We show that an interpreter of an algebraic operation in a constructive extension

can be synthesized automatically in accordance with its specification which defines

the rules of interpretation of the operation in extension, and the conditions of embed-

ding of the base algebra in its extension.

The algorithm of synthesis of an interpreter of an operation is determined by the

type of an extension. Therefore, in paragraph 2.2 we give examples of implementation

of interpreters of operations of the field of rational numbers (static extensions), quad-

ratic radicals field (binary dynamic extensions), univariate polynomial rings (linear

dynamic extensions) and the algebra of propositions (binary dynamic extensions).

1.1 Multi-sorted algebras as mathematical model of algebraic computations

Definition 1.1. Let U = {u1, …, uk} be a finite set of symbols which is called the sorts

signature. The symbols ul, l ∈{1,…,𝑘} are called the names of sorts, or simply the

sorts.

In particular, we will use the following sort names: Variable, Bool, Nat, Int, Real.

We will introduce other sort names within the definitions of the appropriate alge-

braic notions.

Definition 1.2. Let },...,{
1 kuu SSS  be a finite family of sets indexed by sort

names, the elements of which are called the value ranges of the corresponding sorts:

─ SVariable is the set of variables,

─ SBool is the set {False, True},

─ SNat is the set of natural numbers,

─ SInt is the set of integers,

─ SReal is the set of real numbers.

Definition 1.3. A multi-sorted operation f on a family S is a map

vuuu SSSSf
m
 ...:

21
, where Uvuu m,,...,1

 are sorts of arguments and val-

ues of the operation f, respectively, and m is the arity of f.

The type of an operation is determined by the list of names of sorts of its argu-

ments and the name of the sort of its range of values. The type of an operation f will

be denoted as vuu m ),...,(1 . A signature Σ of operations is a finite set of symbols

of operations together with a map that associates with each symbol  a multi-

sorted operation f together with its type (if  is a symbol of an operation, then the

expression vuu m ),...,(: 1 that this symbol is associated with an operation of the

type vuu m ),...,(1).

An example of a multi-sorted operation is scalar multiplication in a vector space. If

VectorSpace is the sort name of a set of vectors over the field Real of real numbers,

then the multiplication operation Mult “*” defines the map

 Mult : Real × VectorSpace → VectorSpace

Below we will use more common, traditional mathematical notations for opera-

tions. Since the infix notation is usually used for scalar multiplication, we have:

 Real * VectorSpace → VectorSpace

Definition 1.4. Let Bool be a sort with the value range },{ FalseTrueSBool  . A

multi-sorted predicate P is a mapping Booluu SSSP
m
...:

1
, where Umuu ,...,1 ,

the sequence u1, …, um determines the type of the predicate, and the number m is its

arity. A signature Π of multi-sorted predicates is defined analogously to the signature

of operations as a set of operations of predicate symbols, associated with multi-sorted

predicates together with their types.

Definition 1.5. A multi-sorted algebraic system A is a tuple A=<S, U, Σ, Π >,

where S is a set of sorts indexed by the symbols of the set U, },...,{ 1 l is a

signature of multi-sorted operations, Π = {π1, …, πp} is a signature of multi-sorted

predicates.

Remark. Since the sort Bool can be added to the set of sorts, predicates can be con-

sidered as multi-sorted operations. Therefore, instead of considering multi-sorted

algebraic systems, we will combine the signatures of operations and predicates and

consider multi-sorted algebras.

Definition 1.6. Let A=<S, U, Σ > be a multi-sorted algebra and Uvu, be sort

symbols. We will say that the sort v depends on the sort u, if one of the operations of

the signature Σ has the type of the form vuuu m 1 . As Uv denote a subset

of sorts which depend on the sort v. Denote the subset of elements of Σ of type

vuuu m 1 as Σv, and the family of ranges of values of sorts Uv as Sv. A

restriction Av of a multi-sorted algebra A to a sort v is the multi-sorted algebra

Av=<Sv, Uv, Σv>.

