
Formalization and Algebraic Modeling of University

Economics

Volodymyr Peschanenko [0000-0003-1013-9877], Maksym Poltoratskyi [0000-0001-9861-4438],

Karina Pryimak [0000-0001-7922-9534]

Kherson State University, Universytets’ka St. 27, 73000, Kherson, Ukraine

{vpeschanenko, mpoltorackiy, prijmak.karina}@gmail.com

Abstract. The article discusses the approach to modeling economic processes at

the university using the methods of algebraic modeling and insertional model-

ing. The formal model of the eco-nomic processes of the university is presented

in the article.

Keywords: insertion modeling, formal methods, economic modeling, formali-

zation of the eco-nomic model.

1 Introduction

Modeling is one of the main methods of knowledge, is a form of reflection of reality

and is to ascertain or reproduce certain properties of real objects, objects and phe-

nomena using other objects, processes, phenomena, or using an abstract description in

the form of an image, plan, map, a set of equations, algorithms and programs.

The possibilities of modeling, that is, the transfer of the results obtained during the

construction and study of the model to the original, are based on the fact that the

model in a certain sense reflects (reproduces, models, describes, simulates) some of

the object features of interest to the researcher. Modeling as a form of reflection of

reality is widespread, and a fairly complete classification of possible types of model-

ing is extremely difficult, if only because of the ambiguity of the concept of “model”,

widely used not only in science and technology, but also in art and in everyday life.

2 Overview

Consider the list of software products for modeling of economic-mathematical and

mathematical models.

The Maple program is still one of the leaders among universal systems of sym-

bolic calculations. It provides the user with a convenient intellectual environment for

mathematical research at any level and is particularly popular in the scientific com-

munity. Maple's symbol analyzer is the strongest part of this software [1-2]. Maple

provides a convenient environment for computer experiments, during which different

approaches to the problem are tried, particular solutions are analyzed, and if pro-

2

gramming is necessary, fragments requiring special speed are selected. The package

allows you to create integrated environments with other systems and high-level uni-

versal programming languages. In this package Maple is not like a traditional pro-

gramming environment, where a rigid formalization of all the variables and actions

with them. Here, the choice of suitable types of variables is automatically ensured and

the correctness of operations is checked, so that in the general case, the description of

variables and the strict formalization of the record are not required. The Maple pack-

age consists of a kernel (procedures written in C and well optimized), a library written

in Maple, and a developed external interface. The kernel performs most of the basic

operations, and the library contains many commands — procedures performed in the

interpretation mode. The Maple interface is based on the concept of a worksheet or a

document containing I / O lines and text, as well as graphics [2].

MATLAB is one of the most powerful data processing packages today. The

name stands for Matrix Laboratory. MatLab system refers to the average level of

products intended for symbolic mathematics. MatLab is one of the oldest, thoroughly

developed and time-tested systems for automation of mathematical calculations, built

on an expanded view and application of matrix operations [3]. However, the syntax of

the system programming language is thought out so carefully that this orientation is

almost not felt by those users who are not directly interested in matrix calculations.

Despite the fact that MatLab was originally intended solely for computing, in the

process of evolution, in addition to computing tools, under the license for MatLab,

Waterloo Maple acquired the core of symbolic transformations, as well as libraries

that provide functions unique to MatLab for mathematical packages [4]. For example,

the well-known library Simulink, realizing the principle of visual programming, al-

lows you to build a logic diagram of a complex control system from standard blocks

alone, without writing a single line of code. The MatLab system also has ample op-

portunities for programming. Its C Math library (MatLab compiler) is object and con-

tains over 300 data processing procedures in C. Inside the package, you can use both

the procedures of the MatLab itself and the standard procedures of the C language,

which makes this tool a powerful tool for developing applications (using the C Math

compiler, you can embed any MatLab procedures into ready-made applications).

The Powersim package is an excellent tool for creating continuous models.

However, from the point of view of discrete modeling, it is not effective enough.