Thus, a multi-sorted algebra A can be represented by a set of restrictions (algebras)

Av, v ∈ U, that 
kuu AA ,...,

1
A .

Example 1

Consider a software system that implements simplification of algebraic and trigo-

nometric expressions. The core of the system must implement the computations in the

ring of polynomials and the ring of multivariate trigonometric polynomials over the

field of rational numbers. Specifications shall be given for the following algebras –

restrictions to the mentioned sorts:

MultiPolynom – the ring of multivariate polynomials.

MultiPolynom + MultiPolynom → MultiPolynom

MultiPolynom * MultiPolynom → MultiPolynom

…

MultiTrig – the ring of multivariate trigonometric polynomials.

Sin(LinComb) → MultiTrig

Cos(LinComb) → MultiTrig

MultiTrig + MultiTrig → MultiTrig

…

LinComb – the vector space of linear combinations of several variables (arguments

of trigonometric polynomials).

Pi

LinComb + LinComb → LinComb

Rat * LinComb → LinComb

…

Rat – the field of rational numbers (coefficients of polynomials and trigonometric

polynomials).

Rat + Rat → Rat

Rat - Rat → Rat

Rat = Rat → Bool

Rat < Rat → Bool

…

The relation of dependence between sorts generates a structure of dependence on

the set of algebras Au, u ∈ U: an algebra Av depends on the algebra Au if the sort v

depends on the sort u. If the relation of dependence has no cycles, then a multi-sorted

algebra can be constructed step by step (incrementally) by constructing an algebra Av,

if algebras Au on which it depends are already constructed.

1.2 Axioms and constructs of multi-sorted algebra

For constructing algebras Au we use their axiomatic and constructive descriptions

(definitions).

Fig. 1. Diagram of dependency of algebras of Example 1.

Definition 1.7. An axiom of an algebra Au is an identity or a conditional identity in

a signature Σu. An axiomatic description in an algebra Au is a finite set of axioms

(axiom system) of the algebra Au.

We will use algebraic terminology and the relevant systems of axioms from the

book [11]. A constructive description of an algebra Au is a definition of a constructor

of the sort Su (i.e. a definition of terms of sort Su) and a set of interpreters of opera-

tions of Σu.

Definition 1.8. A signature of constructors Tu is a finite set of symbols of opera-

tions together with a map that with each symbol uT associates a symbols of the

sort u together with a list of symbols of sorts of its arguments (if  an operation

symbol, the expression),...,(1 muuu  means that this symbol is associated with the

symbol of the sort u and the symbols of the sorts of its arguments u1,…,um.)

A constructor of sort Su of an algebra Au is a system of equations which defines

syntactically the elements of sort Su as terms in Tu signature. So, the sort Su is the set

of terms in (its own) signature Tu of constructors of Su sort.

Definition 1.8 is the key one in our approach to specification of algebraic computa-

tions. Let us present the relevant examples and explanations.

Example 2. The field Rat of rational numbers.

Rational numbers are represented in the form of simple fractions. The constructor

of a sort defines the standard representation of elements of this sort. The most com-

mon is the canonical form. That is why,

}1),(,,:{  qpGCDSqSp

q

p
S NatIntRat (1)

Horizontal line is a symbol of the sort constructor. The same mathematical symbol

is used to denote the operation of division, in particular in Rat. This is not convenient

for the tasks of specification of algebraic computations. Therefore, we introduce the

concept of a signature of operations Σ and a signature of constructors T. In particular,

for denoting the constructor of the sort Rat we will use double forward slash:

 }1),(,,://{  qpGCDSqSpqpS NatIntRat
 (2)

An important factor is that in the standard forms of presentation of elements of

sorts the syntactic aspects of the definition are always combined with semantic as-

pects defined as contextual conditions i.e. predicates. In our case such a predicate is

the equality GCD(p, q) = 1.

Example 3. The ring Polynom univariate polynomials over the field Rat.

Elements of this field are polynomials represented as sums of monomials, written

in descending order of degrees. This definition should be recursive, and the concept of

degree has to be defined separately.