Powersim is suitable for users who need to build continuous models and who want to

learn a rather complex Systems Dynamics notation. The Powersim package stands out

among the other packages with the ability to process arrays and support teamwork, as

well as the fact that it contains a library with a large number of functions [5]. Arrays

are also convenient for creating models, in the construction of which the levels

change their state, and the developer wants to follow these changes. Powersim in-

cludes more than 150 functions, divided into 16 groups, including financial, mathe-

matical, statistical, graphic and historical. Like other packages, Powersim uses anima-

tion tools when running models. Key parameters, charts and tables can be displayed

directly on the simulation screen, thereby simplifying the viewing of results. The

Multiuser Game feature allows multiple users to simultaneously run a model to work

together on it. Powersim contains many standard Windows tools, such as menus and

3

toolbars, and supports Dynamic Data Exchange (DDE) and Object Linking and Em-

bedding (OLE) technologies [6]. For example, using OLE, a developer can embed a

Powersim model into a document created by a word processor, so that changes to the

model are automatically reflected in the document. The simulation language Pow-

ersim can be used to build models of both simple and complex systems. Nevertheless,

Powersim is quite a powerful tool that allows you not only to quickly and visually

build and analyze system-dynamic models, but also to demonstrate in an accessible

form the simulation results to a wide range of people who are not necessarily experts

in mathematical modeling. Powersim belongs to the family of imitation modeling

languages (Dynamo, Stella / iThink, Vensim, Rusim), which rather quickly and effi-

ciently allows you to master the technique of simulation modeling to representatives

of not only the natural sciences, but also the humanities.

The iThink software product was developed specifically for modeling system

dynamics, the company ISee systems, inc. The program allows users to run models

created as graphical representations of the system using four fundamental building

blocks [7]. Ithink is one of the most powerful products we are considering. From the

point of view of continuous modeling, it lags behind Powersim, but it is better to sup-

port discrete modeling. In addition, the Ithink package is equipped with excellent

tutorials and documentation, as well as a large number of blocks for building a model.

The package is available in two versions - Basic and Authoring [8]. The version of

Authoring, which was compared with other packages, allows the developer to include

in the ruler model with engines and other model management tools, as well as enter

diagrams and other images directly into the model, so that users can control the mod-

eling process and immediately see its results. Like Powersim, Ithink uses the Systems

Dynamics notation, which is mainly focused on continuous modeling. To implement

this system, four types of structures are used: stations, streams, converters, and con-

nectors corresponding to the connections. The Ithink package offers the developer a

list of 14 valid variables for defining mathematical relationships. Ithink provides a

sensitivity analysis of the model by launching it repeatedly with various input pa-

rameters. The results of each run are displayed in a separate line of the output dia-

gram. Baseline data are the main types of distributions used for statistical analysis or a

chart. When a model is executed, Ithink uses animation tools that move stations locat-

ed at different levels in accordance with the model logic. Although the choice of for-

mats for outputting results in Ithink is not as wide as in Extend, from this point of

view it is superior to both Powersim and Process Charter.

Arena, developed by Systems Modeling Corporation software for simulation, al-

lows you to create mobile computer models.The basis of Arena technologies is

SIMAN modeling language and Cinema Animation system. SIMAN, first implement-

ed in 1982, is an extremely flexible and expressive modeling language [9]. He is con-

stantly improving by adding new features. To display the simulation results used ani-

mation system Cinema animation. Arena is equipped with a convenient object-

oriented interface and has amazing possibilities for adaptation to various subject are-

as. In general, the system is extremely easy to use. The Arena simulation model in-

cludes the following main elements: Create and Dispose, Process and Queue [10].

Create are elements from which information or objects come into the model. The rate

4

at which data or objects are received from a source is usually given by a statistical

function. A drain is a device for receiving information or objects. The concept of a

queue is close to the concept of a data warehouse - this is the place where objects are

waiting to be processed. The processing time of objects (performance) in different

processes may be different. As a result, some processes may accumulate objects wait-

ing for their turn. Often, the purpose of simulation is to minimize the number of ob-

jects in the queues. The type of queue in the simulation model can be specified. A

queue can be similar to a stack — the objects that arrived last in the queue are sent

first for further processing (LIFO: last-in - first-out). An alternative to the stack can be

sequential processing, when the objects that arrive first (FIFO: first-in - first-out) are

sent first for further processing. More complex queue processing algorithms can be

specified. Processes are an analogue of work in a functional model. In the simulation

model, the performance of processes can be specified. Arena is a simulation system

that allows you to create mobile (simulation) computer models, using which you can

adequately describe and predict real processes.