Monom

df

PolynomMonomPolynom

SPMMQ

SPSMPMQQS





)}deg()deg(;degdeg

,,,:{
 (3)

To define the carriers of sorts we will use a special specification language, which

allows non-recursive and recursive syntactic definitions of sorts’ elements, definitions

of the access functions and contextual conditions. For example:

Rat r ={(Int a)//(Nat b); // Constructor of sort

 Num(r) = a, Den(r) = b; // Access functions

 GCD(a, b) = 1 // Contextual condition

};

Monom M = {(Rat c)$(Const Variable x)^^(Nat n);

Coef(M) = c, Var(M) = x, Deg(M) = n // Access functions

};

Polynom P = {(Monom M)++(Polynom Q); // Constructor

LeadMon(P) = M, // Access functions

LeadCoef(P) = Coef(M), Deg(P) = Deg(M);

Deg(P) > Deg(Q) // Contextual condition

};

In order to implement computations in an algebra Av, v in U, it is necessary to im-

plement algorithms for performing each of its operations in such a way that the axi-

oms of the algebra are satisfied.

Definition 1.9. An interpreter of an operation of a signature Σu is a function which

is implemented by an algorithm which performs the corresponding operation.

Interpreters of operations are defined using a programming language. For our pur-

poses we use APLAN language. So we include this language in the specification lan-

guage.

Thus, for axiomatic and constructive description of an algebra Av to its definition

we add a finite set of axioms Axv and finite set of interpreters Iv. Then a multi-sorted

algebra Av is defined as follows: Av= <Sv, Uv, Tv, Σv, Axv, Iv>.

1.3 The methods of construction of multi-sorted algebras

Construction of the structure of multi-sorted algebras means specification, prototyp-

ing and implementation of algebraic computations. Specification of the structure of

multi-sorted algebra is done in terms of extensions, homomorphisms, isomorphism

and inheritance of multi-sorted algebras. Thus, together with the diagrams of depend-

ence, which are graphical models of specifications of signatures of operations and

constructors, the diagrams of extensions, diagrams of morphisms (isomorphism and

homomorphism) and diagrams of inheritance are designed. We consider the method

of extension. The methods of morphisms and inheritance are beyond the scope of this

work.

1.3.1 The method of algebra extension

Definition 1.10. Let Au and Av be multi-sorted algebras. A multi-sorted algebra Av is

called an extension of Au, if vu SS  and for any pair of operations f1, f2 of types

uuuf m ),...,(: 11 and vvvf m ),...,(: 12 respectively, if
mm vuvu SSSS  ,...,

11
, then

muum SSaa  ...),...,(
11 the equality),...,(),...,(1211 mm aafaaf  holds.

An embedding is an isomorphic map
'

vSS ud :Re , which maps Su onto a subset

vSS'

v  . A restriction of an algebra Av to a subset _ isomorphic to Au, is determined

by a system of conditional identities)(),...,(1 xExE k :)}(),...,(|{ 1 aEaEa kvv SS  .

The use of the system)(),...,(1 xExE k as a rewriting system «simplifies» the term
'

vSa to a term
'1)(Re: aada u  S .

A constructive description of an extension Av means a description of a constructor

of Av and an embedding of Au into an algebra Av. In Figure 2 the double arrow indi-

cates that Av is an extension of the algebra Au, in Av the construct),...,,...,(1 muuuv 

and embedding Redu,v are defined.

Note. The relation of MAS extension (the relation “sort-subsort”) is basic in this

work. Multi-sorted algebras, partially ordered by this relation, are called sorted-

ordered. The fundamentals of the theory of sorted-ordered algebra in the applications

to the theory of programming are presented in [12]. In Russian they are stated in [13].

Example 4. Consider the constructor of the field Rat (Example 2). According to

the definition it defines a construct Rat, the arguments of which are sorts Int and Nat.

Let us complement the specification of Rat sort by the embedding IntRatd :Re ,

defined by the equality aad )1//(Re . Thus the sort Rat is defined constructively as

an extension of sort Int.

Now consider the constructor of the Polynom ring (Example 3). It defines a recur-

sive construct Polynom, the arguments of which is the sort Monom. Let us comple-

ment the specification of the sort Polynom with an embedding

MonomPolynomd :Re , defined by the equality MMd )0(Re . So the sort

Polynom is defined as an extension of the sort Monom.

Fig. 2. Diagram of extensions in example 4.

In turn, the sort Monom is an extension of the sort Degree with a function Red de-

fined by the equality 1$x^^k = x^^k, extension of the sort LinMonom with a

function Red defined by the equality a$x^^1 = a$x and extension of Rat with a

function Red defined by the equality a$x^^0 = a. The Sorts Degree and Lin-

Monom are extensions of the sort Variable with the functions of reduction, specified

in accordance with the following equalities x^^1 = x and 1$x = x. Thus, the

extensions diagram has the following form

The extension mechanism is one of the main methods of specification of multisort-

ed algebras. In particular, it allows defining the overloaded algebraic operations and

algebraic type casting functions.

2 Methods of synthesis of algebraic programs

2.1 Static and dynamic extensions

Definition 2.1. An extension B of an algebra A is called static (non-recursive), if in its

constructor),...,,...,(1 nAAAB  none of the arguments coincides with B.

Examples of static extensions:

The field Rat is a static extension of the ring Int. Actually,

)//()(BNatAIntRRat 

The semigroup of monomials Monom with one generator is a static extension of

the coefficients Coef field, because)()^)$((NNatxVaraCoefMMonom  .

Definition 2.2. An extension B of an algebra A is called dynamic (recursive), if in

its constructor),...,,...,(1 nAAAB  at least one of the arguments coincides with B.

A constructor of a dynamic extensions is a recursive definition, and therefore, con-

tains both the base and recurrent part.

Examples of dynamic extensions:

A vector space LinComb of linear combinations of several variables over a field

Coef is a linear dynamic extension of LinMonom, an element of which has the form

a$x. An element LinCombw has a form mm xaxaxaw $...$$ 2211  .

)()(wLinCombuLinMonomwLinComb 
An univariate polynomial ring Polynom over the field Coef. This ring is traditional-

ly denoted as F[x].

Polynom w = (Monom M)++(Polynom w)

Definition 2.3. A dynamic extension B of an algebra A is called linear, if in its

constructor),...,,...,(1 nAAAB  exactly one of the arguments coincides with B.

A dynamic extension B of an algebra A is called binary, if in its constructor

),...,,...,(1 nAAAB  exactly two of the arguments coincide with B.

Example 5. The field of square radicals

Examples 3 and 4 are examples of linear dynamic extensions. Consider an example

of a dynamic binary extension:

The field Rad, the elements of which are linear combinations of square roots of

square-free positive integers with rational coefficients, can be represented as a binary

extension of Rad using the following construction. Let p1,p2,…,pn… is a sequence of

all prime numbers arranged in ascending order. Denote as Q the field of rational num-

bers. We introduce the following notations:

,...}2,1,,,*:{, 10   nRadbapbarrRadQRad nnn
.

The field Rad is the union of the increasing sequence Radn of fields.

, 10

0






n

n

n RadRadRadRatRadRad  (4)

Thus, the constructor Rad has the form

)(|*)()(qRatpNatbRadaRadrRad  (5)

Note that sequence of extensions (4) is a sequence of finite algebraic extensions of

fields with roots of polynomials 02  npx .

Representation (5) includes a description of basic elements Rat q and a description

of the extension mechanism - the constructor pNatbRadaRad *)()( . This specifica-

tion exactly corresponds to the definition (4). On the other hand, the basic element

description is unnecessary if it can be got from the embedding. Indeed, the specifica-

tion of the LinComb vector space with the inclusion of the item describing of the ele-

ments of the basic algebra LinMonom has the form

)(|)()(uLinMonomwLinCombuLinMonomwLinComb 

However, the inclusion LinCombLinMonom is defined by the equality

u ++ 0=u. Therefore a separate description LinMonom u is unnecessary. We admit

both types of specifications.

Formula (4) can be directly generalized to arbitrary dynamic extensions. If an al-

gebra B is a dynamic extension of the algebra A with the constructor

),...,,...,(1 nABAB  , the increasing sequence10  nBBB is defined as follows:

 ,)0(AB  (6)

),...,,...,()(1)1(nnn ABAB 
 (7)

The embedding BAd :Re defines the embedding iii BBd 1:Re , from which

one obtains a representation of A in the form of an increasing sequence of algebras,

where each one is a static extension of the previous one.