Extend + BPR package. The Extend package as a universal modeling tool is

convenient for reorganizing various business processes. To create models in a pack-

age, a block development environment is used, which is much easier to use than the

Systems Dynamics notation for Powersim and Ithink packages. The Extend package,

which has the means of building continuous and discrete models, a wide range of pre-

formed blocks, support from third-party suppliers and the possibility of expansion, is

a powerful product from the ones we are considering. Initially, it was focused on the

convenient user interface of Macintosh computers [11], then transferred to the Win-

dows environment using the Win32 application programming interface, and now even

performs the installation of Win32 on systems that do not have Win32. The package

is available in four versions: Basic, Extend + BPR (Business Process Reengineering),

Extend + Manufacturing and Extend + BPR + Manufacturing [12]. Additional BPR

and Manufacturing facilities include a number of features for vertical markets. In

addition, there are many third-party products that support Extend and are targeted to

specific applications. The basic package of Basic includes more than 90 preformed

blocks combined into libraries, of which Discrete-Event, Generic and Plotter are most

often used. The Discrete-Event library includes various actions, queues, gateways,

and timers. The Generic library contains random number and source data generators,

files for input and output information, and blocks for mathematical, boolean, and

financial data. The Plotter library consists of blocks for creating output diagrams and

tables. The remaining libraries have a special purpose, for example, they collect statis-

tical information. BPR and Manufacturing packages are provided with additional

libraries. In addition, Extend has a built-in language Modl, which allows the develop-

er to build specialized blocks. Selecting a block from the Discrete-Event library au-

tomatically builds a discrete model; otherwise, a continuous model. The Extend pack-

age is equipped with authoring models creation functions, with the help of which the

developer includes text, geometric images and control blocks in the model window so

that users can independently modify the model. To control the process of modeling

and displaying the results on the display, a tool based on the notepad principle is used.

The Extend package provides detailed user guidance, a tutorial, and model examples

5

from a wide variety of areas of activity that can serve as the basis for creating new

models, which undoubtedly facilitates the modeling process.

We propose an algebraic approach to economic modeling that is implemented in

the scope of the insertion modeling system (IMS) [13]. Insertion modeling focuses on

building models and studying the interaction of agents and environments in complex

distributed multi-agent systems [13,14].

3 Insertion Modeling System

Insertion modeling is concerned with the construction of models and the study of the

interaction of agents and environments in complex distributed multiagent systems.

Environments is an agent that has a dip function. More precisely, the environ-

ment is the set of < E, C, A, Ins > , where E - is the set of environment states (identi-

fied with behaviors), C - is the set of actions of the medium, A - is the set of actions

of agents immersed in the environment, Ins: E⨯F (A) →E - immersion function. Here

F (A) - is the complete algebra of the behavior of agents with the set of actions A.

Thus, every medium E admits the immersion of any agent with the set of actions A.

The behavior of agents is described by the algebra of behavior. The algebra of

behavior has several basic operations: the prefixing a.u and the non-deterministic

selection u + v, where a is the action, u, and v-behavior. Parallel and sequential com-

position (u || v, u; v).

It should also be noted that there are two terminal constants in algebra of behav-

ior: successful completion and dead-end behavior 0.

Basic protocols are used to represent the insertion models. The general theory of

basic protocols is presented in [14]. The methods of verification of requirements and

specifications of distributed systems in the field of telecommunications, embedded

systems and real-time systems have been developed with the help of the language of

basic protocols.

∀x (Ux → <P> Vx), where U (x) is the precondition that defines the state when

the protocol can be used; V (x) is the postcondition that defines the transition to a new

state; P is the process that illustrates this transition. The basic idea of the theory of

basic protocols is presented in [15].

Further, let's consider the formalization of the University's economy using the

methods of algebraic programming and insertion simulation.

4 Formalization of economic model of university

The process of formalizing the economy of a university consists of several stages: the

selection and description of agents that are involved in the model, the definition of

their attributes corresponding to the required level of abstraction, the definition of

agent actions and the design of agent behavior.

Based on the model requirements, we selected the following types of agents: coun-

try, university, teachers (professor, associate professor, teacher, assistant), state em-

ployees, contract service students.

6

The list of agents and their interaction with each other can be represented by the

following diagram.

Fig. 1. Diagram of agents and their interaction with each other

The main objectives of the formalization of the university’s economic processes

are:

1. The search for modeling errors, such contradictions, deadlocks

2. Search for effective system scenarios in the model, etc.

3. Opportunities to analyze and predict the model;

The initial stage of modeling is the definition of both agents and their attributes.

Agents in among inertial modeling can be represented as follows, consider an exam-

ple of the description of the agents of the university and the state:

GOVERNMENT:obj(

score:real

…….

),

UNIVERSITY:obj(

score:(Score_TYPE)->real

…….

)

7

It should also be noted that the score attribute of the university agent has an enu-

merated type, this is based on the requirements, since the university has two accounts:

special and basic, this fact among inertial modeling can be represented as follows:

Score_TYPE:(SPECIAL,GENERAL)

The interaction between agents is carried out through the language of the basic

protocols [15]. The following are examples of the basic protocol formalizations and

their description in natural language:

Table 1. The examples of the basic protocol formalizations

Basic protocol Description

calcTuitionFee = Opera-

tor(Forall(i:int,j:int)(

(i>=1&i<=2&j>=1&j<=max&(current

Month=1))->

<”calculation ratio of tution

fee by month”>

(sumTuitionFee:= sumTuition-

Fee+(countStudents

*tuitionFee(i,j)*rationStd(i,j)

)))

Calculation of the monthly amount

of tuition fees for all students of

contract. It is important to note that:

tuitionFee (i, j) is the cost of tuition

for one month according to the dis-

tribution “department / course”

where,

 i - department; j - course.

tuitionFee(1,1)=1200

tuitionFee(1,2) =1300

….

tuitionFee(2,2) = 1700

tutionFee = Operator(

(currentMonth>=1 &&

(~(currentMonth=11)

&&(~(currentMonth=12)))->

<”Tuition fee”>

(univ.score(GENERAL):=univ.scor

e(GRNERAL) +sumTuitionFee*coef;

univ.score(SPECIAL):=univ.score

(SPECIAL) + sumTuitionFee *

coef))

Tuition fees, the amount that is

calculated in the protocol is trans-

ferred to the university account.

calcTuitionFee.

1. 50% - transferred to a special

fund.

2. 50% is transferred to the general

fund.

sumSalary=Operator(Forall

(i:Teachers_TYPE)(

(i>=1&i<=4 & (currentMonth>1))-

>

<”calculation ratio of salary

by month”>

The calculation of the monthly

amount that the university spends on

salaries for faculty members, where:

Salary(Professor) = n1

Salary(Docent) = n2

…..

Salary(Assistant)=n3

8

Basic protocol Description

(sumSalary:=sumSalary +

countTeachers * Salary(i)

)

It should be noted that

Salary (Professor) = n1 - the value

that the university spends to pay

salaries for all professors of the uni-

versity.

salary = Operator(

(currentMonth>=1)->

<”payment of wages”>

(univ.score(GENERAL):=univ.scor

e(GENERAL) - coef * sumSalary;

univ.score(SPECIAL):=univ.score

(SPECIAL) - coef * sumSalary;

coach.score:=coach.score +

sumSalary)

)

Payment of wages.

At the highest level of agent behavior can be represented as follows, and fig. 2.

Presents a graphical version of the behavior algebra. Consider each of the subprocess-

es in more detail:

1. tutionFee - the process of paying for tuition; contract-based students pay universi-

ty tuition fees.

2. slaryForTeachers - payroll process.

3. stipend - scholarship payment.

4. otherExpenses - a process representing unplanned expenses of a university (busi-

ness trips, organization of conferences, and so on).

Fig. 2. Graphic representation of behavior algebra

9

It should be noted that the tutionFee, slaryForTeachers, otherExpenses processes

are parallel processes. The diagram presented in fig. 2, can be represented in algebraic

form as follows:

B0 =moneyForTheUniversity . EB1 + !moneyForTheUniversity

. EB1,

EB1 =(

{tutionFee || slaryForTeachers || stipend}; otherExpens-

es; EB2

),

EB2 = nextMonth . B0 + lastMonth . Delta

Initial values for model initialization are given in a special logical formula. Build-

ing a model with specific values includes defining specific values for agents and at-

tributes of the environment.