, 10

0






n

n

n BBBBB  (8)

In MAS development practice there were some generalizations of the definition

(8). Namely, instead of the sequence of algebras

0}{ iiB let consider the set of indexed

algebras IiiA }{ , where I is a linearly ordered set of indices. An algebra  JIJBJ ,,

is defined as a union of algebras Aj, Jj : 
Jj

jJ AB


 . Let us assume there is an em-

bedding of algebras Bj, where
2121 JJJJ BBB  . Then

 



JIJ

JBB
,

 (9)

An example of such algebra is a ring]][[xK , the elements of which are sums of

monomial with rational degrees:

 



JRatJJj

j
j xaPPxK

,,

:{]][[
 (10)

Dynamic extensions are sequences of static extensions. This allows one to use the

general scheme of implementation of dynamic extensions to derive the appropriate

rewriting systems.

2.2 Synthesis of algebraic programs

2.2.1. Example of an algebraic program output with sort specifications

Example 7. Below is a specification of Rat sort and a derivation of calculations with

rational numbers. Specifications of the Rat sort determine this sort as a field, linear

order and static extension of Int.
Sort Rat:: Field, LinOrd; //Inherited

Constructor

Rat r ={(Int a)//(Nat b); // Sort constructor

 a//1 = a; // The embedding function RatToInt

 Num(r) = a, Den(r) = b; // Access functions

 GCD(a, b) = 1 // Contextual condition

 Form: Num(Form(r))  Int, Den(Form(r))  Nat,
 GCD(Num(Form(r), Den(Form(r)) = 1;

};

Operations

Add: a//b + c//d = Form((a*d + b*c)//(b*d));

Sub: a//b - c//d = Form((a*d - b*c)//(b*d));

Mult: a//b * c//d = Form((a*c)//(b*d));

Div: a//b / c//d = Form((a*d)//(b*c));

Div: a/b = Form(a//b),a/0 = Exeption(‘Divison by zero’);

Pow: n >= 0 -> (a//b)^n = (a^n//b^n),

n < 0 -> (a//b)^n = (b^-n//a^-n);

Predicates

Equ: a//b == c//d = (a == c)&(b == d);

Gre: a//b > c//d = (a*d > b*c);

Les: a//b < c//d = (a*d < b*c);

UnLes: a//b >= c//d = (a//b > c//d)  (a//b == c//d);

UnGre: a//b <= c//d = (a//b < c//d)  (a//b == c//d);

Consider the output of the Add operation interpreter. From specifications we have:

 a//b + c//d = Form((a*d + b*c)//(b*d)); (11)

 a//1 = a; (12)

we get:

 a + c//d = Form((a*d + 1*c)//(1*d)); (13)

Applying the sort equality Int a*1 = 1*a = a to (13), we obtain:

 a + c//d = Form((a*d + c)//d) (14)

Similarly, for the second operand:

a//b + c = Form((a + b*c)//b);

The resulting relations are particular cases of (12) - a specification of the Add op-

eration with the RatToInt embedding. Together with the general relation (11) they

define implementation rules for addition of fractions:

Add:=rs{

a//b + c//d = Form((a*d + b*c),(b*d)),

a + c//d = (a*d + c)//d,

a//b + c = (a + b*c)//b

};

Similarly interpreters of operations of subtraction and multiplication on Rat can be

derived. An exception is the division operation, which is absent in the signature of Int

sort. Therefore, it is necessary to define and specify it as multi-sorted (see specifica-

tion of the Rat sort). Another exception is the exponentiation operation, which is ex-

pressed using multiplication.

Now let us focus on the Form function. Definition of this function connects it with

the symbol of sort constructor. The role of this function is essentially in the canoniza-

tion of sort element. During execution of a rule of the general form this function is

called on the result of the operation. Therefore, Form is an interpreter of the construc-

tor sort symbol. For the symbol // of Rat sort constructor we will use the notation !/.

The general rule of addition will take the form

a//b + c//d = a*d + b*c)!/(b*d).

We will always include the sign “!” in the infix notation of sorts constructors and it

will always mean the call of the constructor of sort interpreter.

Add:=rs{

 a//b + c//d = (a*d + b*c)!/(b*d),

 a + c//d = (a*d + c)//d,

 a//b + c = (a + b*c)//b

};

Interpreter of sort constructor is called only in the first rule.

The method of derivation of an interpreter of an operation of sort v from its speci-

fication in the case when the algebra Av is defined as a static extension of algebra Au

can be generalized as an algorithm of synthesis of an algebraic program.

Note that this method can be implemented in the form of an algebraic program be-

cause it relies only on equational derivation. For automation of elimination of the

Form functions more sophisticated methods and technologies have to be used, e.g. a

theorem prover over the basic sort u.

2.2.2 Interpreters output in linear dynamic extensions

Example 8. Specifications of Polynom sort and calculations with univariate polyno-

mials.

Specifications of the Polynom sort define this sort as a Euclidean domain and a lin-

ear dynamic extension of Monom.
Sort Polynom::EuclideDomain;

Parameter Field Coef, Const Variable Argument;

Constructor{

Polynom P = Monom M ++ Polynom Q // Constructor of sort

0 ++ P = P, //Embedding function PolynomToPolynom

M ++ 0 = M; //Embedding function PolynomToMonom

LeadMon(P) = M, // Access functions

LeadCoef(P)= Cf(M),

Arg(P)= Arg(M), Deg(P)= Deg(M);

Deg(M)> Deg(Q), Arg(M)= Arg(Q); //Contextual condition

Form: MMonom, Q  Polynom,

 0 ++ P = P, M ++ 0 = M,

 Arg(M) = Arg(Q), Deg(M)> Deg(Q), Cf(M)<>0

};

Operations

Add: Deg(a)==Deg(b)→ (a++A)+(b++B)=(a+b) !+ (A+B); (15)

Sub: Deg(a)==Deg(b)→ (a++A)-(b++B)=(a-b) !+ (A-B);

Mult: // Polynom * Polynom → Polynom; Commutative

(a++A)*(b++B)=(a*b)++((a*B+A*b)+A*B);

Mult: // Coef * Polynom → Polynom; Commutative

 c*(b++B)= c*b ++ c*B;

 (b++B)*c = Form(c*b, c*B);

Div: (a++A)/b = a/b ++ A/b;

Pow: a^n=sqr(a^n div 2)*a^(n mod 2); // From sort

MiltSemiGroup

IntDiv:

 Deg(P)==Deg(Q) → P div Q = LeadCoef(P)/LeadCoef(Q),

 Deg(P)< Deg(Q) → P div Q = 0,

 Deg(P)> Deg(Q) → P div Q = LeadMon(P)div LeadMon(Q)++

 P-(LeadMon(P)div LeadMon(Q))*Q div Q);

Mod: P mod Q = P - (P div Q)*Q; // From EuclideDomain

In this example, we show that the methods of derivation of specifications discussed

above leads to mathematically sound systems of interpretation rules.

First of all, note that there are two fundamentally different methods of definition

operations. Operations Add, Sub, Mult, Div are defined in terms of constructors of

operands. Such a definition of operation will be called constructive. It demonstrated

by the definition of the operation IntDiv (division with remainder). Mod operation is

defined in terms of operations of signatures Polynom sort. We will call such defini-

tions of operations abstract or derived. Since this signature is inherited from the

abstract sort EuclideDomain, the specification of Mod is given in this sort. In Euclid-

eDomain sort Euclidean algorithm is defined. Pow operation should be defined earli-

er – in specification of the sort MiltSemiGroup.

A constructor of a sort is defined recursively. So the Polynom algebra is a sequence

of nested algebras which begins with the algebra Monom (Monoms of one variable):

10  kPolPolPolMon (16)

The algebra Poli is a set of polynomials of i-th degree. Then Poli is a vector space

of dimension i + 1. In this interpretation polynomial degree determines the index in

the sequence. Therefore, the operation of addition Add (15) is determined by three

equalities, the first of which defines the rule of addition, if both operands belong to

one algebra, the other two – when they belong to different algebras:

jiPolbPolajiPolbPolaPolba jijii  ,,;,,;,

Thus, the extension (16) is an extension of vector spaces. The rules of interpreta-

tion of vector operations are derived from their specifications quite similar to the case

of static extensions:

11 ,2)dim(,1)dim(  iiii PolPoliPoliPol ,

 aaAAPolAAaVPolV ii   0,0;,1
.