In contrast to a specific model, the symbolic one allows us to analyze the formal

model for stability and stability. To test stability, the first step is to select the indicator

of stability of the economic model. Since, the tuition fee is directly related to the

number of applicants, and often changes, we have chosen deltaPriceEducation as a

parameter of stability. This parameter is very important because a very small average

tuition fee will negatively affect the economy of the university, and a very high one

will affect the number of applicants. In this project, this fact can be described as fol-

lows:

2000>=deltaPriceEducation>=1000

In the process of modeling, we can get the following formulas; deltaPriceEduca-

tion = P (p1, p2, ... pn) - where, p1, p2, ... pn are unknown parameters for the model.

Proof that these parameters fall within specified intervals, can confirm or refute the

properties of the model.

5 Сonclusions

Using the proposed approach gives us the opportunity to study the reliability and sta-

bility of economic models to check the safety and properties of models. In the process

of formalizing such models, there may be some problems associated with the interdis-

ciplinary level. The article presents a method for analyzing and modeling economic

models, provided a formal model of the economy of the university. This approach

makes it possible to evaluate the model, and to take into account various scenarios of

behavior. Using the methods of algebraic programming, we can analyze models on

inconsistencies and seek non-determinism and deadlocks.

10

References

1. Gander, W., Gander, M. J., Kwok, F.: Scientific computing: an introduction using Maple

and MATLAB. Springer, Heidelberg (2014).

2. Biran, A., Breiner, M.: MATLAB for Engineers. Pearson Education, Harlow, Essex

(2002).

3. Herniter, M. E.: Programming in MATLAB. Brooks/Cole Publishing Co, Florence, Ken-

tucky, U.S.A (2000).

4. Malczynski, L. A..: Best practices for system dynamics model design and construction

with Powersim studio. Sandia National Laboratories, Albuquerque, New Mexico and Liv-

ermore, California (2013).

5. Giammarini, M., Orcioni, S., Conti, M.: Powersim: power estimation with SystemC. In:

Solutions on Embedded Systems, pp. 285-300. Springer, Dordrecht (2011).

6. Sumari, S., Ibrahim, R., Zakaria, N. H., Ab Hamid, A. H.: Comparing three simulation

model using taxonomy: System dynamic simulation, discrete event simulation and agent

based simulation. International Journal of Management Excellence 1(3), 54-59 (2013).

7. Murphy, B.P., Randolph, C.M.: Simulation packages today: new user classes and order-of-

magnitude breakthroughs in development costs. Computational statistics & data analysis

16(4), 471-479 (1993).

8. Hammann, J. E., Markovitch, N. A.: Introduction to Arena [simulation software]. In: Pro-

ceedings of the Winter Simulation Conference, pp. 519-523. IEEE (1995).

9. Batarseh, O., McGinnis, L. F.: System modeling in SysML and system analysis in arena.

In: Proceedings of the Winter Simulation Conference, p. 258. IEEE (2012).

10. Krahl, D.: An introduction to Extend [hierarchical simulation modelling tool]. In: Proceed-

ings of the Winter Simulation Conference, pp. 538-545. IEEE (1994).

11. Krahl, D.: Extend: the Extend simulation environment. In: Proceedings of the 34th confer-

ence on Winter simulation: exploring new frontiers, pp. 205-213. IEEE (2002).

12. Letichevsky, A. A., Letychevskyi, O. A., Peschanenko, V. S.: Insertion modeling system.

In: International Andrei Ershov Memorial Conference on Perspectives of System Informat-

ics, pp. 262-273. Springer, Berlin, Heidelberg (2011).

13. Letichevsky, A., Gilbert, D.: A model for interaction of agents and environments. In: In-

ternational Workshop on Algebraic Development Techniques, pp. 311-328. Springer, Ber-

lin, Heidelberg (1999).

14. Letichevsky, A., Kapitonova, J., Letichevsky Jr, A., Volkov, V., Baranov, S., Weigert, T.:

Basic protocols, message sequence charts, and the verification of requirements specifica-

tions. Computer Networks 49(5), 661-675 (2005).