Deg(a)==Deg(b)→(a++A)+(b++B)=(a+b)!+(A+B), //basic rule

Deg(A)< Deg(b) → A + (b++B)= b !+ (A+B), //partial cases

Deg(a)> Deg(B) → (a++A) + B = a !+ (A+B)

The derived rules still do not consider the second of the conditions M++0=M.

Therefore, each of these rules should still be converted:

Deg(a)== Deg(b)→ a + (b++B)=(a+b)!+ B.

Deg(a)== Deg(b)→(a++A) + b=(a+b)!+ A.

So, for the Add operation of sort Polynom we obtain the following system of rules:
Deg(a)== Deg(b)→ (a++A) + (b++B) = (a+b)!+ (A+B),

Deg(a)== Deg(b)→ a + (b++B)=(a+b) !+ B,

Deg(a)== Deg(b)→ (a++A) + b = (a+b) !+ A,

Deg(A)< Deg(b) → A + (b++B) = b !+ (A+B),

Deg(A)< Deg(b) → A + b = b ++ A,

Deg(a)> Deg(B) → (a++A) + B = a !+ (A+B),

Deg(a)> Deg(B) → a + B = a ++ B;

Also on the sort Monom we define an additional partial operation Add:

a$x + b$x = (a + b)$x.

This system takes into account both conditions, i.e. of a sequence of extensions

10 PolPolMonom 
, 1 ii PolPol

Conclusion. Specifications of the sort Polynom determine a dynamic extension of

the vector space. Derived operations should be excluded from the specifications of

Polynom and included in specifications of the relevant abstracted algebras. Construc-

tive operations of the signature of vector space are defined by the main case. The

special cases are derived by the methods of derivation of static extensions.

Because there are two embedding relations for the sort Polynom, the derivation of a

complete rules system is done sequentially: firstly by the first relation and then by the

second one. Multiplication and an incomplete division are specified separately as

additional operations on the vector space Polynom.

2.2.3 Example of algebraic program output within sort specifications. Dynamic

binary extension

Consider an example of a binary dynamic extension of the Bool algebra – the algebra

of logic BoolAlg [14]. This algebra is an extension of the Variable base sort, because

the elements of sort are Latin letters interpreted as logical formulas. We will show

that derivation of interpreters of logical operations is performed by the same methods.

The elements of the set BoolAlg are formulas of the propositional logic of many

variables. Let F(x1, x2,…, xn) be an arbitrary formula of propositional logic of n varia-

bles. Denote as O and I the truth and falsity values respectively. Then

),,...,,(&),,...,(&),...,,(12112121 OxxxFxIxxxFxxxxF nnnnn   .

If we denote

),,...,(),...,(),,,...,(),...,(11111111 OxxFxxBIxxFxxA nnnn   ,

we obtain the representation

),...,(&),...,(&),...,,(11111121   nnn xxBxxxAxxxxF (17)

Now perform sequentially the same transformations of formulas BA, w.r.t. the

variables xn-1, …, xn. As a result we obtain a recursive representation of the proposi-

tional logic formulas. Indeed, through BoolAlgm denote the set of propositional logic

formulas in variables x1, …, xm. Then

 }lg,,&&:{lg 1 nnnn BoolABABxAxFFBoolA

Thus, sort BoolAlg is the union of an increasing sequence of algebras BoolAlgm:

 BoolAlg0 = Bool, BoolAlg0 BoolAlg1 … BoolAlgm… (18)

 BoolAlg = BoolAlgm

Note that formula (17) defines a canonical form of a formula of the algebra of

propositions. Denote

 BxAxxBABF
df

&&),,( (19)

Then

),&,&(),,(&),,(21212211 xBBAABFxBABFxBABF  , (20)

),,(),,(),,(21212211 xBBAABFxBABFxBABF  (21)

),,(),,(xBABFxBABF  . (22)

Thus, the basic logic operations are performed per the argument! Finally, it is easy

to check that the embedding function is defined by the equality

 AxAABF ),,() (23)

Conclusion

In this paper we have shown that the concept of a constructive extension of MAS is

the key one in design and implementation of symbolic computations. Most of all, this

applies to symbolic computations in mathematical systems for educational purposes,

where classical algebras and algebraic systems are used.

Actually, the constructive approach, along with the axiomatic approach in algebra

is well known [12-13]. The idea of a constructive definition of an algebra element

through the elements of basic algebras is systematically used in algebraic research. On

the other hand, the overloading mechanism for algebraic operations is a standard tool

in programming of mathematical systems.

Thus, the main theoretical result is the idea of systematic usage of the construct of

extension in programming of MAS signatures as overloaded signatures. Other me-

thodical components of proposed approach are given in [14-17].

The practice of usage of this approach in development of mathematical systems for

education has shown its effectiveness and even universality. This is the main practical

result.

References

1. Lvov, M., Kuprienko, A., Volkov, V.: Applied Computer Support of Mathematical Train-

ing. Proceedings of Internal Workshop in Computer Algebra Applications. 25-26. Kiev.

(1993).

2. Lvov, M.: AIST: Applied Computer Algebra System. Proceedings of ICCTE’93. 25-26.

Kiev. (1993).

3. Lvov, M.: Therm VII - school computer algebra system. Computer in school and family.7,

27-30 (2004).

4. Letichevsky, A., Kapitonova, J., Volkov, V., Chugajenko, A., Chomenko, V.: Algebraic

programming system APS (user manual). Glushkov Institute of Cybernetics, National

Academy of Sciences of Ukraine, Kiev (1998).

5. Kapitonova, J., Letichevsky, A., Volkov, V.: Deductive means of the system of algebraic

programming. Cybernetics and system analysis. 1, 17–35 (2000).

6. Kapitonova, J., Letichevsky, A., Lvov, M., Volkov, V.: Tools for solving problems in the

scope of algebraic programming. Lectures Notes in Computer Sciences. 958, 31-46

(1995).

7. Lvov, M.: Basic principles of constructing pedagogical software to support practical clas-

ses. Control systems and machines. 6, 70-75 (2006).

8. Peschanenko, V.: Extending standard modules algebraic programming system APS for use

in systems for educational purposes. Scientific journal of the National Pedagogical Univer-

sity named after M.P. Drahomanov. 3 (10), 206-215 (2005).

9. Peschanenko, V.: About one approach to the design of algebraic data types. Problems of

programming (Problemy prohramuvannia). 2-3, 626-634 (2006).

10. Peschanenko ,V.: Use of the algebraic programming system APS to build systems for sup-

porting the study of algebra in school. Upravlyayuschie sistemy i mashiny (Control sys-

tems and machines). 4, 86-94 (2006).

11. Van der Varden, B: Algebra. Nauka, Moscow (1979).

12. Goguen, J., Meseguer, J.: Ordered-Sorted Algebra I: Partial and Overloaded Operations.

Errors and Inheritance. Technical Report, SRI International, Computer Science Lab

(June 1983).

13. Goguen J.A., Meseguer J. (1987) Models and equality for logical programming. In: Ehrig

H., Kowalski R., Levi G., Montanari U. (eds) TAPSOFT '87. TAPSOFT 1987. Lecture

Notes in Computer Science, vol 250. Springer, Berlin, Heidelberg

14. Lvov, M.: About one approach to the implementation of algebraic calculations: calcula-

tions in the algebra of statements. Bulletin of Kharkiv National University (Series “Math-

ematical Modeling. Information Technology. Automated Control Systems”). 863, 157-168

(2009).

15. Lvov, M.: About one approach to verification of algebraic calculations. Problems of pro-

gramming. 4, 23-35 (2011).

16. Lvov, M.: Inheritance method for the implementation of algebraic calculations in mathe-

matical systems of educational purpose. Systems of control, navigation and

communication. 3(11), 120-130 (2009).

17. Lvov, M.: The method of morphisms of the implementation of algebraic calculations in

mathematical systems of educational purpose. Information processing systems. 6(80),

183-190 (2009).

